首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
R. Habib  J Chadoeuf 《Plant and Soil》1989,115(1):129-134
A new method has been proposed to estimate the total length in a sample, and it assumes that roots are cylinders with a given bulk density. The technique is based on the measurement of the length and diameter of small pieces of roots, and on the measurement of the bulk density of root sub-samples. An exact formulation is presented of the error distribution in estimating total root length. This leads to a simple formula which relates directly the variance of the root length estimates to both the number of roots used in estimating the root characteristics, and the number of sub-samples used in estimating the mean bulk density of the samples. This enables analyses of experimental designs with respect to sample size and accuracy.  相似文献   

2.
Kimura  K.  Yamasaki  S. 《Plant and Soil》2001,234(1):37-46
The objective of this study was to develop an image analysis algorithm for estimating the length versus diameter distribution of washed root samples. Image analysis was performed using a Macintosh computer and the public domain NIH Image program. After an appropriate binary image of roots was obtained, the image was processed to get the thinned image to calculate the length of the roots. The edge pixel of the binary image was then deleted and root length was calculated again. This `edge deletion–length calculation' cycle was repeated until no root pixel was left in the image. Repeated edge deletion removed one pixel layer from around the periphery of root objects in each iteration. The number of edge deletions, which is equivalent to the intercept length, can be used to estimate the root diameter. We used the vertical or horizontal intercept length, whichever was shorter. The accuracy of diameter estimation due to orientation of objects varied from 89.1 to 126.0%. Branching root systems consist of several orders of laterals, and as the root branches to a higher order, the diameter of the roots becomes smaller. Therefore, edge deletions eliminate sequentially from the highest order roots, which have the smallest diameter, to the lowest order roots, which have the widest diameter. Thus, the length and diameter of each root order can be calculated by the proposed method. For verification, images of copper wire of 0.23, 0.50, and 1.0 mm diameter were analyzed. The results showed reasonable agreement with the expected distribution of length versus diameter for randomly oriented objects, and consequently the wire length of each diameter could be estimated. The proposed method was tested for primary and secondary roots of water-cultured rice (Oryza sativa L.), and it was proven that the method can provide accurate length and diameter measurements for each root order.  相似文献   

3.
This paper discusses interspecific differences and phenotypic responses to nitrogen supply in various root parameters of five perennial grasses from contrasting habitats. The following root parameters were studied: root:shoot ratio, specific root length, specific root area, mean root diameter, frequency of fine roots, and the length and density of root hairs. Significant between-species variation was found in all of these features. Species from fertile sites had higher root:shoot ratios at high nitrogen supply than species from infertile habitats. All species growing at low nitrogen supply showed a significant increase in root:shoot ratio. Specific root length, specific root area, mean root diameter and frequency of fine roots were not affected significantly by nitrogen supply. Species from infertile sites responded to low nitrogen supply by a significant increase in root hair length and root hair density.  相似文献   

4.
Background and Aims Root diameter, especially apical diameter, plays an important role in root development and function. The variation in diameter between roots, and along roots, affects root structure and thus the root system’s overall foraging performance. However, the effect of diameter variation on root elongation, branching and topological connections has not been examined systematically in a population of high-order roots, nor along the roots, especially for mature plants grown in the field.Methods A method combining both excavation and analysis was applied to extract and quantify root architectural traits of adult, field-grown maize plants. The relationships between root diameter and other root architectural characteristics are analysed for two maize cultivars.Key Results The basal diameter of the lateral roots (orders 1–3) was highly variable. Basal diameter was partly determined by the diameter of the bearing segment. Basal diameter defined a potential root length, but the lengths of most roots fell far short of this. This was explained partly by differences in the pattern of diameter change along roots. Diameter tended to decrease along most roots, with the steepness of the gradient of decrease depending on basal diameter. The longest roots were those that maintained (or sometimes increased) their diameters during elongation. The branching density (cm–1) of laterals was also determined by the diameter of the bearing segment. However, the location of this bearing segment along the mother root was also involved – intermediate positions were associated with higher densities of laterals.Conclusions The method used here allows us to obtain very detailed records of the geometry and topology of a complex root system. Basal diameter and the pattern of diameter change along a root were associated with its final length. These relationships are especially useful in simulations of root elongation and branching in source–sink models.  相似文献   

