首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stream Restoration in the Upper Midwest, U.S.A.   总被引:1,自引:0,他引:1  
Restoration activities intended to improve the condition of streams and rivers are widespread throughout the Upper Midwest, U.S.A. As with other regions, however, little information exists regarding types of activities and their effectiveness. We developed a database of 1,345 stream restoration projects implemented from the years 1970 to 2004 for the states of Michigan, Ohio, and Wisconsin in order to analyze regional trends in goals, presence of monitoring, spatial distribution, size, and cost of river restoration projects. We found that data on individual projects were fragmented across multiple federal, state, and county agencies, as well as nonprofit groups and consulting firms. The most common restoration goals reported for this region were in‐stream habitat improvement, bank stabilization, water‐quality management, and dam removal. The former two were most common in Michigan and Wisconsin, where salmonid fisheries enhancement appeared to be an important concern, whereas water‐quality management was most frequent in Ohio. The most common restoration activities were the use of sand traps and riprap, and other common activities were related to the improvement of fish habitat. The median cost was $12,957 for projects with cost data, and total expenditures since 1990 were estimated at $444 million. Over time, the cost of individual projects has increased, whereas the median size has decreased, suggesting that restoration resources are being spent on smaller, more localized, and more expensive projects. Only 11% of data records indicated that monitoring was performed, and more expensive projects were more likely to be monitored. Standardization of monitoring and record keeping and dissemination of findings are urgently needed to ensure that dollars are well spent and restoration effectiveness is maximized.  相似文献   

2.
Exploitation of freshwater resources is essential for sustenance of human existence and alteration of rivers, lakes and wetlands has facilitated economic development for centuries. Consequently, freshwater biodiversity is critically threatened, with stream ecosystems being the most heavily affected. To improve the status of freshwater habitats, e.g. in the context of the European Water Framework Directive and the US Clean Water Act, it is essential to implement the most effective restoration measures and identify the most suitable indicators for restoration success. Herein, several active and passive bioindication approaches are reviewed in light of existing legal frameworks, current targets and applicable implementation of river restoration. Such approaches should move from the use of single biological indicators to more holistic ecological indicators simultaneously addressing communities, multiple life stages and habitat properties such as water quality, substrate composition and stream channel morphology. The proposed Proceeding Chain of Restoration (PCoR) can enable the integration of natural scientific, political and socioeconomic dimensions for restoration of aquatic ecosystems and associated services. Generally, an analysis that combines target species-based active bioindication with community-based passive bioindication and multivariate statistics seems to be most suitable for a holistic evaluation of restoration success, as well as for the monitoring of stream ecosystem health. Since the response of biological communities to changing environmental conditions can differ between taxonomic groups and rivers, assessments at the ecosystem scale should include several levels of biological organisation. A stepwise evaluation of the primary factors inducing disturbance or degradation is needed to integrate increasing levels of complexity from water quality assessments to the evaluation of ecological function. The proposed PCoR can provide a step-by-step guide for restoration ecologists, comprising all planning steps from the determination of the conservation objectives to the use of ecological indicators in post-restoration monitoring.  相似文献   

3.
Fish habitat rehabilitation using wood in the world   总被引:1,自引:0,他引:1  
To provide river managers and researchers with practical knowledge about fish rehabilitation, various studies of fish habitat rehabilitation that used wood were reviewed. The review focuses on fish responses, wood installation methods, and geomorphic features of the rehabilitation sites. Most studies were conducted in moderately sized (small and medium) streams with relatively high bed gradients and aimed to improve the habitats of salmonid species. In this stream type, structures spanning the full (log dam) and partial (log deflector) width of the river were most common, and wood structures that created pools and covers were successful in improving fish habitat. Some projects were conducted in moderately sized low-gradient streams, in which wooden devices used to create instream cover were effective for fish assemblages. There were few studies in other aquatic ecosystems. However, well-designed large wood structures, known as engineered log jams, were used in rehabilitation projects for large rivers. In slack-water or lentic systems such as side-channels, estuaries, and reservoirs, small and large wood structures that created cover were used to improve habitat for many fish species. For successful fish habitat rehabilitation projects, the hydrogeomorphic conditions of rehabilitation sites should be carefully examined to avoid physical failure of wood structures. Although artificial wood structures can be used to improve fish habitat in various aquatic ecosystems, they should be considered to be a complementary or interim habitat enhancement technique. The recovery of natural dynamic processes at the watershed scale is the ultimate target of restoration programs.  相似文献   

