首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In traditional Asian medicine, Aralia cordata (AC) is a known as a pain reliever and anti‐inflammatory drug. Although several of its biological activities have been reported, the immunomodulatory effects of a hot water extract of AC (HAC) have not yet been described. The aim of this study was to investigate whether HAC modulates the activation of macrophages, which play important roles in innate immune responses against microbial pathogens, and if so, to determine the molecular mechanisms by which HAC mediates this process. It was found that HAC activates bone marrow‐derived macrophages (BMDM) and increases amounts of nitric oxide and proinflammatory cytokines in a dose‐dependent manner. In addition, HAC was found to induce phosphorylation of NF‐κB and mitogen‐activated protein kinases (MAPKs), including c‐Jun N‐terminal kinases, extracellular signal‐regulated kinases and p38. Interestingly, these effects were absent in BMDM prepared from myeloid differentiation protein 88‐knockout mice. Polysaccharides from HAC exerted stronger immunostimulatory effects than HAC itself. Furthermore, orally administered HAC clearly enhanced clearance of the intracellular pathogen Listeria monocytogenes by boosting innate immune responses. These results demonstrate that HAC exerts immunostimulatory effects through the TLR/MyD88 and NF‐κB/MAPK signal transduction pathways.  相似文献   

2.
Toll-like receptors (TLRs) are crucial components of the innate immune system, coupling pathogen recognition to a cellular response. We used the MAPPIT mammalian two-hybrid technique to investigate protein-protein interactions in the early steps in TLR signalling. A partial TLR-adaptor interaction map was constructed confirming several known but also documenting novel interactions. We show that the TLR adaptor Mal is critical for linking Myeloid Differentiation primary response protein 88 (MyD88) to TLR2 and TLR4. Analysis of the contributions of the different sub-domains of MyD88-adaptor-like protein (Mal) and MyD88 in adaptor homo- and hetero-dimerisation provides an initial mechanistic insight in this bridging function of Mal.  相似文献   

3.
4.
Myocardial ischemia/reperfusion (I/R) is the most common cause of myocardial inflammation, which is primarily a manifestation of the innate immune responses. Innate immunity is activated when pattern recognition receptors (PRRs) respond to molecular patterns common to microbes and to danger signals expressed by injured or infected cells, so called pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). The expression of various PRRs in cardiomyocytes and the release of DAMPs from cardiomyocytes subjected to I/R injury, through active mechanisms as well as passive processes, enable cardiomyocytes to generate innate immune responses. Studies in isolated heart and cardiomyocytes have confirmed the inflammatory and functional effects of cardiac PRRs especially Toll-like receptors in response to I/R-derived DAMPs, such as heat shock proteins. This review addresses the active role of cardiomyocytes in mediating innate inflammatory responses to myocardial I/R. We propose that cardiomyocytes act as innate immune cells in myocardial I/R injury.  相似文献   

5.
《Autophagy》2013,9(6):816-818
Autophagy, a specialized lysosomal degradation pathway, has proven to be a potent cell-autonomous defense mechanism against a range of intracellular microbes. In addition, autophagy emerged recently as a critical regulator of innate and adaptive immune responses. Links between autophagy and innate immunity are being progressively unveiled. For instance, several TLR (Toll-Like Receptor) agonists upregulate autophagy flux in immune cell types such as DC (dendritic cells) or macrophages. Conversely, and perhaps surprisingly, is the observation that TLR7-mediated responses might depend on autophagy in plasmacytoid DC, thus suggesting a more complex link between TLR-dependent responses and autophagy. Recently, the demonstration that NOD2 increases autophagy suggests that innate immune responses initiated via a broad range of pathogen recognition receptors can regulate autophagy. In addition to its involvement in innate immune responses, autophagy regulates adaptive immune responses via both MHC class I and class II molecules depending on the cellular context and the nature of the antigen.  相似文献   

6.
7.
Elevated brain ammonia levels are a major factor in the genesis of hepatic encephalopathy (HE). The mechanism of ammonium chloride (NH4Cl) neurotoxicity involves interruption of oxidative metabolism. This leads to decreased levels of ATP concentration and subsequent glial fibrillary acidic protein (GFAP) degradation of astrocytes and fibrous C6-glioma cells. Our study investigates NH4Cl toxicity by evaluating changes in ATP concentration and mitochondrial function as well as by evaluating alterations in GFAP expression. NH4Cl induced decreases in ATP were detected after 15 minutes in C6-glioma cells and 24 hours in both cell types. Mitochondrial function, assessed by MTT (2–4,5-dimethylthiazol A-yl)-2, 5-diphenyltetrazolium bromide) assay, was impaired in both cell types at 24 hours following NH4Cl treatment. GFAP was also significantly decreased in both cell types. Morphologic and metabolic toxicities were greater in C6-glioma cells. The data clearly indicate that NH4Cl interrupts oxidative metabolism. The greater toxicity seen in C6-glioma cells may be due to their greater dependence on oxidative metabolism. Lastly, the decrease in GFAP is probably a consequence of diminished ATP.  相似文献   