5.
We present a simple model for root length density that combines the generally accepted spatial (exponential decrease with depth) and temporal (sinusoidal) variability of root length. Parameters in this model for root length density can be determined from assumed or measured information regarding the annual biomass turnover, maximum standing biomass, and maximum depth of root penetration. The root length density model, coupled with information regarding the average root lifespan, gives specific root growth and senescence functions that are the forcing functions for the phytoremediation model. We present a screening level mathematical model for phytoremediation that accounts for the growth and senescence of roots in the system. This is an important factor for recalcitrant, immobile compounds found in weathered crude oil contaminated soils. The phytoremediation model is based on variable volume compartments that have individual first-order degradation rate constants; as the roots move through the soil, the soil cycles through the rhizosphere zone, decaying root zone and bulk soil zone. Thus, although the oil is immobile, as the roots penetrate through the soil the oil is brought into contact with the rhizosphere.  相似文献   

6.
青杨人工林根系生物量、表面积和根长密度变化   总被引:6,自引:1,他引:5  
燕辉  刘广全  李红生 《应用生态学报》2010,21(11):2763-2768
在植物生长季节,采用钻取土芯法对秦岭北坡50年生青杨人工林根径≤2 mm和2~5 mm根系的生物量、表面积和根长密度进行测定.结果表明:在青杨人工林根系(<5 mm)中,根径≤2 mm根系占总生物量的77.8%,2~5 mm根系仅占22.2%;根径≤2 mm根系表面积和根长密度占根系总量的97%以上,而根径2~5 mm根系不足3%.随着土层的加深,根径≤2 mm根系生物量、表面积和根长密度数量减少,根径2~5 mm根系生物量、表面积和根长密度最小值均分布在20~30 cm土层.≤2 mm根系生物量、表面积和根长密度与土壤有机质、有效氮呈极显著相关,而根径2~5 mm根系的相关性不显著.  相似文献   

7.
黄土丘陵区退耕地先锋群落演替过程中细根特征的变化   总被引:2,自引:0,他引:2  
采用空间序列取代时间序列的方法,对退耕时间分别为2、4、6和8年的退耕地群落细根特征进行了分析,以探讨退耕地植被演替过程中细根特征在土壤剖面上的变化及其在演替过程中的作用.结果表明:(1)群落细根根长密度和根面积密度随植被演替显著增加;比根长、比根面积和地下/地上生物量也有增加趋势;细根平均直径随植被演替波动,但有减少趋势;(2)在土壤剖面上根长密度、根面积密度和根系生物量均随土壤深度的增加而降低.其中超过63%的根长、61%的根面积和72%的生物量分布在0~20 cm的表层土壤中;(3)根径级统计表明,多数细根直径在0~0.5和0.5~1.0 mm之间,这两级细根长度占细根总长度的80%以上;(4)逐步回归分析表明,植被演替过程中细根特征的变化主要与土壤有效氮(第2年)、有效磷(第2~8年)和土壤水分(第8年)的含量有关,且随着植被演替,2~6年退耕地中细根特征与土壤资源正相关,而第8年中二者呈负相关.这可能与植物生长对资源的需求与土壤提供资源的能力之间的平衡有关.研究表明,退耕地植被演替过程对土壤资源有一定影响,尤其是土壤水分含量显著减少;而土壤水分等土壤资源的变化又对群落产生影响,导致茵陈蒿先锋群落向地带性长芒草群落演替.  相似文献   

8.
施肥对日本落叶松人工林细根直径、根长和比根长的影响   总被引:16,自引:0,他引:16  
以辽宁东部山区16年生日本落叶松人工林为研究对象,探讨施肥对日本落叶松1~5级根序中细根直径、根长和比根长的影响.结果表明:随着根序等级的增加,日本落叶松细根平均直径和根长显著增加(P<0。05,P<0。01)、比根长则显著下降(P<0。01).在日本落叶松的5级根序中,1级根的平均直径最细、根长最短、比根长最高,而5级根则相反;随着根序等级的增加,日本落叶松细根平均直径、根长和比根长的变异系数逐渐增大.除1级根外,土层对细根的平均直径、根长和比根长没有显著影响(P>0。05).与对照样地相比,施肥对各级细根平均直径、根长和比根长的影响主要表现在1~2级根上,对3级根序以上的细根影响不显著(P>0.05).其中,施氮肥显著降低了1~2级根的平均直径(P<0.05),施氮肥以及氮磷肥显著降低了表层土壤(0~10 cm)中1级根的平均根长(P<0.05),表层土壤中细根的比根长在施氮肥的条件下显著增加(P<0.05).  相似文献   

