首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Autophagy》2013,9(5):544-546
Autophagy, an intracellular degradation pathway involved in cell survival or demise, is tightly controlled by complex regulatory mechanisms. A link between the Rb tumor suppressor and autophagy is now emerging. pRb plays a critical role in cell cycle progression and survival as well as the differentiation of certain cell types. Recently, we have reported that during skeletal myogenesis, Rb-deficient myoblasts fuse to form short myotubes that quickly degenerate. Myotube degeneration was associated with increased autophagic flux and inhibition of autophagy rescued the defect leading to long, twitching myotubes. We propose that Rb-loss sensitizes cells to autophagy via direct and indirect mechanisms and we discuss how these might affect cancer progression and response to chemotherapy.  相似文献   

2.
Autophagy, an intracellular degradation pathway involved in cell survival or demise, is tightly controlled by complex regulatory mechanisms. A link between the Rb tumor suppressor and autophagy is now emerging. pRb plays a critical role in cell cycle progression and survival as well as the differentiation of certain cell types. Recently, we have reported that during skeletal myogenesis, Rb-deficient myoblasts fuse to form short myotubes that quickly degenerate. Myotube degeneration was associated with increased autophagic flux and inhibition of autophagy rescued the defect leading to long, twitching myotubes. We propose that Rb-loss sensitizes cells to autophagy via direct and indirect mechanisms and we discuss how these might affect cancer progression and response to chemotherapy.  相似文献   

3.
Plant innate immunity is often associated with specialized programmed cell death at or near the site of pathogen infection. Despite the isolation of several lesion mimic mutants, the molecular mechanisms that regulate cell death during an immune response remain obscure. Recently, autophagy, an evolutionarily conserved process of bulk protein and organelle turnover, was shown to play an important role in limiting cell death initiated during plant innate immune responses. Consistent with its role in plants, several studies in animals also demonstrate that the autophagic machinery is involved in innate as well as adaptive immunities. Here, we review the role of autophagy in plant innate immunity. Because autophagy is observed in healthy and dying plant cells, we will also examine whether autophagy plays a protective or a destructive role during an immune response.  相似文献   

4.
Autophagy is a homeostatic process that functions to balance cellular metabolism and promote cell survival during stressful conditions by delivering cytoplasmic components for lysosomal degradation and subsequent recycling. During viral infection, autophagy can act as a surveillance mechanism that delivers viral antigens to the endosomal/lysosomal compartments that are enriched in immune sensors. Additionally, activated immune sensors can signal to activate autophagy. To evade this antiviral activity, many viruses elaborate functions to block the autophagy pathway at a variety of steps. Alternatively, some viruses actively subvert autophagy for their own benefit. Manipulated autophagy has been proposed to facilitate nearly every stage of the viral lifecycle in direct and indirect ways. In this review, we synthesize the extensive literature on virus-autophagy interactions, emphasizing the role of autophagy in antiviral immunity and the mechanisms by which viruses subvert autophagy for their own benefit.  相似文献   

5.
Autophagy, a major catabolic process in eukaryotes, was initially related to cell tolerance to nutrient depletion. In plants autophagy has also been widely related to tolerance to biotic and abiotic stresses (through the induction or repression of programmed cell death, PCD) as well as to promotion of developmentally regulated PCD, starch degradation or caloric restriction important for life span. Much less is known regarding its role in plant cell differentiation. Here we show that macroautophagy, the autophagy pathway driven by engulfment of cytoplasmic components by autophagosomes and its subsequent degradation in vacuoles, is highly active during germ cell differentiation in the early diverging land plant Physcomitrella patens. Our data provide evidence that suppression of ATG5-mediated autophagy results in reduced density of the egg cell-mediated mucilage that surrounds the mature egg, pointing toward a potential role of autophagy in extracellular mucilage formation. In addition, we found that ATG5- and ATG7-mediated autophagy is essential for the differentiation and cytoplasmic reduction of the flagellated motile sperm and hence for sperm fertility. The similarities between the need of macroautophagy for sperm differentiation in moss and mouse are striking, strongly pointing toward an ancestral function of autophagy not only as a protector against nutrient stress, but also in gamete differentiation.  相似文献   

6.
《Autophagy》2013,9(2):192-200
Autophagy is a highly conserved homeostatic pathway that plays an important role in tumor development and progression by acting on cancer cells in a cell-autonomous mechanism. However, the solid tumor is not an island, but rather an ensemble performance that includes nonmalignant stromal cells, such as macrophages. A growing body of evidence indicates that autophagy is a key component of the innate immune response. In this review, we discuss the role of autophagy in the control of macrophage production at different stages (including hematopoietic stem cell maintenance, monocyte/macrophage migration, and monocyte differentiation into macrophages) and polarization and discuss how modulating autophagy in tumor-associated macrophages (TAMs) may represent a promising strategy for limiting cancer growth and progression.  相似文献   

