首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Colmation refers to the retention processes that can lead to the clogging of the top layer of channel sediments and decolmation refers to the resuspension of deposited fine particles. Internal colmation, clogging of the interstices directly below the armor layer, may form a thin seal that disconnects surface water from hyporheic water by inhibiting exchange processes. The settling of particles under low flow conditions can cause external colmation. Colmated channel sediments are characterized by reduced porosity and hydraulic conductivity as well as by a consolidated texture. The term ‘depth filtration’ refers to the transport and storage of fine matrix sediments in interstitial layers. Depth filtration is of significance for the transport of colloidal and fine particulate inorganic as well as organic matter within the hyporheic interstices and into the alluvial aquifer. The role of depth filtration is assessed for the content (given in mg per liter) of matrix fine particles retained in the coarse framework sediment of a gravel-bed river in Switzerland. Sediment samples were taken by freeze-coring with liquid nitrogen down to 70 cm depth and by piezometers down to 150 cm depth. Seventy-two percent of the mobile matrix fine particles were smaller than 0.1 mm and 50% were smaller than 0.03 mm. The content of fines tended to increase with depth, although higher accumulations were found at intermediate depths in sediments influenced by exfiltrating ground water. Interstitial detrital particles >90 μm showed vertical distribution patterns opposing those of total particles. These relationships revealed a differential significance of import, storage, and transport within three types of hydrological exchange zones (infiltration, horizontal advection, exfiltration) in the cross-section of the stream.  相似文献   

2.
The boundaries of river systems: the metazoan perspective   总被引:9,自引:1,他引:8  
1. This overview of metazoans associated with the riparian/groundwater interface focuses on the fauna inhabiting substratum interstices within the stream bed and in alluvial aquifers beneath the floodplain. The objective is to integrate knowledge of habitat conditions and ecology of the interstitial fauna into a broad spatiotemporal perspective of lotic ecosystems. 2. Most aquatic metazoans of terrestrial ancestry, secondarily aquatic forms including insects and water mites (Hydracarina), are largely confined to surface waters (epigean), most of the time penetrating only the superficial interstices of the stream bed. 3. Primary aquatic metazoans include crustaceans and other groups whose entire evolutionary histories took place in water. Some species are epigean, whereas other members of the primary aquatic fauna are true subterranean forms (hypogean ) , residing deep within the stream bed and in alluvial aquifers some distance laterally from the channel. 4. The hypogean/epigean affinities of interstitial animals are reflected in repetitive gradients of species distribution patterns along vertical (depth within the stream bed), longitudinal (riffle/pool), and lateral (across the floodplain) spatial dimensions, as well as along recovery trajectories following floods (temporal dimension). 5. Fluvial dynamics and sediment characteristics interact to determine hydraulic conductivity, oxygen levels, pore space, particle size heterogeneity, organic content and other habitat conditions within the interstitial milieu. 6. Multidimensional environmental gradients occur at various scales across riparian/groundwater boundary zones. The spatiotemporal variability of hydrogeomorphological processes plays an important role in determining habitat heterogeneity, habitat stability, and connectivity between habitat patches, thereby structuring biodiversity patterns across the riverine landscape. 7. The erosive action of flooding maintains a diversity of hydrarch and riparian successional stages in alluvial floodplains. The patchy distribution patterns of interstitial communities at the floodplain scale reflect, in part, the spatial heterogeneity engendered by successional processes. 8. Interstitial metazoans engage in passive and active movements between surface waters and ground waters, between aquatic and riparian habitats, and between different habitat types within the lotic system. Some of these are extensive migrations that involve significant exchange of organic matter and energy between ecosystem compartments. 9. The generally high resilience of lotic ecosystems to disturbance is attributable, in part, to high spatiotemporal heterogeneity. Habitat patches less affected by a particular perturbation may serve as ’refugia ‘; from which survivors recolonize more severely affected areas. Mechanisms of refugium use may also occur within habitats, as, for example, through ontogenetic shifts in microhabitat use. Rigorous investigations of interstitial habitats as refugia should lead to a clearer understanding of the roles of disturbance and stochasticity in lotic ecosystems. 10. Development of realistic ’whole river ‘; food webs have been constrained by the exclusion of interstitial metazoans, which may in fact contribute the majority of energy flow in lotic ecosystems. A related problem is failure to include groundwater/riparian habitats as integral components of alluvial rivers. A conceptual model is presented that integrates groundwater and riparian systems into riverine food webs and that reflects the spatiotemporal complexity of the physical system and connectivity between different components. 11. Interstitial metazoans also serve as ’ecosystem engineers, ‘; by influencing the availability of resouces to other species and by modifying habitat conditions within the sediment. For example, by grazing on biofilm, interstitial animals may markedly stimulate bacterial growth rates and nutrient dynamics. 12. Although there has been a recent surge of interest in the role of interstitial animals in running waters, the knowledge gaps are vast. For example, basic environmental requirements of the majority of groundwater metazoans remain uninvestigated. Virtually nothing is known regarding the role of biotic interactions in structuring faunal distribution patterns across groundwater/riparian boundary zones. Interstitial metazoans may contribute significantly to the total productivity and energy flow of the biosphere, but such data are not available. Nor are sufficient data available to determine the contribution of groundwater animals to estimates of global biodiversity. 13. Effective ecosystem management must include groundwater/riparian ecotones and interstitial metazoans in monitoring and restoration efforts. Evidence suggests that a ’connected ‘; groundwater/riparian system provides natural pollution control, prevents clogging of sediment interstices and maintains high levels of habitat heterogeneity and successional stage diversity. River protection and restoration should maintain or re-establish at least a portion of the natural fluvial dynamics that sustains the ecological integrity of the entire riverine–floodplain–aquifer ecosystem. Keywords: groundwater/riparian ecotones, hyporheic habitat, epigean, hypogean, interstitial fauna, biodiversity, food webs  相似文献   