4.
1. Temporary rivers and streams are among the most common and most hydrologically dynamic freshwater ecosystems. The number of temporary rivers and the severity of flow intermittence may be increasing in regions affected by climatic drying trends or water abstraction. Despite their abundance, temporary rivers have been historically neglected by ecologists. A recent increase in temporary‐river research needs to be supported by new models that generate hypotheses and stimulate further research. In this article, we present three conceptual models that address spatial and temporal patterns in temporary‐river biodiversity and biogeochemistry. 2. Temporary rivers are characterised by the repeated onset and cessation of flow, and by complex hydrological dynamics in the longitudinal dimension. Longitudinal dynamics, such as advancing and retreating wetted fronts, hydrological connections and disconnections, and gradients in flow permanence, influence biotic communities and nutrient and organic matter processing. 3. The first conceptual model concerns connectivity between habitat patches. Variable connectivity suggests that the metacommunity and metapopulation concepts are applicable in temporary rivers. We predict that aggregations of local communities in the isolated water bodies of temporary rivers function as metacommunities. These metacommunities may become longitudinally nested due to interspecific differences in dispersal and mortality. The metapopulation concept applies to some temporary river species, but not all. In stable metapopulations, rates of local extinction are balanced by recolonisation. However, extinction and recolonisation in many temporary‐river species are decoupled by frequent disturbances, and populations of these species are usually expanding or contracting. 4. The second conceptual model predicts that large‐scale biodiversity varies as a function of aquatic and terrestrial patch dynamics and water‐level fluctuations. Habitat mosaics in temporary rivers change in composition and configuration in response to inundation and drying, and these changes elicit a range of biotic responses. In the model, aquatic biodiversity initially increases directly with water level due to increasing abundance of aquatic patches. When most of the channel is inundated and most aquatic patches are connected, further increases in aquatic habitat and connectivity cause aquatic biodiversity to decline due to community homogenisation and reduced habitat diversity. The predicted responses of terrestrial biodiversity to changes in water level are the inverse of aquatic biodiversity responses. 5. The third conceptual model represents temporary rivers as longitudinal, punctuated biogeochemical reactors. Advancing fronts carry water, solutes and particulate organic matter downstream; subsequent flow recessions and drying result in deposition of transported material in reserves such as pools and bar tops. Material processing is rapid during inundated periods and slower during dry periods. The efficiency of material processing is predicted to increase with the number of cycles of transport, deposition and processing that occur down the length of a temporary river. 6. We end with a call for conservation and resource management that addresses the unique properties of temporary rivers. Primary objectives for effective temporary river management are preservation or restoration of aquatic‐terrestrial habitat mosaics, preservation or restoration of natural flow intermittence, and identification of flow requirements for highly valued species and processes.  相似文献   

5.
Urban rivers have often experienced substantial engineering modification and consequently are highly degraded aquatic ecosystems with minimal riparian habitat. Habitat restoration and improvement efforts are needed within urban rivers to support ecological communities and increase ecosystem integrity. Most river restoration techniques are not feasible within large urban rivers, and so there is a need to develop novel methodologies. Artificial structures such as river walls can function as habitat for plant and invertebrate species in urban rivers, and in some cases can be more diverse than remnant habitat. Along the River Thames through central London, plant species richness was found to be significantly higher on river walls than intertidal foreshore, which represents the only remnant habitat for riparian species. Both this survey and other studies have suggested that the physical and environmental characteristics of river walls are likely to influence their capacity to function as ecological habitat, for example, walls composed of more complex construction materials (brick and boulders) being more diverse than simpler structures (concrete and sheet piling). The opportunity exists to use river walls and other artificial structures (e.g., jetties) to improve habitat along urban rivers by installing walls which are designed to be more complex, or by adding modifications to existing walls. Some trial modifications, such as the addition of wall ledges and timber fenders to sheet piling, have been installed at Deptford Creek along the River Thames, and have so far greatly supported the colonization and development of plant communities. The restoration possibilities of such modifications should be considered, and further development and rigorous testing of installations is required in urban rivers to make sound restoration recommendations.  相似文献   