9.
Ouden  Jan den 《Plant and Soil》1997,197(2):209-217
We investigated early root development of Pinus sylvestris seedlings in relation to bulk density and natural particle layering in an ectorganic soil layer from a bracken (Pteridium aquilinum) stand. Responses in root development to two levels of bulk density (0.07 and 0.15 g/cm3) in mixed bracken substrate were compared with effects in peat of similar bulk densities, and in sand of three different bulk densities (0.37, 0.52, and 0.67 g/cm3). The effect on root growth of the natural horizontal layering of the organic particles was examined by comparing intact with mixed ectorganic bracken soil profiles of similar bulk densities (resp. 0.09 and 0.07 g/cm3).Root length growth was significantly reduced in the organic and sandy substrates of high bulk density. Root diameter was not affected by bulk density in the organic substrate, but increased with higher bulk density in sand. Preservation of horizontal layering in the intact ectorganic profile significantly reduced root length compared with mixed substrate of similar bulk density.Roots growing in high bulk density, and intact, organic substrate showed increased twisting, which resulted in a smaller depth reached by the root relative to total root length produced. In sand, root twisting did not change with increased bulk density. It is suggested that roots growing through organic substrate follow a path of least resistance. This implies that organic particle size and orientation are more important in determining root development than bulk density.This study points out that the natural layering of organic particles presents another constraint on the establishment of plant species in sites with a well-developed ectorganic soil layer. Disturbance of this layer may therefore enhance establishment of seedlings by reducing the mechanical resistance of the ectorganic soil profile to developing seedling roots.  相似文献   

10.
邓磊  关晋宏  张文辉 《生态学报》2018,38(16):5739-5749
以辽东栎(Quercus liaotungensis)在陕西不同分布区:秦岭北坡(太白)、黄土高原南部(黄龙)和黄土高原中部(延安)为研究地点并设置样地,对1—5年生辽东栎幼苗的根系形态指标进行测定,分析辽东栎幼苗根系形态特征及其与环境因子的关系。结果表明:由秦岭北坡到黄土高原中部,黄龙地区辽东栎幼苗根系在发育前期(1—2年)低于太白和延安,总体上黄龙地区幼苗根系总长度、表面积、总体积、根尖数、平均直径、组织密度和单株生物量高于太白和延安地区。在太白地区,辽东栎幼苗根系表面积、总体积和平均直径较小,根系分岔数较大,幼苗根系主要通过提高分岔数来拓展自己的营养空间以适应环境;在黄龙和延安地区,幼苗根系表面积、总体积和平均直径较大,根系分岔数较小,幼苗根系主要是通过根系的伸长生长适应胁迫环境。3个地区辽东栎幼苗根系总长度、表面积、总体积、根尖数和分岔数随年龄的增长呈线性函数变化格局,均可用线性函数方程y=ax+b(a0,P0.05)进行描述。冗余分析表明幼苗根系分岔数、总长度、比根长和根尖数与土壤速效磷、硝态氮、速效钾、降雨量、石砾含量和速效氮呈正相关;与较高的土壤pH值、年均温和夏季气温呈负相关。未来辽东栎林抚育经营中,含石砾的湿润土壤生境更有利于辽东栎幼苗根系生长。  相似文献   

11.
Zhuang  J.  Yu  G.R.  Nakayama  K. 《Plant and Soil》2001,235(2):135-142
Root length density is an important parameter in crop growth simulation and in evaluating consequences of root pattern on crop water and nutrient uptake. In this study, a scaling model was presented for estimating the profile distribution of root length density of maize (Zea mays L.). The model inputs are root length data of a reference profile and bulk densities of soil layers, as well as root length data in the first soil layer of a field profile to be investigated. Using the root length data of 10 soil profiles investigated over 2 years, the model was examined. The results show that the proposed scaling approach is effective in estimating the root length density of each layer of soil in the field profile. The relative root mean square error (RRMSE) of the developed scaling model was 25.28%, while that of the traditional exponential model was 39.53%. The scaling approach would facilitate determination of heterogeneous distributions of root length densities in the field.  相似文献   