8.
Differentiation of human mesenchymal stem cells (hMSCs) requires the rewiring of energy metabolism. Herein, we demonstrate that the ATPase inhibitory factor 1 (IF1) is expressed in hMSCs and in prostate and colon stem cells but is not expressed in the differentiated cells. IF1 inhibits oxidative phosphorylation and regulates the activity of aerobic glycolysis in hMSCs. Silencing of IF1 in hMSCs mimics the metabolic changes observed in osteocytes and accelerates cellular differentiation. Activation of IF1 degradation acts as the switch that regulates energy metabolism during differentiation. We conclude that IF1 is a stemness marker important for maintaining the quiescence state.  相似文献   

9.
Polyphenolic compounds have been found to possess a wide range of physiological activities that may contribute to their beneficial effects against inflammation-related diseases; however, the molecular mechanisms underlying this anti-inflammatory activity are not completely characterized, and many features remain to be elucidated. In this study, we investigated the molecular basis for the down-regulation of toll-like receptor 4 (TLR4) signal transduction by procyanidin dimer B2 (Pro B2) in macrophages. Pro B2 markedly elevated the expression of the interleukin (IL)-1 receptor-associated kinase (IRAK)-M protein, a negative regulator of TLR signaling. Lipopolysaccharide (LPS)-induced expression of cell surface molecules (CD80, CD86, and MHC class I/II) and production of pro-inflammatory cytokines (tumor necrosis factor-α, IL-1β, IL-6, and IL-12p70) were inhibited by Pro B2, and this action was prevented by IRAK-M silencing. In addition, Pro B2-treated macrophages inhibited LPS-induced activation of mitogen-activated protein kinases such as extracellular signal-regulated kinase 1/2, p38, and c-Jun N-terminal kinase and the translocation of nuclear factor κB and p65 through IRAK-M. We also found that Pro B2-treated macrophages inactivated naïve T cells by inhibiting LPS-induced interferon-γ and IL-2 secretion through IRAK-M. These novel findings provide new insights into the understanding of negative regulatory mechanisms of the TLR4 signaling pathway and the immune-pharmacological role of Pro B2 in the immune response against the development and progression of many chronic diseases.  相似文献   

10.
Mitochondria play a crucial role in eukaryotic cells; the mitochondrial electron transport chain (ETC) generates adenosine triphosphate (ATP), which serves as an energy source for numerous critical cellular activities. However, the ETC also generates deleterious reactive oxygen species (ROS) as a natural byproduct of oxidative phosphorylation. ROS are considered the major cause of aging because they damage proteins, lipids, and DNA by oxidation. We analyzed the chronological life span, growth phenotype, mitochondrial membrane potential (MMP), and intracellular ATP and mitochondrial superoxide levels of 33 single ETC component-deleted strains during the chronological aging process. Among the ETC mutant strains, 14 (sdh1Δ, sdh2Δ, sdh4Δ, cor1Δ, cyt1Δ, qcr7Δ, qcr8Δ, rip1Δ, cox6Δ, cox7Δ, cox9Δ, atp4Δ, atp7Δ, and atp17Δ) showed a significantly shorter life span. The deleted genes encode important elements of the ETC components succinate dehydrogenase (complex II) and cytochrome c oxidase (complex IV), and some of the deletions lead to structural instability of the membrane-F1F0-ATP synthase due to mutations in the stator stalk (complex V). These short-lived strains generated higher superoxide levels and produced lower ATP levels without alteration of MMP. In summary, ETC mutations decreased the life span of yeast due to impaired mitochondrial efficiency.  相似文献   

11.
The innate immune kinase TBK1 initiates inflammatory responses to combat infectious pathogens by driving production of type I interferons. TBK1 also controls metabolic processes and promotes oncogene‐induced cell proliferation and survival. Here, we demonstrate that TBK1 activates mTOR complex 1 (mTORC1) directly. In cultured cells, TBK1 associates with and activates mTORC1 through site‐specific mTOR phosphorylation (on S2159) in response to certain growth factor receptors (i.e., EGF‐receptor but not insulin receptor) and pathogen recognition receptors (PRRs) (i.e., TLR3; TLR4), revealing a stimulus‐selective role for TBK1 in mTORC1 regulation. By studying cultured macrophages and those isolated from genome edited mTOR S2159A knock‐in mice, we show that mTOR S2159 phosphorylation promotes mTORC1 signaling, IRF3 nuclear translocation, and IFN‐β production. These data demonstrate a direct mechanistic link between TBK1 and mTORC1 function as well as physiologic significance of the TBK1‐mTORC1 axis in control of innate immune function. These data unveil TBK1 as a direct mTORC1 activator and suggest unanticipated roles for mTORC1 downstream of TBK1 in control of innate immunity, tumorigenesis, and disorders linked to chronic inflammation.  相似文献   