7.
Mathew R  White E 《Autophagy》2007,3(5):502-505
Cells exploit autophagy for survival to metabolic stress in vitro as well as in tumors where it localizes to regions of metabolic stress suggesting its role as a survival pathway. Consistent with this survival function, deficiency in autophagy impairs cell survival, but also promotes tumor growth, creating a paradox that the loss of a survival pathway leads to tumorigenesis. There is evidence that autophagy is a homeostatic process functioning to limit the accumulation of poly-ubiquitinated proteins and mutant protein aggregates associated with neuronal degeneration. Interestingly, we found that deficiency in autophagy caused by monoallelic loss of beclin1 or deletion of atg5 leads to accelerated DNA damage and chromosomal instability demonstrating a mutator phenotype. These cells also exhibit enhanced chromosomal gains or losses suggesting that autophagy functions as a tumor suppressor by limiting chromosomal instability. Thus the impairment of survival to metabolic stress due to deficiency in autophagy may be compensated by an enhanced mutation rate thereby promoting tumorigenesis. The protective role of autophagy may be exploited in developing novel autophagy modulators as rational chemotherapeutic as well as chemopreventive agents.  相似文献   

8.
Impaired autophagic machinery is implicated in a number of diseases such as heart disease, neurodegeneration and cancer. A common denominator in these pathologies is a dysregulation of autophagy that has been linked to a change in susceptibility to cell death. Although we have progressed in understanding the molecular machinery and regulation of the autophagic pathway, many unanswered questions remain. How does the metabolic contribution of autophagy connect with the cell’s history and how does its current autophagic flux affect metabolic status and susceptibility to undergo cell death? How does autophagic flux operate to switch metabolic direction and what are the underlying mechanisms in metabolite and energetic sensing, metabolite substrate provision and metabolic integration during the cellular stress response? In this article we focus on unresolved questions that address issues around the role of autophagy in sensing the energetic environment and its role in actively generating metabolite substrates. We attempt to provide answers by explaining how and when a change in autophagic pathway activity such as primary stress response is able to affect cell viability and when not. By addressing the dynamic metabolic relationship between autophagy, apoptosis and necrosis we provide a new perspective on the parameters that connect autophagic activity, severity of injury and cellular history in a logical manner. Last, by evaluating the cell’s condition and autophagic activity in a clear context of regulatory parameters in the intra- and extracellular environment, this review provides new concepts that set autophagy into an energetic feedback loop, that may assist in our understanding of autophagy in maintaining healthy cells or when it controls the threshold between cell death and cell survival.  相似文献   

9.
Macroautophagy is a major catabolic pathway that impacts cell survival, differentiation, tumorigenesis, and neurodegeneration. Although bulk degradation sustains carbon sources during starvation, autophagy contributes to shrinkage of differentiated neuronal processes. Identification of autophagy-related genes has spurred rapid advances in understanding the recruitment of microtubule-associated protein 1 light chain 3 (LC3) in autophagy induction, although braking mechanisms remain less understood. Using mass spectrometry, we identified a direct protein kinase A (PKA) phosphorylation site on LC3 that regulates its participation in autophagy. Both metabolic (rapamycin) and pathological (MPP+) inducers of autophagy caused dephosphorylation of endogenous LC3. The pseudophosphorylated LC3 mutant showed reduced recruitment to autophagosomes, whereas the nonphosphorylatable mutant exhibited enhanced puncta formation. Finally, autophagy-dependent neurite shortening induced by expression of a Parkinson disease–associated G2019S mutation in leucine-rich repeat kinase 2 was inhibited by dibutyryl–cyclic adenosine monophosphate, cytoplasmic expression of the PKA catalytic subunit, or the LC3 phosphorylation mimic. These data demonstrate a role for phosphorylation in regulating LC3 activity.  相似文献   

10.
11.
Autophagy is a lysosomal degradation pathway that degrades damaged or superfluous cell components into basic biomolecules, which are then recycled back into the cytosol. In this respect, autophagy drives a flow of biomolecules in a continuous degradation-regeneration cycle. Autophagy is generally considered a pro-survival mechanism protecting cells under stress or poor nutrient conditions. Current research clearly shows that autophagy fulfills numerous functions in vital biological processes. It is implicated in development, differentiation, innate and adaptive immunity, ageing and cell death. In addition, accumulating evidence demonstrates interesting links between autophagy and several human diseases and tumor development. Therefore, autophagy seems to be an important player in the life and death of cells and organisms. Despite the mounting knowledge about autophagy, the mechanisms through which the autophagic machinery regulates these diverse processes are not entirely understood. In this review, we give a comprehensive overview of the autophagic signaling pathway, its role in general cellular processes and its connection to cell death. In addition, we present a brief overview of the possible contribution of defective autophagic signaling to disease.  相似文献   