3.
Environmental conditions in the interstices beneath streams and rivers with porous beds are unlike those found either on the bed surface or in the true groundwater. For most of the year, in many streams, the bulk of the water in the hyporheic zone is provided by baseflow but, as it passes across the hyporheic/groundwater interface, the physical and chemical nature of this groundwater changes, probably in response to mixing with surface water. Factors promoting the influx of surface water are associated with features of the bed and channel morphology. The upper and lower boundaries of the hyporheic zone are thought to vary in time, but at any instant they can be defined. As a habitat, the hyporheic zone fits the definition of an ecotone, although certain adverse features may result in reduced species diversity. There are limited, correlative, data available on the relationship of the fauna (hyporheos) to interstitial conditions and further study of the general biology of both species and populations is needed. In an attempt to stimulate future research on these systems, some preliminary models of hyporheic dynamics are proposed.  相似文献   

4.
M. Lafont  J.C. Camus  A. Rosso 《Hydrobiologia》1996,334(1-3):147-155
Benthic oligochaetes were sampled on three occasions (June, August and October 1992) in the upper (0–10 cm) and hyporheic (35–45 cm depths) sediments at five sites of the River Moselle, from upstream of the town of Epinal to Velle-sur-Moselle. The first site (upstream from Epinal) is considered as unpolluted and the four remaining sites are polluted by industrial effluents. The most polluted stations were generally dominated by the pollution tolerant taxon Limnodrilus. Numbers of individuals of this taxon decreased at the less polluted last site in recovery zone, and were also scarce in the first unpolluted site. It is noteworthy that these tendencies were observed in both superficial and hyporheic substrates and to the greatest degree in hyporheic ones. At the unpolluted site, the hyporheic habitat is dominated by the groundwater species Propappus volki, Pristina spp., Pristinella spp. At the less polluted site (last site), the deep sediments are dominated by groundwater species and the Tubificidae without hair setae decrease from June to October. As a result of water exchange between superficial and subterranean waters, superficial substrates of the first and the last stations tend to be colonised by a high proportion of hyporheic species that suggests that flow is primarily from subterranean to superficial waters. The contrary is the case at other polluted stations which are characterised by the invasion of hyporheic substrates by the pollution tolerant superficial taxa Limnodrilus. This suggests that water flows from the river to the deeper groundwater. These two stations are located near drinking water plants which utilise groundwater, thus increasing the vulnerability of groundwater to surface contaminants.  相似文献   

