首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
The twin-arginine translocation (Tat) pathway is a protein targeting system found in bacteria, archaea, and chloroplasts. Proteins are directed to the Tat translocase by N-terminal signal peptides containing SRRxFLK "twin-arginine" amino acid motifs. The key feature of the Tat system is its ability to transport fully folded proteins across ionically sealed membranes. For this reason the Tat pathway has evolved for the assembly of extracytoplasmic redox enzymes that must bind cofactors, and so fold, prior to export. It is important that only cofactor-loaded, folded precursors are presented for export, and cellular processes have been unearthed that regulate signal peptide activity. One mechanism, termed "Tat proofreading", involves specific signal peptide binding proteins or chaperones. The archetypal Tat proofreading chaperones belong to the TorD family, which are dedicated to the assembly of molybdenum-dependent redox enzymes in bacteria. Here, a gene cluster was identified in the archaeon Archaeoglobus fulgidus that is predicted to encode a putative molybdenum-dependent tetrathionate reductase. The gene cluster also encodes a TorD family chaperone (AF0160 or TtrD) and in this work TtrD is shown to bind specifically to the Tat signal peptide of the TtrA subunit of the tetrathionate reductase. In addition, the 3D crystal structure of TtrD is presented at 1.35 ? resolution and a nine-residue binding epitope for TtrD is identified within the TtrA signal peptide close to the twin-arginine targeting motif. This work suggests that archaea may employ a chaperone-dependent Tat proofreading system that is similar to that utilized by bacteria.  相似文献   

2.
3.
The twin-arginine transport (Tat) system is dedicated to the translocation of folded proteins across the bacterial cytoplasmic membrane. Proteins are targeted to the Tat system by signal peptides containing a twin-arginine motif. In Salmonella enterica serovar Typhimurium and Escherichia coli many Tat substrates are known or predicted to bind a molybdenum cofactor in the cytoplasm prior to export. In the case of N- and S-oxide reductases, co-ordination of molybdenum cofactor insertion with protein export involves a ‘Tat proofreading’ process where chaperones of the TorD family bind the signal peptides, thus preventing premature export. Here, a genetic approach was taken to determine factors required for selenate reductase activity in Salmonella and E. coli. It is reported for both biological systems that an active Tat translocase and a TorD-like chaperone (DmsD) are required for complete in vivo reduction of selenate to elemental red selenium. Further mutagenesis and in vitro biophysical experiments implicate the Salmonella ynfE gene product, and the E. coli YnfE and YnfF proteins, as putative Tat-targeted selenate reductases.  相似文献   

4.
The cell‐penetrating peptide Tat (48–60) (GRKKRRQRRRPPQ) derived from HIV‐1 Tat protein showed potent antibacterial activity (MIC: 2–8 µM ). To investigate the effect of dimerization of Tat (48–60) analog, [Tat(W): GRKKRRQRRRPWQ‐NH2], on antimicrobial activity and mechanism of bactericidal action, its dimeric peptides, di‐Tat(W)‐C and di‐Tat(W)‐K, were synthesized by a disulfide bond linkage and lysine linkage of monomeric Tat(W), respectively. From the viewpoint of a weight basis and the monomer concentration, these dimeric peptides displayed almost similar antimicrobial activity against six bacterial strains tested but acted more rapidly against Staphylococcus aureus on kinetics of bactericidal activity, compared with monomeric Tat(W). Unlike monomeric Tat(W), these dimeric peptides significantly depolarized the cytoplasmic membrane of intact S. aureus cells at MIC and induced dye leakage from bacterial‐membrane‐mimicking egg yolk L ‐α‐phosphatidylethanolamine/egg yolk L ‐α‐phosphatidyl‐DL ‐glycerol (7:3, w/w) vesicles. Furthermore, these dimeric peptides were less effective to translocate across lipid bilayers than monomeric Tat(W). These results indicated that the dimerization of Tat analog induces a partial change in the mode of its bactericidal action from intracellular target mechanism to membrane‐targeting mechanism. Collectively, our designed dimeric Tat peptides with high antimicrobial activity and rapid bactericidal activity appear to be excellent candidates for future development as novel antimicrobial agents. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