6.
Linking ecological theory with stream restoration   总被引:3,自引:0,他引:3  
1. Faced with widespread degradation of riverine ecosystems, stream restoration has greatly increased. Such restoration is rarely planned and executed with inputs from ecological theory. In this paper, we seek to identify principles from ecological theory that have been, or could be, used to guide stream restoration. 2. In attempts to re‐establish populations, knowledge of the species’ life history, habitat template and spatio‐temporal scope is critical. In many cases dispersal will be a critical process in maintaining viable populations at the landscape scale, and special attention should be given to the unique geometry of stream systems 3. One way by which organisms survive natural disturbances is by the use of refugia, many forms of which may have been lost with degradation. Restoring refugia may therefore be critical to survival of target populations, particularly in facilitating resilience to ongoing anthropogenic disturbance regimes. 4. Restoring connectivity, especially longitudinal connectivity, has been a major restoration goal. In restoring lateral connectivity there has been an increasing awareness of the riparian zone as a critical transition zone between streams and their catchments. 5. Increased knowledge of food web structure – bottom‐up versus top‐down control, trophic cascades and subsidies – are yet to be applied to stream restoration efforts. 6. In restoration, species are drawn from the regional species pool. Having overcome dispersal and environmental constraints (filters), species persistence may be governed by local internal dynamics, which are referred to as assembly rules. 7. While restoration projects often define goals and endpoints, the succession pathways and mechanisms (e.g. facilitation) by which these may be achieved are rarely considered. This occurs in spite of a large of body of general theory on which to draw. 8. Stream restoration has neglected ecosystem processes. The concept that increasing biodiversity increases ecosystem functioning is very relevant to stream restoration. Whether biodiversity affects ecosystem processes, such as decomposition, in streams is equivocal. 9. Considering the spatial scale of restoration projects is critical to success. Success is more likely with large‐scale projects, but they will often be infeasible in terms of the available resources and conflicts of interest. Small‐scale restoration may remedy specific problems. In general, restoration should occur at the appropriate spatial scale such that restoration is not reversed by the prevailing disturbance regime. 10. The effectiveness and predictability of stream ecosystem restoration will improve with an increased understanding of the processes by which ecosystems develop and are maintained. Ideas from general ecological theory can clearly be better incorporated into stream restoration projects. This will provide a twofold benefit in providing an opportunity both to improve restoration outcomes and to test ecological theory.  相似文献   

7.
Stream restoration has become a multibillion dollar industry worldwide, yet there are few clear success stories and the scientific basis for effective stream restoration remains uncertain. We compiled data on completed river restoration projects from four management authorities in Victoria, Australia, to examine how the available data could inform the science of restoration ecology in rivers, and thus improve future restoration efforts. We found that existing data sources are limited and much historical information has been lost through industry restructuring and poor data archiving. Examining records for 2,247 restoration projects, we found that riparian management projects were the most common, followed by bank stabilization and in‐stream habitat improvement. Only 14% of the project records indicated that some form of monitoring was carried out. It is evident that overall there is little scientific guidance and little or no monitoring and evaluation of the projects for which we had information. However, recent advances with mandatory, statewide reporting and an increased emphasis on project design and monitoring strongly suggest that the design, implementation, monitoring, and reporting of stream restoration projects have improved in recent years and will continue to do so.  相似文献   