12.
The relative importance of root system structure, plant carbon status and soil environment in the determination of lateral root diameter remains unclear, and was investigated in this study. Banana (Musa acuminata) plants were grown at various moderate levels of soil compaction in two distinct experiments, in a field experiment (FE) and in a glasshouse experiment (GE). Radiant flux density was 5 times lower in GE. The distribution of root diameter was measured for several root branching orders. Root diameters ranged between 0.09 and 0.52 mm for secondary roots and between 0.06 and 0.27 mm for tertiary roots. A relationship was found between the diameter of the parent bearing root and the median diameter of its laterals, which appears to be valid for a wide range of species. Mean lateral root diameter increased with distance to the base of the root and decreased with branching density [number of lateral roots per unit length of bearing root (cm(-1))]. Typical symptoms of low light availability were observed in GE. In this case, lateral root diameter variability was reduced. Although primary root growth was affected by soil compaction, no effects on lateral root diameter were observed.  相似文献   

13.
Chassot  André  Stamp  Peter  Richner  Walter 《Plant and Soil》2001,231(1):123-135
Suboptimal soil conditions are known to result in poor early growth of maize (Zea mays L.) in no-tillage (NT) systems in contrast with conventional tillage (CT) systems. However, most studies have generally focused on maize roots at later growth stages and/or do not give details on root morphology. In a 2-year field study at two locations (silt loam and loam soils) in the Swiss midlands, we investigated the impacts of tillage intensity, NT vs. CT, and NP-fertilizer sidebanding on the morphology, vertical and horizontal distribution, and nutrient uptake of maize roots at the V6 growth stage. The length density (RLD) and the length per diameter-class distribution (LDD) of the roots were determined from soil cores taken to a depth of 0.5 m and at distances of 0.05 and 0.15 m from both sides of the maize row. The temperature of the topsoil was lower, and the bulk density and penetration resistance were greater in the topsoil of NT compared with CT. The growth and the development of the shoot were slower in NT. RLD was greater and the mean root diameter smaller in CT than in NT, while the vertical and horizontal distribution of roots did not differ between CT and NT. RLD increased in the zone enriched by the sidebanded fertilizer, independent of the tillage system, but LDD did not change. The poorer growth of the roots and shoots of maize seedlings was presumably caused by the lower topsoil temperature in NT rather than by mechanical impedance. The placement of a starter fertilizer at planting under NT is emphasized.  相似文献   

14.
Background and AimsAlthough root penetration of strong soils has been intensively studied at the scale of individual root axes, interactions between soil physical properties and soil foraging by whole plants are less clear. Here we investigate how variation in the penetration ability of distinct root classes and bulk density profiles common to real-world soils interact to affect soil foraging strategies.MethodsWe utilize the functional–structural plant model ‘OpenSimRoot’ to simulate the growth of maize (Zea mays) root systems with variable penetration ability of axial and lateral roots in soils with (1) uniform bulk density, (2) plow pans and (3) increasing bulk density with depth. We also modify the availability and leaching of nitrate to uncover reciprocal interactions between these factors and the capture of mobile resources.Key ResultsSoils with plow pans and bulk density gradients affected overall size, distribution and carbon costs of the root system. Soils with high bulk density at depth impeded rooting depth and reduced leaching of nitrate, thereby improving the coincidence of nitrogen and root length. While increasing penetration ability of either axial or lateral root classes produced root systems of comparable net length, improved penetration of axial roots increased allocation of root length in deeper soil, thereby amplifying N acquisition and shoot biomass. Although enhanced penetration ability of both root classes was associated with greater root system carbon costs, the benefit to plant fitness from improved soil exploration and resource capture offset these.ConclusionsWhile lateral roots comprise the bulk of root length, axial roots function as a scaffold determining the distribution of these laterals. In soils with high soil strength and leaching, root systems with enhanced penetration ability of axial roots have greater distribution of root length at depth, thereby improving capture of mobile resources.  相似文献   