5.
The twin-arginine translocation (Tat) pathway is a protein targeting system present in many prokaryotes. The physiological role of the Tat pathway is the transmembrane translocation of fully-folded proteins, which are targeted by N-terminal signal peptides bearing conserved SRRxFLK 'twin-arginine' amino acid motifs. In Escherichia coli the majority of Tat targeted proteins bind redox cofactors and it is important that only mature, cofactor-loaded precursors are presented for export. Cellular processes have been unearthed that sequence these events, for example the signal peptide of the periplasmic nitrate reductase (NapA) is bound by a cytoplasmic chaperone (NapD) that is thought to regulate assembly and export of the enzyme. In this work, genetic, biophysical and structural approaches were taken to dissect the interaction between NapD and the NapA signal peptide. A NapD binding epitope was identified towards the N-terminus of the signal peptide, which overlapped significantly with the twin-arginine targeting motif. NMR spectroscopy revealed that the signal peptide adopted a α-helical conformation when bound by NapD, and substitution of single residues within the NapA signal peptide was sufficient to disrupt the interaction. This work provides an increased level of understanding of signal peptide function on the bacterial Tat pathway.  相似文献   

6.
Tetrathionate (S4O62?) is used by some bacteria as an electron acceptor and can be produced in the vertebrate intestinal mucosa from the oxidation of thiosulphate (S2O32?) by reactive oxygen species during inflammation. Surprisingly, growth of the microaerophilic mucosal pathogen Campylobacter jejuni under oxygen‐limited conditions was stimulated by tetrathionate, although it does not possess any known type of tetrathionate reductase. Here, we identify a dihaem cytochrome c (C8j_0815; TsdA) as the enzyme responsible. Kinetic studies with purified recombinant C. jejuni TsdA showed it to be a bifunctional tetrathionate reductase/thiosulphate dehydrogenase with a high affinity for tetrathionate. A tsdA null mutant still slowly reduced, but could not grow on, tetrathionate under oxygen limitation, lacked thiosulphate‐dependent respiration and failed to convert thiosulphate to tetrathionate microaerobically. A TsdA paralogue (C8j_0040), lacking the unusual His–Cys haem ligation of TsdA, had low thiosulphate dehydrogenase and tetrathionate reductase activities. Our data highlight a hitherto unrecognized capacity of C. jejuni to use tetrathionate and thiosulphate in its energy metabolism, which may promote growth in the host. Moreover, as TsdA represents a new class of tetrathionate reductase that is widely distributed among bacteria, we predict that energy conserving tetrathionate respiration is far more common than currently appreciated.  相似文献   

7.
The twin-arginine translocation (Tat) apparatus is a protein targeting system found in the cytoplasmic membranes of many prokaryotes. Substrate proteins of the Tat pathway are synthesised with signal peptides bearing SRRxFLK ‘twin-arginine’ amino acid motifs. All Tat signal peptides have a common tripartite structure comprising a polar N-terminal region, followed by a hydrophobic region of variable length and a polar C-terminal region. In Escherichia coli, Tat signal peptides are proteolytically cleaved after translocation. The signal peptide C-terminal regions contain conserved AxA motifs, which are possible recognition sequences for leader peptidase I (LepB). In this work, the role of LepB in Tat signal peptide processing was addressed directly. Deliberate repression of lepB expression prevented processing of all Tat substrates tested, including SufI, AmiC, and a TorA-23K reporter protein. In addition, electron microscopy revealed gross defects in cell architecture and membrane integrity following depletion of cellular LepB protein levels.  相似文献   

8.
Organophosphorus hydrolase (OPH) from Flavobacterium species is a membrane‐associated homodimeric metalloenzyme and has its own signal peptide in its N‐terminus. We found that OPH was translocated into the periplasmic space when the original signal peptide‐containing OPH was expressed in recombinant Escherichia coli even though its translocation efficiency was relatively low. To investigate the usability of this OPH signal peptide for periplasmic expression of heterologous proteins in an E. coli system, we employed green fluorescent protein (GFP) as a cytoplasmic folding reporter and alkaline phosphatase (ALP) as a periplasmic folding reporter. We found that the OPH signal peptide was able to use both twin‐arginine translocation (Tat) and general secretory (Sec) machineries by switching translocation pathways according to the nature of target proteins in E. coli. These results might be due to the lack of Sec‐avoidance sequence in the c‐region and a moderate hydrophobicity of the OPH signal peptide. Interestingly, the OPH signal peptide considerably enhanced the translocation efficiencies for both GFP and ALP compared with commonly used TorA and PelB signal peptides that have Tat and Sec pathway dependences, respectively. Therefore, this OPH signal peptide could be successfully used in recombinant E. coli system for efficient periplasmic production of target protein regardless of the subcellular localization where functional folding of the protein occurs. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:848–854, 2016  相似文献   