5.
The subsurface riparian zone was examined as an ecotone with two interfaces. Inland is a terrestrial boundary, where transport of water and dissolved solutes is toward the channel and controlled by watershed hydrology. Streamside is an aquatic boundary, where exchange of surface water and dissolved solutes is bi-directional and flux is strongly influenced by channel hydraulics. Streamside, bi-directional exchange of water was qualitatively defined using biologically conservative tracers in a third order stream. In several experiments, penetration of surface water extended 18 m inland. Travel time of water from the channel to bankside sediments was highly variable. Subsurface chemical gradients were indirectly related to the travel time. Sites with long travel times tended to be low in nitrate and DO (dissolved oxygen) but high in ammonium and DOC (dissolved organic carbon). Sites with short travel times tended to be high in nitrate and DO but low in ammonium and DOC. Ammonium concentration of interstitial water also was influenced by sorption-desorption processes that involved clay minerals in hyporheic sediments. Denitrification potential in subsurface sediments increased with distance from the channel, and was limited by nitrate at inland sites and by DO in the channel sediments. Conversely, nitrification potential decreased with distance from the channel, and was limited by DO at inland sites and by ammonium at channel locations. Advection of water and dissolved oxygen away from the channel resulted in an oxidized subsurface habitat equivalent to that previously defined as the hyporheic zone. The hyporheic zone is viewed as stream habitat because of its high proportion of surface water and the occurrence of channel organisms. Beyond the channel's hydrologic exchange zone, interstitial water is often chemically reduced. Interstitial water that has not previously entered the channel, groundwater, is viewed as a terrestrial component of the riparian ecotone. Thus, surface water habitats may extend under riparian vegetation, and terrestrial groundwater habitats may be found beneath the stream channel.  相似文献   

6.
7.
Connectivity and biocomplexity in waterbodies of riverine floodplains   总被引:26,自引:0,他引:26  
1. In river corridors, water plays a key role in connecting various landscape patches. This `hydrological connectivity' operates on the four dimensions of fluvial hydrosystems: longitudinal, lateral, vertical, and temporal. The present review focuses on: (1) lateral connectivity that links the main course of a river with floodplain waterbodies; and (2) vertical connectivity, the exchanges between the surface and groundwater via infiltration into the alluvial aquifer and exfiltration of phreatic water from the hillslope aquifer.
2. The biocomplexity of fluvial hydrosystems results from interactions between processes operating at various spatial and temporal scales. Differences in the nature and intensity of hydrological connectivity contribute to the spatial heterogeneity of riverine floodplains, which results in high alpha, beta and gamma diversity. Differences in connectivity also provide complementary habitats that are required for the parts of life cycles and life-cycles of some species. Hydrological connectivity also produces antagonistic effects, even within the same waterbody.
3. Two temporal scales are distinguished in connectivity dynamics. River level fluctuations within years lead to a pulsing connectivity that drives the functioning of floodplain ecosystems, namely the exchange of organic matter and inorganic nutrients and the shift between production and transport phases. On the scale of decades to centuries, the interactions between various processes increase the biocomplexity of floodplains; for example, river dynamics, which create highly connected waterbodies, compensate for succession that tends towards disconnection. Alternatively, river-bed incision leads to the reduction of fluvial dynamics and to the disconnection of waterbodies, although river incision may increase vertical connectivity where waterbodies are supplied by the hillslope aquifer.  相似文献   