12.
13.
IFN-α is known to play a key role in autoimmunity, but the mechanisms are uncertain. Although the induction of autoimmunity by IFN-α is consistent with primarily immunomodulatory effects, the high frequency of nonautoimmune inflammation suggests other mechanisms. We used thyroiditis as a model to dissect these possibilities. IFN-α treatment of cultured thyrocytes increased expression of thyroid differentiation markers, thyroglobulin, thyroid-stimulating hormone receptor, thyroid peroxidase, and sodium iodide transporter. RNAseq analysis demonstrated that pathways of Ag presentation, pattern recognition receptors, and cytokines/chemokines were also stimulated. These changes were associated with markedly increased nonapoptotic thyroid cell death, suggesting direct toxicity. To corroborate these in vitro findings, we created transgenic mice with thyroid-specific overexpression of IFN-α under control of the thyroglobulin promoter. Transgenic mice developed marked inflammatory thyroid destruction associated with immune cell infiltration of thyroid and surrounding tissues leading to profound hypothyroidism, findings consistent with our in vitro results. In addition, transgenic mice thyroids showed upregulation of pathways similar to those observed in cultured thyrocytes. In particular, expression of granzyme B, CXCL10, a subset of the tripartite motif-containing family, and other genes involved in recruitment of bystander cytotoxic immune responses were increased. Pathways associated with apoptosis and autophagy were not induced. Taken together, our data demonstrate that the induction of tissue inflammation and autoimmunity by IFN-α involves direct tissue toxic effects as well as provocation of destructive bystander immune responses.  相似文献   

14.
Autophagy is primordial for the maintenance of metabolic and genetic homeostasis in all eukaryotic organisms. Owing to its cell-intrinsic effects, autophagy robustly inhibits malignant transformation, yet can support the progression of established neoplasms as well as their resistance to conventional treatments. The notion that autophagy inhibition sensitizes neoplastic cells to chemotherapy and radiation therapy rivals with the capacity of autophagy to contribute to natural and therapy-driven anticancer immunosurveillance via a multitude of mechanisms. Indeed, autophagy ensures an optimal release of immunostimulatory signals by dying cancer cells and hence boosts their capacity to initiate an immune response. Moreover, autophagy is important for the activity of several components of the immune system involved in tumor recognition and elimination, including antigen-presenting cells and CD8+ cytotoxic T lymphocytes. In this review, we discuss how cancer cells disable autophagy to bypass immune control and how strategies aiming to enhance autophagy can be envisaged to improve the efficacy of immunogenic cancer therapies.  相似文献   

15.
Autophagy is a highly conserved cellular process by which cytoplasmic components are sequestered in autophagosomes and delivered to lysosomes for degradation. As a major intracellular degradation and recycling pathway, autophagy is crucial for maintaining cellular homeostasis as well as remodeling during normal development, and dysfunctions in autophagy have been associated with a variety of pathologies including cancer, inflammatory bowel disease and neurodegenerative disease. Stem cells are unique in their ability to self-renew and differentiate into various cells in the body, which are important in development, tissue renewal and a range of disease processes. Therefore, it is predicted that autophagy would be crucial for the quality control mechanisms and maintenance of cellular homeostasis in various stem cells given their relatively long life in the organisms. In contrast to the extensive body of knowledge available for somatic cells, the role of autophagy in the maintenance and function of stem cells is only beginning to be revealed as a result of recent studies. Here we provide a comprehensive review of the current understanding of the mechanisms and regulation of autophagy in embryonic stem cells, several tissue stem cells (particularly hematopoietic stem cells), as well as a number of cancer stem cells. We discuss how recent studies of different knockout mice models have defined the roles of various autophagy genes and related pathways in the regulation of the maintenance, expansion and differentiation of various stem cells. We also highlight the many unanswered questions that will help to drive further research at the intersection of autophagy and stem cell biology in the near future.  相似文献   

16.
Macroautophagy/autophagy is the process by which cellular components are degraded and recycled within the lysosome. These components include mitochondria, the selective degradation of which is known as mitophagy. Mitochondria are dynamic organelles that constantly adapt their morphology, function, and number to accommodate the metabolic needs of the cell. Extensive metabolic reconfiguration occurs during cell differentiation, when mitochondrial activity increases in most cell types. However, our data demonstrate that during physiologic retinal ganglion cell (RGC) development, mitophagy-dependent metabolic reprogramming toward glycolysis regulates numbers of RGCs, which are the first neurons to differentiate in the retina and whose axons form the optic nerve. We show that during retinal development tissue hypoxia triggers HIF1A/HIF-1 stabilization, resulting in increased expression of the mitophagy receptor BNIP3L/NIX. BNIP3L-dependent mitophagy results in a metabolic shift toward glycolysis essential for RGC neurogenesis. Moreover, we demonstrate that BNIP3L-dependent mitophagy also regulates the polarization of proinflammatory/M1 macrophages, which undergo glycolysis-dependent differentiation during the inflammatory response. Our results uncover a new link between hypoxia, mitophagy, and metabolic reprogramming in the differentiation of several cell types in vivo. These findings may have important implications for neurodegenerative, metabolic and other diseases in which mitochondrial dysfunction and metabolic alterations play a prominent role.  相似文献   