9.
The bacterial twin arginine translocation (Tat) pathway translocates across the cytoplasmic membrane folded proteins which, in most cases, contain a tightly bound cofactor. Specific amino-terminal signal peptides that exhibit a conserved amino acid consensus motif, S/T-R-R-X-F-L-K, direct these proteins to the Tat translocon. The glucose-fructose oxidoreductase (GFOR) of Zymomonas mobilis is a periplasmic enzyme with tightly bound NADP as a cofactor. It is synthesized as a cytoplasmic precursor with an amino-terminal signal peptide that shows all of the characteristics of a typical twin arginine signal peptide. However, GFOR is not exported to the periplasm when expressed in the heterologous host Escherichia coli, and enzymatically active pre-GFOR is found in the cytoplasm. A precise replacement of the pre-GFOR signal peptide by an authentic E. coli Tat signal peptide, which is derived from pre-trimethylamine N-oxide (TMAO) reductase (TorA), allowed export of GFOR, together with its bound cofactor, to the E. coli periplasm. This export was inhibited by carbonyl cyanide m-chlorophenylhydrazone, but not by sodium azide, and was blocked in E. coli tatC and tatAE mutant strains, showing that membrane translocation of the TorA-GFOR fusion protein occurred via the Tat pathway and not via the Sec pathway. Furthermore, tight cofactor binding (and therefore correct folding) was found to be a prerequisite for proper translocation of the fusion protein. These results strongly suggest that Tat signal peptides are not universally recognized by different Tat translocases, implying that the signal peptides of Tat-dependent precursor proteins are optimally adapted only to their cognate export apparatus. Such a situation is in marked contrast to the situation that is known to exist for Sec-dependent protein translocation.  相似文献   

10.
The Escherichia coli twin-arginine protein transport (Tat) system is a molecular machine dedicated to the translocation of fully folded substrate proteins across the energy-transducing inner membrane. Complex cofactor-containing Tat substrates, such as the model (NiFe) hydrogenase-2 and trimethylamine N-oxide reductase (TorA) systems, acquire their redox cofactors prior to export from the cell and require to be correctly assembled before transport can proceed. It is likely, therefore, that cellular mechanisms exist to prevent premature export of immature substrates. Using a combination of genetic and biochemical approaches including gene knockouts, signal peptide swapping, complementation, and site-directed mutagenesis, we highlight here this crucial 'proofreading' or 'quality control' activity in operation during assembly of complex endogenous Tat substrates. Our experiments successfully uncouple the Tat transport and cofactor-insertion activities of the TorA-specific chaperone TorD and demonstrate unequivocally that TorD recognises the TorA twin-arginine signal peptide. It is proposed that some Tat signal peptides operate in tandem with cognate binding chaperones to orchestrate the assembly and transport of complex enzymes.  相似文献   

11.
The Tat protein-export system serves to translocate folded proteins, often containing redox cofactors, across the bacterial inner membrane. Substrate proteins are directed to the Tat apparatus by distinctive N-terminal signal peptides containing a consensus SRRxFLK 'twin-arginine' motif. Here we review recent studies of the Tat system with particular emphasis on the assembly of membrane-bound respiratory complexes. We discuss the connection between Tat targeting and topological organisation of the complexes and consider the role of chaperone proteins in cofactor insertion and Tat targeting. The crystal structure of Escherichia coli formate dehydrogenase-N demonstrates that some Tat substrates are integral membrane proteins. Sequence analysis suggests that one-quarter of all traffic on the E. coli Tat pathway is inner-membrane proteins.  相似文献   

12.
Current biotechnological applications such as biosensors, protein arrays, and microchips require oriented immobilization of enzymes. The characteristics of recognition, self‐assembly and ease of genetic manipulation make inorganic binding peptides an ideal molecular tool for site‐specific enzyme immobilization. Herein, we demonstrate the utilization of gold binding peptide (GBP1) as a molecular linker genetically fused to alkaline phosphatase (AP) and immobilized on gold substrate. Multiple tandem repeats (n = 5, 6, 7, 9) of gold binding peptide were fused to N‐terminus of AP (nGBP1‐AP) and the enzymes were expressed in E. coli cells. The binding and enzymatic activities of the bi‐functional fusion constructs were analyzed using quartz crystal microbalance spectroscopy and biochemical assays. Among the multiple‐repeat constructs, 5GBP1‐AP displayed the best bi‐functional activity and, therefore, was chosen for self‐immobilization studies. Adsorption and assembly properties of the fusion enzyme, 5GBP1‐AP, were studied via surface plasmon resonance spectroscopy and atomic force microscopy. We demonstrated self‐immobilization of the bi‐functional enzyme on micro‐patterned substrates where genetically linked 5GBP1‐AP displayed higher enzymatic activity per area compared to that of AP. Our results demonstrate the promising use of inorganic binding peptides as site‐specific molecular linkers for oriented enzyme immobilization with retained activity. Directed assembly of proteins on solids using genetically fused specific inorganic‐binding peptides has a potential utility in a wide range of biosensing and bioconversion processes. Biotechnol. Bioeng. 2009;103: 696–705. © 2009 Wiley Periodicals, Inc.  相似文献   