8.
The role of micro-organisms in the ecological connectivity of running waters   总被引:12,自引:1,他引:11  
1. Riparian zones hold a central place in the hydrological cycle, owing to the prevalence of surface and groundwater interactions. In riparian transition zones, the quality of exfiltrating water is heavily influenced by microbial activities within the bed sediments. This paper reviews the role of micro-organisms in biogeochemical cycling in the riparian-hyporheic ecotone. 2. The production of organic substances, such as cellulose and lignin, by riparian vegetation is an important factor influencing the pathways of microbial processing in the riparian zone. For example, anaerobic sediment patches, created by entrainment of allochthonous organic matter, are focal sites of microbial denitrification. 3. The biophysical structure of the riparian zone largely influences in-stream microbial transformations through the retention of organic matter. Particulate and dissolved organic matter (POM and DOM) is retained effectively in the hyporheic zone, which drives biofilm development and associated microbial activity. 4. The structure of the riparian zone, the mechanisms of POM retention, the hydrological linkages to the stream and the intensity of key biogeochemical processes vary greatly along the river continuum and in relation to the geomorphic setting. However, the present state of knowledge of organic matter metabolism in the hyporheic zone suggests that lateral ecological connectivity is a basic attribute of lotic ecosystems. 5. Due to their efficiency in transforming POM into heterotrophic microbial biomass, attached biofilms form an abundant food resource for an array of predators and grazers in the interstitial environments of rivers and streams. The interstitial microbial loop, and the intensity of microbial production within the bed sediments, may be a primary driver of the celebrated high productivity and biodiversity of the riparian zone. 6. New molecular methods based on the analysis of the low molecular weight RNA (LMW RNA) allow unprecedented insights into the community structure of natural bacterial assemblages and also allow identification and study of specific strains hitherto largely unknown. 7. Research is needed on the development and evaluation of sampling methods for interstitial micro-organisms, on the characterization of biofilm structure, on the analysis of the biodegradable matter in the riparian-hyporheic ecotone, on the regulation mechanisms exerted on microbiota by interstitial predators and grazers, and on measures of microbial respiration and other key activities that influence biogeochemical cycles in running waters. 8. Past experiences from large-scale alterations of riparian zones by humans, such as the River Rhine in central Europe, undeniably demonstrate the detrimental consequences of disconnecting rivers from their riparian zones. A river management approach that uses the natural services of micro-organisms within intact riparian zones could substantially reduce the costs of clean, sustainable water supplies for humans.  相似文献   

9.
The flow of groundwater through the sediment layer (underflow or hyporheic zone) of streams and at the origin of streams can influence organic matter uptake dynamics of floodplain. The River Rhône floodplain has limestone foothills. Here we studied 2 karstic and 2 interstitial springs differing by aquifer geology. Organic matter, physico-chemical conditions were compared between these springs during two seasons (from March to September 1989) and at different depths (0, –20 cm, –40 cm).Temperatures indicated large differences in underflow between springs, in their relation to the surrounding environment, and between seasons. Springs are well oxygenated, with differences between layers. Cultivated fields supply interstitial springs with nitrates, and pools are nutrient traps. DOC was heterogeneous in space and time and correlates with VFPOC. Particulate nutrients were correlated with available surface area of sediment grains. Physical conditions of each spring were prominent in determining storage and turnover of organic matter. Each spring, by its own characteristics and dynamics regulating stability and turnover, had an effect or control on storage, transport and retention of organic matter (quality, quantity). These springs offer an example of the heterogeneity, and give a view of the diversity of patches within a floodplain. The data suggest that groundwater flow of springs may be a major factor in the functioning of floodplain tributaries.  相似文献   

10.
Perspectives and predictions on the microbial ecology of the hyporheic zone   总被引:4,自引:0,他引:4  
1. Studies of hyporheic microbial ecology have suggested an important role for hyporheic microbial processes in stream ecosystem functioning. Using evidence from microbial communities in other aquatic habitats, some predictions are made concerning the diversity of microbial types and microbial processes likely to occur in the hyporheic zone, and the relative importance of these various types to the hyporheic ecosystem. 2. It is predicted that the biofilm growth form of interstitial micro-organisms will create a variety of microniches, allowing coexistence of a great diversity of microbial types, and promoting the activity of some otherwise poor competitors. It is further predicted that the confluence of reduced groundwaters and aerobic surface waters will favour chemolithotrophic processes in the hyporheic zone, but that these will contribute significantly to hyporheic production only if surface water is very low in dissolved organic carbon, or the groundwater is extremely reduced, such as by the influence of riparian wetlands. A variety of anaerobic respiratory pathways, such as nitrate, ferric ion, sulphate and even methanogenic respiration will be employed in the hyporheic zone, with biofilm dynamics permitting these to occur even in aerobic sediments. Anaerobic pathways may account for a significant proportion of total hyporheic organic matter mineralization. 3. The role of fungi in hyporheic dynamics is, as yet, almost completely unstudied. However, it is expected that they will be important in breaking down buried particulate organic matter (POM), which may account for a large proportion of total stream POM. 4. Physicochemical conditions in hyporheic sediments appear to be highly heterogeneous, and this heterogeneity may be very important in the cycling of certain nutrients, especially nitrogen, which involves a series of steps requiring different conditions. 5. Various new techniques are now available by which biofilm dynamics and in situ microbial processes may be measured. Studies are recommended of intact microbial communities both at the microscale of the biofilm and at the scale of the heterogeneities occurring in hyporheic sediments. Studies are needed that measure actual rates of microbial processes under in situ conditions.  相似文献   