8.
While the number of river restoration projects is increasing, studies on their success or failure relative to expectations are still rare. Only a few decision support methodologies and integrative methods for evaluating the ecological status of rivers are used in river restoration projects, thereby limiting informed management decisions in restoration planning as well as success control. Moreover, studies quantifying river restoration effects are often based on the assessment of a single organism group, and the effects on terrestrial communities are often neglected. In addition, potential effects of water quality or hydrological degradation are often not considered for the evaluation of restoration projects.We used multi-attribute value theory to re-formulate an existing river assessment protocol and extend it to a more comprehensive, integrated ecological assessment program. We considered habitat conditions, water quality regarding nutrients, micropollutants and heavy metals, and five instream and terrestrial organism groups (fish, benthic invertebrates, aquatic vegetation, ground beetles and riparian vegetation). The physical, chemical and biological states of the rivers were assessed separately and combined to value the overall ecological state.The assessment procedure was then applied to restored and unrestored sites at two Swiss rivers to test its feasibility in quantifying the effect of river restoration. Uncertainty in observations was taken into account and propagated through the assessment framework to evaluate the significance of differences between the ecological states of restored and unrestored reaches. In the restored sites, we measured a higher width variability of the river, as well as a higher width of the riparian zone and a higher richness of organism groups. According to the ecological assessment, the river morphology and the biological states were significantly better at the restored sites, with the largest differences detected for ground beetles and fish communities, followed by benthic invertebrates and riparian vegetation. The state of the aquatic vegetation was slightly lower at the restored sites. According to our assessment, the presence of invasive plant species counteracted the potential ecological gain. Water quality could be a causal factor contributing to the absence of larger improvements.Overall, we found significantly better biological and physical states, and integrated ecological states at the restored sites. Even in the absence of comprehensive before-after data, based on the similarity of the reaches before restoration and mechanistic biological knowledge, this can be safely interpreted as a causal consequence of restoration. An integrative perspective across aquatic and riparian organism groups was important to assess the biological effects, because organism groups responded differently to restoration. In addition, the potential deteriorating effect of water quality demonstrates the importance of integrated planning for the reduction of morphological, water quality and hydrological degradation.  相似文献   

9.
Although public and financial support for stream restoration projects is increasing, long‐term monitoring and reporting of project successes and failures are limited. We present the initial results of a long‐term monitoring program for the Lower Red River Meadow Restoration Project in north‐central Idaho, U.S.A. We evaluate a natural channel design’s effectiveness in shifting a degraded stream ecosystem onto a path of ecological recovery. Field monitoring and hydrodynamic modeling are used to quantify post‐restoration changes in 17 physical and biological performance indicators. Statistical and ecological significance are evaluated within a framework of clear objectives, expected responses (ecological hypotheses), and performance criteria (reference conditions) to assess post‐restoration changes away from pre‐restoration conditions. Compared to pre‐restoration conditions, we observed ecosystem improvements in channel sinuosity, slope, depth, and water surface elevation; quantity, quality, and diversity of in‐stream habitat and spawning substrate; and bird population numbers and diversity. Modeling documented the potential for enhanced river–floodplain connectivity. Failure to detect either statistically or ecologically significant change in groundwater depth, stream temperature, native riparian cover, and salmonid density is due to a combination of small sample sizes, high interannual variability, external influences, and the early stages of recovery. Unexpected decreases in native riparian cover led to implementation of adaptive management strategies. Challenges included those common to most project‐level monitoring—isolating restoration effects in complex ecosystems, securing long‐term funding, and implementing scientifically rigorous experimental designs. Continued monitoring and adaptive management that support the establishment of mature and dense riparian shrub communities are crucial to overall success of the project.  相似文献   

10.
Restoring streams in an urbanizing world   总被引:1,自引:0,他引:1  
1. The world's population is increasingly urban, and streams and rivers, as the low lying points of the landscape, are especially sensitive to and profoundly impacted by the changes associated with urbanization and suburbanization of catchments. 2. River restoration is an increasingly popular management strategy for improving the physical and ecological conditions of degraded urban streams. In urban catchments, management activities as diverse as stormwater management, bank stabilisation, channel reconfiguration and riparian replanting may be described as river restoration projects. 3. Restoration in urban streams is both more expensive and more difficult than restoration in less densely populated catchments. High property values and finely subdivided land and dense human infrastructure (e.g. roads, sewer lines) limit the spatial extent of urban river restoration options, while stormwaters and the associated sediment and pollutant loads may limit the potential for restoration projects to reverse degradation. 4. To be effective, urban stream restoration efforts must be integrated within broader catchment management strategies. A key scientific and management challenge is to establish criteria for determining when the design options for urban river restoration are so constrained that a return towards reference or pre‐urbanization conditions is not realistic or feasible and when river restoration presents a viable and effective strategy for improving the ecological condition of these degraded ecosystems.  相似文献   