13.
Salmonella enterica catabolizes ethanolamine inside a compartment known as the metabolosome. The ethanolamine utilization (eut) operon of this bacterium encodes all functions needed for the assembly and function of this structure. To date, the roles of EutQ and EutP were not known. Herein we show that both proteins have acetate kinase activity and that EutQ is required during anoxic growth of S. enterica on ethanolamine and tetrathionate. EutP and EutQ‐dependent ATP synthesis occurred when enzymes were incubated with ADP, Mg(II) ions and acetyl‐phosphate. EutQ and EutP also synthesized acetyl‐phosphate from ATP and acetate. Although EutP had acetate kinase activity, ΔeutP strains lacked discernible phenotypes under the conditions where ΔeutQ strains displayed clear phenotypes. The kinetic parameters indicate that EutP is a faster enzyme than EutQ. Our evidence supports the conclusion that EutQ and EutP represent novel classes of acetate kinases. We propose that EutQ is necessary to drive flux through the pathway under physiological conditions, preventing a buildup of acetaldehyde. We also suggest that ATP generated by these enzymes may be used as a substrate for EutT, the ATP‐dependent corrinoid adenosyltransferase and for the EutA ethanolamine ammonia‐lyase reactivase.  相似文献   

14.
The SoxXAYZB(CD)2‐mediated pathway of bacterial sulfur‐chemolithotrophy explains the oxidation of thiosulfate, sulfide, sulfur and sulfite but not tetrathionate. Advenella kashmirensis, which oxidizes tetrathionate to sulfate, besides forming it as an intermediate during thiosulfate oxidation, possesses a soxCDYZAXOB operon. Knock‐out mutations proved that only SoxBCD is involved in A. kashmirensis tetrathionate oxidation, whereas thiosulfate‐to‐tetrathionate conversion is Sox independent. Expression of two glutathione metabolism‐related proteins increased under chemolithotrophic conditions, as compared to the chemoorganotrophic one. Substrate‐dependent oxygen consumption pattern of whole cells, and sulfur‐oxidizing enzyme activities of cell‐free extracts, measured in the presence/absence of thiol inhibitors/glutathione, corroborated glutathione involvement in tetrathionate oxidation. Furthermore, proteome analyses detected a sulfite:acceptor oxidoreductase (SorAB) exclusively under chemolithotrophic conditions, while expression of a methanol dehydrogenase (XoxF) homolog, subsequently named thiol dehydrotransferase (ThdT), was found to increase 3‐ and 10‐fold during thiosulfate‐to‐tetrathionate conversion and tetrathionate oxidation respectively. A thdT knock‐out mutant did not oxidize tetrathionate but converted half of the supplied 40 mM S‐thiosulfate to tetrathionate. Knock‐out of another thiosulfate dehydrogenase (tsdA) gene proved that both ThdT and TsdA individually converted ~ 20 mM S‐thiosulfate to tetrathionate. The overexpressed and isolated ThdT protein exhibited PQQ‐dependent thiosulfate dehydrogenation, whereas its PQQ‐independent thiol transfer activity involving tetrathionate and glutathione potentially produced a glutathione:sulfodisulfane adduct and sulfite. SoxBCD and SorAB were hypothesized to oxidize the aforesaid adduct and sulfite respectively.  相似文献   

15.
The twin-arginine translocation (Tat) pathway is used by bacteria for the transmembrane transport of folded proteins. Proteins are targeted to the Tat translocase by signal peptides that have common tripartite structures consisting of polar n-regions, hydrophobic h-regions, and polar c-regions. In this work, the signal peptide of [NiFe] hydrogenase-1 from Escherichia coli has been studied. The hydrogenase-1 signal peptide contains an extended n-region that has a conserved primary structure. Genetic and biochemical approaches reveal that the signal peptide n-region is essential for hydrogenase assembly and acts as a regulatory domain controlling transport activity of the signal peptide.  相似文献   