11.
1. Leaf litter constitutes the major source of organic matter and energy in woodland stream ecosystems. A substantial part of leaf litter entering running waters may be buried in the streambed as a consequence of flooding and sediment movement. While decomposition of leaf litter in surface waters is relatively well understood, its fate when incorporated into river sediments, as well as the involvement of invertebrate and fungal decomposers in such conditions, remain poorly documented. 2. We tested experimentally the hypotheses that the small interstices of the sediment restrict the access of the largest shredders to buried organic matter without compromising that of aquatic hyphomycetes and that fungal decomposers in the hyporheic zone, at least partly, compensate for the role of invertebrate detritivores in the benthic zone. 3. Alder leaves were introduced in a stream either buried in the sediment (hyporheic), buried after 2 weeks of exposure at the sediment surface (benthic‐hyporheic), or exposed at the sediment surface for the entire experiment (benthic). Leaf decomposition was markedly faster on the streambed surface than in the two other treatments (2.1‐ and 2.8‐fold faster than in the benthic‐hyporheic and hyporheic treatments, respectively). 4. Fungal assemblages were generally less diverse in the hyporheic habitat with a few species tending to be relatively favoured by such conditions. Both fungal biomass and sporulation rates were reduced in the hyporheic treatment, with the leaves subject to the benthic‐hyporheic treatment exhibiting an intermediate pattern. The initial 2‐week stage in the benthic habitat shaped the fungal assemblages, even for leaves later subjected to the hyporheic conditions. 5. The abundance and biomass of shredders drastically decreased with burial, except for Leuctra spp., which increased and was by far the most common leaf‐associated taxon in the hyporheic zone. Leuctra spp. was one of the rare shredder taxa displaying morphological characteristics that increased performance within the limited space of sediment interstices. 6. The carbon budgets indicated that the relative contributions of the two main decomposers, shredders and fungi, varied considerably depending on the location within the streambed. While the shredder biomass represented almost 50% of the initial carbon transformed after 80 days in the benthic treatment, its contribution was <0.3% in the hyporheic one and 2.0% in the combined benthic‐hyporheic treatment. In contrast, mycelial and conidial production in the permanently hyporheic environment accounted for 12% of leaf mass loss, i.e. 2–3 times more than in the two other conditions. These results suggest that the role of fungi is particularly important in the hyporheic zone. 7. Our findings indicate that burial within the substratum reduces the litter breakdown rate by limiting the access of both invertebrate and fungal decomposers to leaves. As a consequence, the hyporheic zone may be an important region of organic matter storage in woodland streams and serve as a fungal inoculum reservoir contributing to further dispersal. Through the temporary retention of litter by burial, the hyporheic zone must play a significant role in the carbon metabolism and overall functioning of headwater stream ecosystems.  相似文献   

12.
Hyporheic rehabilitation in rivers: restoring vertical connectivity   总被引:4,自引:0,他引:4  
1. The hyporheic zone below the channel and banks of many rivers where surface water and ground water exchanges plays a crucial functional role in the biogeochemical transformation of water, mediated by active microbial biofilms. This zone also harbours assemblages of invertebrates that graze biofilms, contribute to secondary production, and can alter the porosity of the hyporheic zone through their movement or burrowing activities. 2. Many human activities cause interstitial sedimentation or disrupt surface–groundwater hydrological linkages, impacting upon ecological processes in the hyporheic zone. However, strategies for river rehabilitation seldom explicitly consider the hyporheic zone or seek to restore lost vertical linkages with groundwater. Instead, restoration goals target surface, riparian or floodplain features even though current river ecosystem theory emphasises the three dimensions of hydrological connectivity. To guide effective, holistic river restoration, scientists and managers therefore need information on the mechanisms by which energy and material are transferred in the hyporheic zone and which ecosystem services are thus provided. 3. Other gaps in our understanding of hyporheic zone rehabilitation include recruitment processes of the hyporheos and the relative importance of groups of hyporheic invertebrates in rivers differing in substratum size, disturbance frequency and groundwater linkages. Carefully designed experiments that assess responses to hyporheic rehabilitation strategies will provide valuable data at varying scales (e.g. distribution of hyporheic habitat types at the reach scale) for management as well as providing insights into the mechanisms controlling hyporheic invertebrate assemblages and ecological processes. Fully successful river rehabilitation must include restoration of vertical linkages between the river and its shallow groundwater aquifers.  相似文献   