15.
The study of fine roots growing under field conditions is limited by the techniques currently available for separating these roots from soil. This study had two objectives: to measure the total root length of field grown corn (Zea mays L.) by root diameter class, and to develop an inexpensive and efficient root washing device that would effectively capture all of the roots in a field soil sample. An inexpensive Fine Root Extraction Device (FRED) was constructed from readily available materials and was successful at extracting all roots, including very fine diameter roots (0.025 mm), from field soil samples. Greater than 99.7% of marked roots introduced to the FRED were recaptured by the device. Soil samples from three depths, and on three dates, from field grown corn were placed in the FRED. We found that more than 56% of total root length occurred in roots whose diameters were smaller than 0.175 mm, and more than 35% of root length occurred in roots smaller than 0.125 mm in diameter. Corn roots of the diameters described here have not been reported in field soils prior to this study. Root researchers who fail to measure these very fine roots will significantly underestimate root length density. Widespread use of the FRED should improve our understanding of root distribution in field soils.  相似文献   

16.
A dynamic 3D model of root system development was adapted to young sessile oak seedlings, in order to evaluate the effects of grass competition on seedling root system development. The model is based on a root typology and the implementation of a series of developmental processes (axial and radial growth, branching, reiteration, decay and abscission). Parameters describing the different processes are estimated for each root type. Young oak seedlings were grown for 4 years in bare soil or with grass competition and were periodically excavated for root system observation and measurements (topology of the root system, length and diameter of all roots with a diameter greater than 0.3 mm). In the fourth year, 40 cm×20 cm×20 cm soil monoliths were excavated for fine root measurement (root density and root length). Root spatial development was analysed on a sub-sample of roots selected on four seedlings. The model was a guideline that provided a complete and consistent set of parameters to represent root system development. It gave a comprehensive view of the root systems and made it possible to quantify the effects of competition on the different root growth processes. The same root typology was used to describe the seedlings in bare soil and in grass. Five root types were defined, from large tap roots to fine roots. Root system size was considerably reduced by grass competition. Branching density was not affected but the branch roots were always smaller for the seedlings grown in competition. Reiteration capacity was also reduced by competition. Cross sectional areas before and after branching were linearly related with a scaling coefficient close to 1, as predicted by the pipe model theory. This relationship was not affected by grass competition.  相似文献   

17.
Dowdy  R.H.  Smucker  A.J.M.  Dolan  M.S.  Ferguson  J.C. 《Plant and Soil》1998,200(1):91-94
Historically, destructive root sampling has been labor intensive and requires manual separation of extraneous organic debris recovered along with the hydropneumatic elutriation method of separating plant roots from soils. Quantification of root system demographics by public domain National Institute of Health (NIH-Image) and Root Image Processing Laboratory (RIPL) image processing algorithms has eliminated much of the labor-intensive manual separation. This was accomplished by determining the best length to diameter ratio for each object during image analyses. Objects with a length to diameter ratio less than a given threshold are considered non-root materials and are rejected automatically by computer algorithms. Iterative analyses of length to diameter ratios showed that a 15:1 ratio was best for separating images of maize (Zea mays L.) roots from associated organic debris. Using this threshold ratio for a set of 24 soil cores, a highly significant correlation (r2 = 0.89) was obtained between computer image processed total root length per core and actual root length. A linear relationship (r2 = 0.80) was observed between root lengths determined by NIH-Image analyses and lengths determined independently by the RIPL imaging system, using the same maize root + debris samples. This correlation demonstrates that computer image processing provides opportunities for comparing root length parameters between different laboratories for samples containing debris.  相似文献   