16.
Ray N  Oates J  Turner RJ  Robinson C 《FEBS letters》2003,534(1-3):156-160
The DmsD protein is essential for the biogenesis of DMSO reductase in Escherichia coli, and binds the signal peptide of the DmsA subunit, a Tat substrate. This suggests a role as a guidance factor to target pre-DmsA to the translocase. Here, we have analysed the export of fusion proteins in which the DmsA and TorA signal peptides are fused to green fluorescent protein. Both chimeras are efficiently exported to the periplasm in wild-type E. coli cells and we show that their export efficiencies are essentially identical in a mutant lacking DmsD. An authentic Tat substrate, TMAO reductase, is also efficiently exported in the dmsD mutant. The data indicate that DmsD carries out a critical role in DMSO reductase biogenesis/assembly but is not required for the functioning of the DmsA signal peptide.  相似文献   

17.
Summary A method is described which permits the measurement of the tetrathionate reductase activity of bacterial extracts. In anaerobic cultures the reductase is an inducible enzyme. In aerobic cultures its formation is completely repressed by oxygen. In a suspension of resting cells atmospheric oxygen inhibits reversibly the activity of the reductase.   相似文献   

18.
Using the phage display technology, a protein can be displayed at the surface of bacteriophages as a fusion to one of the phage coat proteins. Here we describe development of this method for fusion of an intracellular carboxylesterase of Bacillus subtilis to the phage minor coat protein g3p. The carboxylesterase gene was cloned in the g3p-based phagemid pCANTAB 5E upstream of the sequence encoding phage g3p and downstream of a signal peptide-encoding sequence. The phage-bound carboxylesterase was correctly folded and fully enzymatically active, as determined from hydrolysis of the naproxen methyl ester with Km values of 0.15 mM and 0.22 mM for the soluble and phage-displayed carboxylesterases, respectively. The signal peptide directs the encoded fusion protein to the cell membrane of Escherichia coli, where phage particles are assembled. In this study, we assessed the effects of several signal peptides, both Sec dependent and Tat dependent, on the translocation of the carboxylesterase in order to optimize the phage display of this enzyme normally restricted to the cytoplasm. Functional display of Bacillus carboxylesterase NA could be achieved when Sec-dependent signal peptides were used. Although a Tat-dependent signal peptide could direct carboxylesterase translocation across the inner membrane of E. coli, proper assembly into phage particles did not seem to occur.  相似文献   

19.
We have developed a reporter protein system for the experimental verification of twin-arginine signal peptides. This reporter system is based on the Streptomyces coelicolor agarase protein, which is secreted into the growth medium by the twin-arginine translocation (Tat) pathway and whose extracellular activity can be assayed colorimetrically in a semiquantitative manner. Replacement of the native agarase signal peptide with previously characterized twin-arginine signal peptides from other Gram-positive and Gram-negative bacteria resulted in efficient Tat-dependent export of agarase. Candidate twin-arginine signal peptides from archaeal proteins as well as plant thylakoid-targeting sequences were also demonstrated to mediate agarase translocation. A naturally occurring variant signal peptide with an arginine-glutamine motif instead of the consensus di-arginine was additionally recognized as a Tat-targeting sequence by Streptomyces. Application of the agarase assay to previously uncharacterized candidate Tat signal peptides from Bacillus subtilis identified two further probable Tat substrates in this organism. This is the first versatile reporter system for Tat signal peptide identification.  相似文献   

20.
Summary Amongst the family of the Enterobacteriaceae the ability to reduce tetrathionate to thiosulfate and thiosulfate to sulfite and sulfide occurs in the genera Proteus, Citrobacter and Salmonella. These reductions are coupled to a respiratory chain which functions under anaerobic conditions. Only during transport of electrons to tetrathionate oxidative phosphorylation has been demonstrated. Isolation and purification of the cytoplasmic membrane bound tetrathionate and thiosulfate reductase fromProteus mirabilis makes clear that this bacterium forms only one enzyme for both reductions. This enzyme has a molecular weight of 133,000 daltons and can be divided into two subunits with molecular weights of 43,000 and 90,000 daltons by treatment with sodium dodecyl sulfate and 2-mercaptoethanol. The reduction of tetrathionate is activated by its primary product thiosulfate. Nitrate or oxygen represses and inactivates the tetrathionate and thiosulfate reductase. Nevertheless the smaller subunit of this enzyme appears to be formed and assembled into the cytoplasmic membranes after anaerobic growth in the presence of nitrate. Paper read at the Symposium on the Sulphur Cycle, Wageningen, May 1974.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号