11.
Summary   The restoration of physical habitat has emerged as a key activity for managers charged with reversing the damage done by humans to streams and rivers, and there has been a great expenditure of time, money and other resources on habitat restoration projects. Most restoration projects appear to assume that the creation of habitat is the key to restoring the biota ('the field of dreams hypothesis'). However, in many streams where new habitat is clearly required if populations and communities are to be restored, there may be numerous other factors that cause the expected link between habitat and biotic restoration to break down. We discuss five issues that are likely to have a direct bearing on the success, or perceived success of local habitat restoration projects in streams: (i) barriers to colonization, (ii) temporal shifts in habitat use, (iii) introduced species, (iv) long-term and large-scale processes, and (v) inappropriate scales of restoration. The purpose of the study was primarily to alert ecologists and managers involved in stream habitat restoration to the potential impacts of these issues on restoration success. Furthermore, the study highlights the opportunities provided by habitat restoration for learning how the factors we discuss affect populations, communities and ecosystems.  相似文献   

12.
  • 1 This paper introduces the Lowland Streams Restoration Workshop that was held in Lund, Sweden in August 1991.
  • 2 Attenders at the Workshop participated in working groups which discussed and reported on the state of knowledge of stream restoration and identified critical areas of information need. Currently, most restoration efforts are emission-orientated (i.e. waste-water management), while the imitation of the geomorphology or of the riparian vegetation of a quasi-natural or natural reference channel receives less attention.
  • 3 Successful stream restoration requires a multidisciplinary approach within a holistic system framework. Monitoring the outcome of past, existing and future steam-restoration projects is required for information on the feasibility of alternative techniques and approaches.
  • 4 It was recommended that systems in pristine condition serve as a point of reference and not as a goal for most stream restoration projects. Restoration goals must be carefully defined so that everyone at every level understands the aim of the project. At the very least, all restoration programmes should consider geomorphic, hydrological, biological, aesthetic, and water quality aspects of the system.
  • 5 Restoration programmes should aim to create a system with a stable channel, or a channel in dynamic equilibrium that supports a self-sustaining and functionally diverse community assemblage; it should not concentrate on one species or group, except at the local level. Preserving the terrestrial -aquatic interface by setting aside riparian land corridors is critical to all stages of restoration. Additional information on the temporal and regional variability in important system processes and functions is needed.
  相似文献   

13.
Huge efforts have been made during the past decades to improve the water quality and to restore the physical habitat of rivers and streams in western Europe. This has led to an improvement in biological water quality and an increase in fish stocks in many countries. However, several rheophilic fish species such as brown trout are still categorized as vulnerable in lowland streams in Flanders (Belgium). In order to support cost‐efficient restoration programs, habitat suitability modeling can be used. In this study, we developed an ensemble of habitat suitability models using metaheuristic algorithms to explore the importance of a large number of environmental variables, including chemical, physical, and hydromorphological characteristics to determine the suitable habitat for reintroduction of brown trout in the Zwalm River basin (Flanders, Belgium), which is included in the Habitats Directive. Mean stream velocity, water temperature, hiding opportunities, and presence of pools or riffles were identified as the most important variables determining the habitat suitability. Brown trout mainly preferred streams with a relatively high mean reach stream velocity (0.2–1 m/s), a low water temperature (7–15°C), and the presence of pools. The ensemble of models indicated that most of the tributaries and headwaters were suitable for the species. Synthesis and applications. Our results indicate that this modeling approach can be used to support river management, not only for brown trout but also for other species in similar geographical regions. Specifically for the Zwalm River basin, future restoration of the physical habitat, removal of the remaining migration barriers and the development of suitable spawning grounds could promote the successful restoration of brown trout.  相似文献   