13.
The distribution of lotic fauna is widely acknowledged to be patchy reflecting the interaction between biotic and abiotic factors. In an in situ field study, the distribution of benthic and hyporheic invertebrates in the heads (downwelling) and tails (upwelling) of riffles were examined during stable baseflow conditions. Riffle heads were found to contain a greater proportion of interstitial fine sediment than riffle tails. Significant differences in the composition of benthic communities were associated with the amount of fine sediment. Riffle tail habitats supported a greater abundance and diversity of invertebrates sensitive to fine sediment such as EPT taxa. Shredder feeding taxa were more abundant in riffle heads suggesting greater availability of organic matter. In contrast, no significant differences in the hyporheic community were recorded between riffle heads and tails. We hypothesise that clogging of hyporheic interstices with fine sediments may have resulted in the homogenisation of the invertebrate community by limiting faunal movement into the hyporheic zone at both the riffle heads and tails. The results suggest that vertical hydrological exchange significantly influences the distribution of fine sediment and macroinvertebrate communities at the riffle scale.  相似文献   

14.
1. River corridors can be visualised as a three‐dimensional mosaic of surface–subsurface exchange patches over multiple spatial scales. Along major flow paths, surface water downwells into the sediment, travels for some distance beneath or along the stream, eventually mixes with ground water, and then returns to the stream. 2. Spatial variations in bed topography and sediment permeability result in a mosaic of patch types (e.g. gravel versus sandy patches) that differ in their hydrological exchange rate with the surface stream. Biogeochemical processes and invertebrate assemblages vary among patch types as a function of the flux of advected channel water that determines the supply of organic matter and terminal electron acceptors. 3. The overall effect of surface–subsurface hydrological exchanges on nutrient cycling and biodiversity in streams not only depends on the proportion of the different patch types, but also on the frequency distribution of patch size and shape. 4. Because nutrients are essentially produced or depleted at the downwelling end of hyporheic flow paths, reach‐scale processing rates of nutrients should be greater in stretches with many small patches (e.g. short compact gravel bars) than in stretches with only a few large patches (e.g. large gravel bars). 5. Based on data from the Rhône River, we predict that a reach with many small bars should offer more hyporheic refugia for epigean fauna than a reach containing only a few large gravel bars because benthic organisms accumulate preferentially in sediments located at the upstream and downwelling edge of bars during floods. However, large bars are more stable and may provide the only refugia during severe flood events. 6. In river floodplain systems exhibiting pronounced expansion/contraction cycles, hyporheic assemblages within newly created patches not only depend on the intrinsic characteristics of these patches but also on their life span, hydrological connection with neighbouring patches, and movement patterns of organisms. 7. Empirical and theoretical evidence illustrate how the spatial arrangement of surface–subsurface exchange patches affects heterogeneity in stream nutrient concentration, surface water temperature, and colonisation of dry reaches by invertebrates. 8. Interactions between fluvial action and geomorphic features, resulting from seasonal and episodic flow pulses, alter surface–subsurface exchange pathways and repeatedly modify the configuration of the mosaic, thereby altering the contribution of the hyporheic zone to nutrient transformation and biodiversity in river corridors.  相似文献   

15.
溪流潜流层大型无脊椎动物生态学研究进展   总被引:1,自引:0,他引:1  
张跃伟  袁兴中  刘红  任海庆   《生态学杂志》2014,25(11):3357-3365
溪流潜流层是溪流表层水和地下水相互作用的群落交错区,生物多样性丰富,是溪流生态系统的重要组成部分.大型无脊椎动物位于潜流层食物网的顶层,直接影响着潜流层物质和能量动态,是河流健康潜在的指示生物,调节着潜流层的环境净化和生态缓冲功能,对溪流生态系统发挥着至关重要的作用.潜流层大型无脊椎动物类群按生活史划分为偶入动物、非典型潜流层动物和典型潜流层动物.潜流层孔隙大小、孔隙水流速、溶解氧、温度、可利用的食物源、渗透系数和水力停留时间是影响大型无脊椎动物在潜流层分布的主要因素.对于潜流层这样一个特殊的生态界面,针对不同的研究目的应该选择合适的取样和调查方法.潜流层大型无脊椎动物的生活史和生活史对策,在溪流生态系统物质循环和能量流动中作用的定量化分析,基于潜流层大型无脊椎动物的河流健康评价体系,以及潜流层作为“庇护地”对于大型无脊椎动物分布和进化的生态学意义,都值得进一步关注和深入研究.  相似文献   