18.
Fine root morphological traits and distribution, arbuscular mycorrhizal (AM) fungi, soil fertility, and nutrient concentration in fine root tissue were compared in sites under different successional phases: grass plants, secondary forest, and mature forest in Londrina county, Paraná state, southern Brazil. Soil cores were collected randomly at the 0-10- and 10-20-cm depths in three quadrants (50 m2) in each site. Plants from the different successional stages displayed high differences in fine root distribution, fine root traits, and mycorrhizal root colonization. There were increases in the concentration of nutrients both in soil and fine roots and decrease of bulk soil density along the succession. The fine root biomass and diameter increased with the succession progress. The total fine root length, specific root length, root hair length, and root hair incidence decreased with the succession advance. Similarly, the mycorrhizal root colonization and the density of AM fungi spores in the soil decreased along the succession. Mycorrhizal root colonization and spore density were positively correlated with fine root length, specific root length, root hair length, root hair incidence, and bulk density and negatively correlated with fine root diameter and concentration of some nutrients both in soil and root tissues. Nutrient concentration in root tissue and in soil was positively correlated with fine root diameter and negatively correlated with specific root length, root hair length, and root hair incidence. These results suggest different adaptation strategies of plant roots for soil exploration and mineral acquisition among the different successional stages. Early successional stages displayed plants with fine root morphology and AM fungi colonization to improve the root functional efficiencies for uptake of nutrients and faster soil resource exploration. Late successional stages displayed plants with fine root morphology and mycorrhizal symbiosis for both a lower rate of soil proliferation and soil exploration capacity to acquire nutrients.  相似文献   

19.
This report describes an image analysis algorithm to estimate the length versus diameter of washed root samples accurately. Image analysis was performed using a Macintosh computer and the public domain NIH Image program. The binary image of the roots was processed to get the thinned image to calculate the length of the roots. The pixels of the root in a binary image were then stripped off from around the periphery based on the pixel's Pythagorean distance from the nearest background pixel. The length of the remaining root in each stripping off process was calculated after the image was thinned. Images (300 dpi) of copper wire of 0.23, 0.5, 1.0 mm diameter were analyzed for verification of the usefulness of the procedure. The results showed that more than 93% of the wires in each diameter wire were calculated to be in diameter classes including the true diameter and its adjoining classes: 93.6% of the wires of 0.23 mm diameter appeared in the 0.098–0.38 mm diameter classes, 96.19% of the wires of 0.5 mm diameter appeared in the 0.38–0.61 mm diameter classes, and 96.17% of the wires of 1 mm diameter appeared in the 0.85–1.08 mm diameter classes. The proposed method was tested for primary and secondary roots of water-cultured rice (Oryza sativa L.) and it was proven that the method could provide accurate length and diameter measurements for each root order. In addition, it was found that the method could provide the lengths of the thick primary, thin primary, and secondary roots. The effectiveness of applying sharpening for the grayscale image before making the binary image is also discussed.  相似文献   

20.
A field experiment to test various management practices of sustainable forestry was conducted in a Swiss spruce forest for two growing seasons. Treatments were a control (C), yearly application of 4000 kg ha–1 wood ash (A), daily irrigation with a steady state fertilisation as `optimal nutrition` (F) and irrigation with a water control (W). Samples were taken on a 5 × 5 m grid once a year with a soil corer to determine fine root biomass ( 2 mm) and soil pH of the topsoil. A subset of the fine root samples was further analysed for its nutrient composition by CN and ICP-AES analyses. The dynamics of root growth were observed with the aid of ingrowth-cores after 1, 1.5, and 2 years of treatment and the growth pattern was analysed in terms of biomass, tips, forks, length and root diameter of the samples. The A, F and also the W treatment resulted in a significant increase of soil pH in the topsoil. The fine root density increased over the two growing seasons, irrespective of the treatment. The root growth was only slightly different between the treatments with a initially faster growth under the A treatment. The W treatment reduced the number of root tips and forks, and the root length, while the A treatment increased the number of root tips, forks and the root length, but reduced the diameter. The differences between the three harvesting times (March 1999, October 1999, March 2000) of the ingrowth-cores stressed seasonal differences in root growth and the development of quasi `steady state' root dynamics. The root turnover was not changed by the treatments. The elements in the fine roots were strongly affected by the treatments A and F and sometimes by W. Fine root N increased with the F treatment, while C concentrations decreased under the A, F and W treatments. The Ca and Mg concentrations were strongly enhanced by A but also by the F treatment. The K and P concentrations in the fine roots were improved by all three applications. Due to the pH increase Al, Fe and Mn concentrations in the fine roots were decreased by the A and F treatments. S and Zn concentrations showed inconsistent changes over the growing seasons. The results of this study were comparable with those of other studies in Europe and confirm the abilities of the fine roots as indicators of forest nutrition, to some extent more sensitive than the commonly used foliar analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号