14.
Hydrologic alterations designed to provide a stable water supply and to prevent flooding are commonly used in mediterranean-climate river (med-rivers) basins, and these alterations have led to habitat loss and significant declines in aquatic biodiversity. Often the health of freshwater ecosystems depends on maintaining and recovering hydrologic habitat connectivity, which includes structural components related to the physical landscape, functionality of flow dynamics, and an understanding of species habitat requirements for movement, reproduction, and survival. To advance our understanding of hydrologic habitat connectivity and benefits of habitat restoration alternatives we provide: (1) a review of recent perspectives on hydrologic connectivity, including quantitative methods; and (2) a modeling framework to quantify the effects of restoration on hydrologic habitat connectivity. We then illustrate this approach through a case study on lateral hydrologic habitat connectivity that results from channel restoration scenarios using scenarios with different historic and climate-change flows to restore fish floodplain habitat in a med-river, the San Joaquin River, California. Case study results show that in addition to the channel alterations, higher flows are required to recover significant flooded habitat area, especially given reductions in flows expected under climate change. These types of studies will help the planning for restoration of hydrologic habitat connectivity in med-rivers, a critical step for mediterranean species recovery.  相似文献   

15.
This study investigated the consequences of passive ecological restoration on a riparian habitat and on water quality. The restoration plan consists of excluding livestock by constructing fences along an entire stream 1 m from the stream bed, with the assumption that recovering riparian habitat will restore their ecological processes (e.g., filtration, soil stabilization). We measured responses of riparian plant communities and physico-chemical water quality. We presented data from an 8-year before-after control-impact design across a reference stream and a restored stream in a rural landscape in Normandy, France. Restoration appeared to modify plant communities. After 8 years of restoration, the restored stream had a complex riparian bank, similar to that of the reference stream, with an increase in the number of trees, a decrease in bare soil, and an increase in habitat heterogeneity. Despite this modification, water quality did not improve. The same low water quality in the reference stream demonstrated the need for a watershed-scale approach and for actions to improve agricultural practices before implementing restoration practices at a smaller scale. Nonetheless, the lack of improved water quality does not necessarily mean that the restoration failed. Other functions and services can be provided by excluding livestock.  相似文献   

16.
Most river restoration projects have applied relatively small-scale measures focused on improving specific instream conditions, with only limited outcomes for biodiversity in rivers and their adjacent riparian habitats. Here, we investigate the effects of both small- and large-scale restoration projects on floodplain vegetation across 20 European catchments. We focused on the roles of different restoration parameters (i.e., the number, spatial extent and type of restoration measure applied and restoration age) and specific environmental characteristics in regulating changes in plant diversity and trait composition following restoration. Among restoration characteristics, restoration type was the only significant determinant of plant community responses, with stream channel widening having the strongest effects, particularly on the diversity and composition of species traits favoured by increases in physical disturbance (e.g. flooding) and open habitat patch availability (e.g. plant growth form, life strategy and life span). Of the environmental variables, altitude and discharge were positively and most strongly related to responses of both species and trait diversity. Our results emphasise the value of (i) choosing relevant restoration measures that affect environmental conditions of importance for the target organism group and (ii) conducting restoration projects in environmental settings where the likelihood of restoration “success” is maximised.  相似文献   

17.
Flow diversion and invasive species are two major threats to freshwater ecosystems, threats that restoration efforts attempt to redress. Yet, few restoration projects monitor whether removal of these threats improve target characteristics of the ecosystem. Fewer still have an appropriate experimental design from which causal inferences can be drawn as to the relative merits of removing exotic fish, restoring flow, or both. We used a dam decommissioning in Fossil Creek, Arizona, to compare responses of native fish to exotic fish removal and flow restoration, using a before‐after‐control‐impact design with three impact treatments: flow restoration alone where exotics had not been present, flow restoration and exotic fish removal, and flow restoration where exotics remain and a control reach that was unaffected by restoration actions. We show that removal of exotic fish dramatically increased native fish abundance. Flow restoration also increased native fish abundance, but the effect was smaller than that from removing exotics. Flow restoration had no effect where exotic fish remained, although it may have had other benefits to the ecosystem. The cost to restore flow ($12 million) was considerably higher than that to eradicate exotics ($1.1 million). The long‐term influence of flow restoration could increase, as travertine dams grow and re‐shape the creek increasing habitat for native fish. But in the 2‐year period considered here, the return on investment for extirpating exotics far exceeded that from flow restoration. Projects aimed to restore native fish by restoring flow should also consider the additional investment required to eradicate exotic fish.  相似文献   