12.
Both viral infection and DNA transfection expose single-stranded or double-stranded DNA to the cytoplasm of mammalian cells. Recognition of cytosolic DNA activates a series of cellular responses, including induction of pro-inflammatory genes such as type I interferon through the well-known cGAS-STING pathway. Here we show for the first time that intracellular administration of either single or double stranded interferon stimulating DNA (ISD), but not poly(dA) suppresses cell growth in many different cell types. Suppression of cell growth by cytosolic DNA is cGAS/STING independent and associated with inhibition of glucose metabolism, ATP depletion and subsequent cellular energy stress responses including activation of AMPK and inactivation of mTORC1. Our results suggest that in concert with but independent of innate immune response, recognition of cytosolic DNA induced cellular energy stress potentially functions as a metabolic barrier to viral replication.  相似文献   

13.
14.

Background

Surfactant protein D (SP-D) is a member of the family of proteins termed collagen-like lectins or “collectins” that play a role in non-antibody-mediated innate immune responses [1]. The primary function of SP-D is the modulation of host defense and inflammation [2].

Scope of review

This review will discuss recent findings on the physiological importance of SP-D S-nitrosylation in biological systems and potential mechanisms that govern SP-D mediated signaling.

Major conclusions

SP-D appears to have both pro- and anti-inflammatory signaling functions.SP-D multimerization is a critical feature of its function and plays an important role in efficient innate host defense. Under baseline conditions, SP-D forms a multimer in which the N-termini are hidden in the center and the C-termini are on the surface. This multimeric form of SP-D is limited in its ability to activate inflammation. However, NO can modify key cysteine residues in the hydrophobic tail domain of SP-D resulting in a dissociation of SP-D multimers into trimers, exposing the S-nitrosylated N-termini. The exposed S-nitrosylated tail domain binds to the calreticulin/CD91 receptor complex and initiates a pro-inflammatory response through phosphorylation of p38 and NF-κB activation [3,4]. In addition, the disassembled SP-D loses its ability to block TLR4, which also results in activation of NF-κB.

General significance

Recent studies have highlighted the capability of NO to modify SP-D through S-nitrosylation, causing the activation of a pro-inflammatory role for SP-D [3]. This represents a novel mechanism both for the regulation of SP-D function and NO's role in innate immunity, but also demonstrates that the S-nitrosylation can control protein function by regulating quaternary structure. This article is part of a Special Issue entitled Regulation of Cellular Processes by S-nitrosylation.  相似文献   

15.
16.
Asthma is one of the most common chronic diseases. In many cases it is preceded by the development of an immune response to allergens such as animal fur, dust, pollens and etc. In human population this disease is heterogeneous, and no selective drugs are available at the moment for some endotypes of asthma. The role of the adaptive immune system in the pathogenesis of asthma was extensively studied, while the role of innate immune cells, in particular myeloid cells, was not sufficiently addressed. Myeloid cells, such as macrophages and dendritic cells, are characterized by high plasticity, heterogenicity and ability to undergo polarization in response to various pathogenic stimuli, including those engaging innate immune receptors. Recently, special attention was drawn to the link between polarization of macrophages and cell metabolism. We hypothesized that immunometabolic reprogramming of myeloid cells, in particular, of macrophages and dendritic cells during sensitization with an allergen may affect further immune response and asthma development. To test this hypothesis, we generated distinct types of myeloid cells in vitro from murine bone marrow and analyzed their immunometabolic profiles upon activation with house dust mite extract (HDM) and its key active components. We found that the combination of lipopolysaccharide (LPS) and beta-glucan is sufficient to upregulate proinflammatory cytokine production as well as respiratory and glycolytic capacity of myeloid cells, comparably to HDM. This specific immunometabolic phenotype was associated with altered mitochondrial morphology and possibly with increased ROS production in macrophages. Moreover, we found that both TNF production and metabolic remodeling of macrophages in response to HDM are TLR4-dependent processes. Altogether, these results expand our understanding of molecular mechanisms underlying asthma induction and pathogenesis and may potentially lead to new therapeutic strategies for the treatment of this disease.  相似文献   