17.
Pua HH  He YW 《Autophagy》2007,3(3):266-267
First identified as a pathway for nutrient recovery during periods of starvation, the role of autophagy has expanded to the clearance of "toxic" intracellular material including ubiquitin-positive protein aggregates, damaged organelles as well as microbial pathogens in various cell types. We have examined the role of autophagy in the development and function of the adaptive immune system. Genes encoding autophagy machinery are expressed in T lymphocytes, and autophagy occurs in primary CD4+ and CD8+ T cells. By generating fetal liver chimeric mice, we found that thymocyte development is largely normal but the mature T cell compartment is severely reduced in the absence of the essential autophagy gene Atg5. Consistent with a critical role for autophagy in promoting T cell survival, Atg5-/- CD8+ T cells display high levels of apoptosis. Surprisingly, Atg5-deficient T cells were also unable to efficiently proliferate after T-cell receptor (TCR) stimulation. These findings suggest that autophagy regulates T lymphocyte homeostasis by promoting both survival and proliferation. In addition, T cells offer a new, physiologically relevant system to study the regulation and function of autophagy pathways in vivo.  相似文献   

18.
Kang C  Avery L 《Autophagy》2008,4(1):82-84
Autophagy is an evolutionally conserved lysosomal pathway used to degrade and turn over long-lived proteins and cytoplasmic organelles. Since autophagy was discovered, it has been thought to act as a pro-survival response to several stresses, especially starvation, at the cell and organism levels by providing recycled metabolic substrates to maintain energy homeostasis. However, several recent studies suggest that autophagy also plays a pro-death role through an autophagic cell death pathway mostly at the cellular level. The mechanism by which autophagy could perform these seemingly opposite roles as a pro-survival and a pro-death mechanism remained elusive until recently. Using C. elegans as a model system, we found that physiological levels of autophagy promote optimal survival of C. elegans during starvation, but either insufficient or excessive levels of autophagy render C. elegans starvation-hypersensitive. Furthermore, we found that muscarinic acetylcholine receptor signaling is important in modulating the level of autophagy during starvation, perhaps through DAP kinase and RGS-2. Our recent study provides in vivo evidence that levels of autophagy are critical in deciding its promotion of either survival or death: Physiological levels of autophagy are pro-survival, whereas insufficient or excessive levels of autophagy are pro-death.  相似文献   

19.
DNA lesions, constantly produced by endogenous and exogenous sources, activate the DNA damage response (DDR), which involves detection, signaling and repair of the damage. Autophagy, a lysosome-dependent degradation pathway that is activated by stressful situations such as starvation and oxidative stress, regulates cell fate after DNA damage and also has a pivotal role in the maintenance of nuclear and mitochondrial genomic integrity. Here, we review important evidence regarding the role played by autophagy in preventing genomic instability and tumorigenesis, as well as in micronuclei degradation. Several pathways governing autophagy activation after DNA injury and the influence of autophagy upon the processing of genomic lesions are also discussed herein. In this line, the mechanisms by which several proteins participate in both DDR and autophagy, and the importance of this crosstalk in cancer and neurodegeneration will be presented in an integrated fashion. At last, we present a hypothetical model of the role played by autophagy in dictating cell fate after genotoxic stress.  相似文献   

20.
Liu ML  Yao MC 《Eukaryotic cell》2012,11(4):494-506
Autophagy is an evolutionarily conserved mechanism for the degradation of cellular components, but its role in enucleation during differentiation has not been established. Tetrahymena thermophila is a unicellular eukaryote with two functionally distinct nuclei, the somatic (macro-) and the germ line (micro-) nuclei. These nuclei are produced during sexual reproduction (conjugation), which involves differentiation and selective degradation of several specific nuclei. To examine the role of autophagy in nuclear degradation, we studied the function of two ATG8 genes in Tetrahymena. Through fluorescent protein tagging, we found that both proteins are targeted to degrading nuclei at specific stages, with some enrichment on the nuclear periphery, suggesting the formation of autophagosomes surrounding these nuclei. In addition, ATG8 knockout mutant cells showed a pronounced delay in nuclear degradation without apparently preventing the completion of other developmental events. This evidence provided direct support for a critical role for autophagy in programmed nuclear degradation. The results also showed differential roles for two ATG8 genes, with ATG8-65 playing a more significant role in starvation than ATG8-2, although both are important in nuclear degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号