18.
Restoring mediterranean-climate rivers   总被引:1,自引:0,他引:1  
Mediterranean-climate rivers (med-rivers) have highly variable flow regimes, with large, periodic floods shaping the (often-braided) channels, which is different from stable humid-climate rivers, whose form may be dominated by the 1.5-year flood. There is a fundamental challenge in attempting to “restore” such variable, ever-changing, dynamic river systems, and the most effective restoration strategy is to set aside a channel migration zone within which the river can flood, erode, deposit, and migrate, without conflicting with human uses. An apparent cultural preference for stable channels has resulted in attempts to build idealized meandering channels, but these are likely to wash out during large, episodic floods typical of med-rivers. Med-rivers are more extensively dammed than their humid-climate counterparts, so downstream reaches are commonly deprived of high flows, which carry sediments, modify channel morphology, and maintain habitat complexity. Restoration of the entire pre-dam hydrograph without losing the benefits of the dam is impossible, but restoration of specific components of the natural hydrograph (to which native species are adapted) can restore some ecosystem components (such as native fish species) in med-rivers.  相似文献   

19.
A strategy to assess river restoration success   总被引:6,自引:0,他引:6  
1. Elaborate restoration attempts are underway worldwide to return human‐impacted rivers to more natural conditions. Assessing the outcome of river restoration projects is vital for adaptive management, evaluating project efficiency, optimising future programmes and gaining public acceptance. An important reason why assessment is often omitted is lack of appropriate guidelines. 2. Here we present guidelines for assessing river restoration success. They are based on a total of 49 indicators and 13 specific objectives elaborated for the restoration of low‐ to mid‐order rivers in Switzerland. Most of these objectives relate to ecological attributes of rivers, but socio‐economic aspects are also considered. 3. A strategy is proposed according to which a set of indicators is selected from the total of 49 indicators to ensure that indicators match restoration objectives and measures, and that the required effort for survey and analysis of indicators is appropriate to the project budget. 4. Indicator values are determined according to methods described in detailed method sheets. Restoration success is evaluated by comparing indicator values before and after restoration measures have been undertaken. To this end, values are first standardised on a dimensionless scale ranging from 0 to 1, then averaged across different indicators for a given project objective, and finally assigned to one of five overall success categories. 5. To illustrate the application of this scheme, a case study on the Thur River, Switzerland, is presented. Seven indicators were selected to meet a total of five project objectives. The project was successful in achieving ‘provision of high recreational value’, ‘lateral connectivity’ and ‘vertical connectivity’ but failed to meet the objectives ‘morphological and hydraulic variability’ and ‘near natural abundance and diversity of fauna’. Results from this assessment allowed us to identify potential deficits and gaps in the restoration project. To gain information on the sensitivity of the assessment scheme would require a set of complementary indicators for each restoration objective.  相似文献   

20.
Meadow restoration efforts typically involve the modification of stream channels to re‐establish hydrologic conditions necessary for the maintenance of native vegetation. To predict change in the distribution of common meadow plant species in response to meadow restoration, a hydrologic model was loosely coupled to a suite of individual plant species distribution models. The approach was tested on a well‐documented meadow/stream restoration project on Bear Creek, a tributary to the Fall River in northeastern California, U.S.A. We developed a surface‐water and groundwater hydrologic model for the meadow. Vegetation presence and absence data from 170 plots were combined with simulated water‐table depth time series to develop habitat‐suitability models for 11 herbaceous plant species. In each model, the habitat suitability is predicted as a function of growing‐season, water‐table depth, and range. The hydrologic model was used to simulate water‐table depth time series for the pre‐ and post‐restoration conditions. These results were used to predict the spatial distribution of habitat suitability for the 11 herbaceous plant species. Model results indicate that restoration changed water levels throughout the study area, extending well beyond the near‐stream region. Model results also indicate an increase in the spatial distribution of suitable habitat for mesic vegetation and a concomitant decrease in the spatial distribution of suitable habitat for xeric vegetation. The methods utilized in this study could be used to improve setting of objective and performance measures in restoration projects in similar environments, in addition to providing a quantitative, science‐based approach to guide riparian restoration and active revegetation efforts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号