16.
Fertilizer applications and other non-point sources result in an increasing diffuse N and P pollution of receiving waters degrading water quality by eutrophication with several adverse impacts. Floodplains are regarded as reactive interfaces between uplands and receiving waters. In the present study groundwater quality on its subsurface flow from an upland area through a lowland floodplain towards the receiving water body of the Spree River was monitored biweekly over 2 years with two transects of 18 groundwater observation wells. Within the floodplain reaction rates of the nutrients are unevenly distributed. On a scale smaller than the floodplain, the hyporheic zone is regarded as reactive interface with unproportional high reaction rates. Therefore, phosphate and dissolved iron were measured with high spatial resolution in the pore water of the riverbed and the oxbow bed to investigate turnover processes and their small-scale spatial variability at the immediate surface–subsurface interface. The biogeochemical composition of subsurface water is characterized by little temporal variability while spatial heterogeneity is high on the hectametre scale of the study site as well as on the centimetre scale of the bed sediments. Nitrate is eliminated very efficiently by denitrification in the anoxic aquifer of the floodplain while ammonium and phosphate concentrations increase under anoxic conditions. Phosphate and ammonium originate from the mineralization of organic matter and phosphate is additionally released by reductive dissolution of iron-bound phosphorus and weathering of bedrock. Sorption–desorption processes equalize temporal fluctuations of phosphate concentrations. Phosphate uptake by plants is assumed as an important process at only one of the groundwater observation wells. Redox conditions required for a phosphate sink are opposite to those involved in nitrate removal by denitrification. Thus, redox patchiness of floodplain aquifers favours nitrate and phosphate removal, i.e. a temporal and spatial sequence of anoxic and oxic conditions eliminates nitrogen and causes phosphate storage. On the groundwater's path from the upland to the river further phosphate is released in the bed sediments. It originates from previously settled particulate compounds containing phosphorus. While the release of iron-bound phosphorus clearly predominates in the riverbed sediments the mineralization of organic matter is an important additional phosphorus release process in the oxbow bed sediments.  相似文献   

17.
The present study aimed to experimentally quantify the influence of a reduction of surface sediment permeability on microbial characteristics and ecological processes (respiration and leaf litter decomposition) occurring in the hyporheic zone (i.e. the sedimentary interface between surface water and groundwater). The physical structure of the water–sediment interface was manipulated by adding a 2-cm layer of coarse sand (unclogged systems) or fine sand (clogged systems) at the sediment surface of slow filtration columns filled with a heterogeneous gravel/sand sedimentary matrix. The influence of clogging was quantified through measurements of hydraulic conductivity, water chemistry, microbial abundances and activities and associated processes (decomposition of alder leaf litter inserted at a depth of 9 cm in sediments, oxygen and nitrate consumption by microorganisms). Fine sand deposits drastically reduced hydraulic conductivity (by around 8-fold in comparison with unclogged systems topped by coarse sand) and associated water flow, leading to a sharp decrease in oxygen (reaching less than 1 mg L−1 at 3 cm depth) and nitrate concentrations with depth in sediments. The shift from aerobic to anaerobic conditions in clogged systems favoured the establishment of denitrifying bacteria living on sediments. Analyses performed on buried leaf litter showed a reduction by 30% of organic matter decomposition in clogged systems in comparison with unclogged systems. This reduction was linked to a negative influence of clogging on the activities and abundances of leaf-associated microorganisms. Finally, our study clearly demonstrated that microbial processes involved in organic matter decomposition were dependent on hydraulic conductivity and oxygen availability in the hyporheic zone.  相似文献   