17.
Mitochondrion is known as the energy factory of the cell, which is also a unique mammalian organelle and considered to be evolved from aerobic prokaryotes more than a billion years ago. Mitochondrial DNA, similar to that of its bacterial ancestor’s, consists of a circular loop and contains significant number of unmethylated DNA as CpG islands. The innate immune system plays an important role in the mammalian immune response. Recent research has demonstrated that mitochondrial DNA (mtDNA) activates several innate immune pathways involving TLR9, NLRP3 and STING signaling, which contributes to the signaling platforms and results in effector responses. In addition to facilitating antibacterial immunity and regulating antiviral signaling, mounting evidence suggests that mtDNA contributes to inflammatory diseases following cellular damage and stress. Therefore, in addition to its well-appreciated roles in cellular metabolism and energy production, mtDNA appears to function as a key member in the innate immune system. Here, we highlight the emerging roles of mtDNA in innate immunity.  相似文献   

18.
Macrophages are key innate immune effector cells best known for their role as professional phagocytes, which also include neutrophils and dendritic cells. Recent evidence indicates that macrophages are also key players in metabolic homoeostasis. Macrophages can be found in many tissues, where they respond to metabolic cues and produce pro- and/or anti-inflammatory mediators to modulate metabolite programmes. Certain metabolites, such as fatty acids, ceramides and cholesterol crystals, elicit inflammatory responses through pathogen-sensing signalling pathways, implicating a maladaptation of macrophages and the innate immune system to elevated metabolic stress associated with overnutrition in modern societies. The outcome of this maladaptation is a feedforward inflammatory response leading to a state of unresolved inflammation and a collection of metabolic pathologies, including insulin resistance, fatty liver, atherosclerosis and dyslipidaemia. The present review summarizes what is known about the contributions of macrophages to metabolic diseases and the signalling pathways that are involved in metabolic stress-induced macrophage activation. Understanding the role of macrophages in these processes will help us to develop therapies against detrimental effects of the metabolic syndrome.  相似文献   

19.
The host immune system generally serves as a barrier against tumor formation. Programmed death-ligand 1 (PD-L1) is a critical “don't find me” signal to the adaptive immune system, whereas CD47 transmits an anti-phagocytic signal, known as the “don't eat me” signal, to the innate immune system. These and similar immune checkpoints are often overexpressed on human tumors. Thus, dual targeting both innate and adaptive immune checkpoints would likely maximize anti-tumor therapeutic effect and elicit more durable responses. Herein, based on the variable region of atezolizumab and consensus variant 1 (CV1) monomer, we constructed a dual-targeting fusion protein targeting both CD47 and PD-L1 using “Knobs-into-holes” technology, denoted as IAB. It was effective in inducing phagocytosis of tumor cells, stimulating T-cell activation and mediating antibody-dependent cell-mediated cytotoxicity in vitro. No obvious sign of hematological toxicity was observed in mice administered IAB at a dose of 100 mg/kg, and IAB exhibited potent antitumor activity in an immune-competent mouse model of MC38. Additionally, the anti-tumor effect of IAB was impaired by anti-CD8 antibody or clodronate liposomes, which implied that both CD8+ T cells and macrophages were required for the anti-tumor efficacy of IAB and IAB plays an essential role in the engagement of innate and adaptive immune responses. Collectively, these results demonstrate the capacity of an elicited endogenous immune response against tumors and elucidate essential characteristics of synergistic innate and adaptive immune response, and indicate dual blockade of CD47 and PD-L1 by IAB may be a synergistic therapy that activates both innate and adaptive immune response against tumors.  相似文献   

20.
The role of nitric oxide in inflammatory reactions   总被引:3,自引:0,他引:3  
Nitric oxide (NO) was initially described as a physiological mediator of endothelial cell relaxation, an important role in hypotension. NO is an intercellular messenger that has been recognized as one of the most versatile players in the immune system. Cells of the innate immune system--macrophages, neutrophils and natural killer cells--use pattern recognition receptors to recognize the molecular patterns associated with pathogens. Activated macrophages then inhibit pathogen replication by releasing a variety of effector molecules, including NO. In addition to macrophages, a large number of other immune-system cells produce and respond to NO. Thus, NO is important as a toxic defense molecule against infectious organisms. It also regulates the functional activity, growth and death of many immune and inflammatory cell types including macrophages, T lymphocytes, antigen-presenting cells, mast cells, neutrophils and natural killer cells. However, the role of NO in nonspecific and specific immunity in vivo and in immunologically mediated diseases and inflammation is poorly understood. This Minireview will discuss the role of NO in immune response and inflammation, and its mechanisms of action in these processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号