18.
1. Longitudinal changes in physicochemical factors and the composition of the invertebrate community were examined in the hyporheic zone of a glacial river (Val Roseg, Switzerland) over a distance of 11 km from the glacier terminus. Multivariate analysis was used to determine the habitat preferences of taxa along an upstream‐downstream gradient of increasing temperature and groundwater contribution to river flow. 2. The hyporheos conformed to the longitudinal distribution model described for zoobenthic communities of glacial rivers in that taxonomic richness increased with distance from the glacier terminus. Spatial variation in taxonomic richness was best explained by temperature, the influence of groundwater, and the amount of organic matter. The overriding importance of these variables on the distribution of taxa was confirmed by the multivariate analysis. 3. The hyporheic zone contributed significantly to the overall biodiversity of the Roseg River. Whereas insect larvae were predominant in the benthos, hyporheic invertebrates were dominated by taxa belonging to the true groundwater fauna and the permanent hyporheos. Several permanently aquatic taxa (e.g. Nematoda, Ostracoda, Cyclopoida, Harpacticoida, Oligochaeta) appeared exclusively in the hyporheic zone or they extended farther upstream in the hyporheic layer than in the benthic layer. Leuctridae, Nemouridae, and Heptageniidae colonised hyporheic sediments where maximum water temperature was only 4 °C. 4. Despite strong seasonal changes in river discharge and physicochemistry in hyporheic water, the density and distribution of the hyporheos varied little over time. 5. Taxonomic richness increased markedly in the downstream part of a floodplain reach with an extensive upwelling zone. Upwelling groundwater not only maintained a permanent flow of water but also created several species‐rich habitats that added many species to the community of the main channel.  相似文献   

19.
1. Experimental manipulations were performed to determine the biological, chemical and physical attributes that govern sediment respiration in the hyporheic zone of Sycamore Creek, a Sonoran Desert stream. 2. Hyporheic respiration per unit volume of sediment was inversely related to diameter of sediment particles, indicating that respiration is affected by availability of substrate for microbial colonization (i.e. sediment surfaces). Respiration rate per unit surface area on sediments was positively correlated with particle diameter, indicating greater metabolic activity of microbes on larger sediments. 3. Hyporheic respiration was more than twice as high in water collected from the surface flow than from subsurface flow. Further, hyporheic respiration was highest immediately following exposure of sediments to surface water and declined over time, presumably due to exhaustion of labile organic matter. 4. Microbial activity was stimulated by addition of algal leachate; however, amendments of leaf leachate had little effect. Respiration was also elevated with dextrose and leucine amendments, but not with inorganic nitrogen additions, indicating hyporheic respiration is carbon limited. 5. Water from the stream surface is probably enriched in labile organic matter derived from algae and stimulates respiration at points of hydrologic downwelling where surface water enters hyporheic sediments. The physical structure of sediments further affects metabolism by affecting the area available for microbial attachment.  相似文献   

20.
1. This paper introduces key messages from a number of papers emanating from the Second International Symposium on Riverine Landscapes held in August 2004 in Sweden, focusing on river restoration. Together these papers provide an overview of the science of river restoration, and point out future research needs. 2. Restoration tests the feasibility of recreating complex ecosystems from more simple and degraded states, thereby presenting a major challenge to ecological science. Therefore, close cooperation between practitioners and scientists would be beneficial, but most river restoration projects are currently performed with little or no scientific involvement. 3. Key messages emanating from this series of papers are: The scope, i.e. the maximum and minimum spatial extent and temporal duration of habitat use, of species targeted for restoration should be acknowledged, so that all relevant stages in their life cycles are considered. Species that have been lost from a stream cannot be assumed to recolonise spontaneously, calling for strategies to ensure the return of target species to be integrated into projects. Possible effects of invasive exotic species also need to be incorporated into project plans, either to minimise the impact of exotics, or to modify the expected outcome of restoration in cases where extirpation of exotics is impractical. 4. Restoration of important ecological processes often implies improving connectivity of the stream. For example, longitudinal and lateral connectivity can be enhanced by restoring fluvial dynamics on flood‐suppressed rivers and by increasing water availability in rivers subject to water diversion or withdrawal, thereby increasing habitat and species diversity. Restoring links between surface and ground water flow enhances vertical connectivity and communities associated with the hyporheic zone. 5. Future restoration schemes should consider where in the catchment to locate projects to make restoration most effective, consider the cumulative effects of many small projects, and evaluate the potential to restore ecosystem processes under highly constrained conditions such as in urban areas. Moreover, restoration projects should be properly monitored to assess whether restoration has been successful, thus enabling adaptive management and learning for the future from both successful and unsuccessful restorations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号