首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.

Background

Cell polarization is essential for processes such as cell migration and asymmetric cell division. A common regulator of cell polarization in most eukaryotic cells is the conserved Rho GTPase, Cdc42. In budding yeast, Cdc42 is activated by a single guanine nucleotide exchange factor, Cdc24. The mechanistic details of Cdc24 activation at the onset of yeast cell polarization are unclear. Previous studies have suggested an important role for phosphorylation of Cdc24, which may regulate activity or function of the protein, representing a key step in the symmetry breaking process.

Methodology/Principal Findings

Here, we directly ask whether multisite phosphorylation of Cdc24 plays a role in its regulation. We identify through mass spectrometry analysis over thirty putative in vivo phosphorylation sites. We first focus on sites matching consensus sequences for cyclin-dependent and p21-activated kinases, two kinase families that have been previously shown to phosphorylate Cdc24. Through site-directed mutagenesis, yeast genetics, and light and fluorescence microscopy, we show that nonphosphorylatable mutations of these consensus sites do not lead to any detectable consequences on growth rate, morphology, kinetics of polarization, or localization of the mutant protein. We do, however, observe a change in the mobility shift of mutant Cdc24 proteins on SDS-PAGE, suggesting that we have indeed perturbed its phosphorylation. Finally, we show that mutation of all identified phosphorylation sites does not cause observable defects in growth rate or morphology.

Conclusions/Significance

We conclude that lack of phosphorylation on Cdc24 has no overt functional consequences in budding yeast. Yeast cell polarization may be more tightly regulated by inactivation of Cdc42 by GTPase activating proteins or by alternative methods of Cdc24 regulation, such as conformational changes or oligomerization.  相似文献   

2.
Many protein kinases are regulated by phosphorylation in the activation loop, which is required for enzymatic activity. Glutamic acid can substitute for phosphothreonine in some proteins activated by phosphorylation, but this substitution (T169E) at the site of activation loop phosphorylation in the Saccharomyces cerevisiae cyclin-dependent kinase (Cdk) Cdc28p blocks biological function and protein kinase activity. Using cycles of error-prone DNA amplification followed by selection for successively higher levels of function, we identified mutant versions of Cdc28p-T169E with high biological activity. The enzymatic and biological activity of the mutant Cdc28p was essentially normally regulated by cyclin, and the mutants supported normal cell cycle progression and regulation. Therefore, it is not a requirement for control of the yeast cell cycle that Cdc28p be cyclically phosphorylated and dephosphorylated. These CDC28 mutants allow viability in the absence of Cak1p, the essential kinase that phosphorylates Cdc28p-T169, demonstrating that T169 phosphorylation is the only essential function of Cak1p. Some growth defects remain in suppressed cak1 cdc28 strains carrying the mutant CDC28 genes, consistent with additional nonessential roles for CAK1.  相似文献   

3.
Msb1 is not essential for growth in the budding yeast Saccharomyces cerevisiae since msb1Δ cells do not display obvious phenotypes. Genetic studies suggest that Msb1 positively regulates Cdc42 function during bud development, since high-copy MSB1 suppressed the growth defect of temperature-sensitive cdc24 and cdc42 mutants at restrictive temperature, while deletion of MSB1 showed synthetic lethality with cdc24, bem1, and bem2 mutations. However, the mechanism of how Msb1 regulates Cdc42 function remains poorly understood. Here, we show that Msb1 localizes to sites of polarized growth during bud development and interacts with Cdc42 in the cells. In addition, Msb1 interacts with Boi1 and Boi2, two scaffold proteins that also interact with Cdc42 and Bem1. These findings suggest that Msb1 may positively regulate Cdc42 function by interacting with Cdc42, Boi1, and Boi2, which may promote the efficient assembly of Cdc42, Cdc24, and other proteins into a functional complex. We also show that Msb1 interacts with Rho1 in the cells and Msb1 overproduction inhibits the growth of rho1-104 and rho1-3 but not rho1-2 cells. The growth inhibition appears to result from the down-regulation of Rho1 function in glucan synthesis, specifically during early stage of bud development. These results suggest that Msb1 may coordinate Cdc42 and Rho1 functions during early stage of bud development by promoting Cdc42 function and inhibiting Rho1 function. Msb1 overproduction also affects cell morphology, septin organization, and causes increased, aberrant deposition of 1,3-β-glucan and chitin at the mother-bud neck. However, the stimulation of glucan synthesis mainly occurs during late, but not early, stage of bud development.  相似文献   

4.
Cytokinesis and cell separation are critical events in the cell cycle. We show that Endosomal Sorting Complex Required for Transport (ESCRT) genes are required for cell separation in Schizosaccharomyces pombe. We identify genetic interactions between ESCRT proteins and polo and aurora kinases and Cdc14 phosphatase that manifest as impaired growth and exacerbated defects in septation, suggesting that the encoded proteins function together to control these processes. Furthermore, we observed defective endosomal sorting in mutants of plo1, ark1 and clp1, as has been reported for ESCRT mutants, consistent with a role for these kinases in the control of ESCRT function in membrane traffic. Multiple observations indicate functional interplay between polo and ESCRT components: firstly, two-hybrid in vivo interactions are reported between Plo1p and Sst4p, Vps28p, Vps25p, Vps20p and Vps32p; secondly, co-immunoprecipitation of human homologues of Vps20p, Vps32p, Vps24p and Vps2p by human Plk1; and thirdly, in vitro phosphorylation of budding yeast Vps32p and Vps20p by polo kinase. Two-hybrid analyses also identified interactions between Ark1p and Vps20p and Vps32p, and Clp1p and Vps28p. These experiments indicate a network of interactions between ESCRT proteins, plo1, ark1 and clp1 that coordinate membrane trafficking and cell separation in fission yeast.  相似文献   

5.
Telomeres are the physical ends of eukaryotic chromosomes. They are important for maintaining the integrity of chromosomes and this function is mediated through a number of protein factors. In Saccharomyces cerevisiae, Cdc13p binds to telomeres and affects telomere maintenance, telomere position effects and cell cycle progression through G2/M phase. We identified four genes encoding Pol1p, Sir4p, Zds2p and Imp4p that interact with amino acids 1–252 of Cdc13p using a yeast two-hybrid screening system. Interactions of these four proteins with Cdc13p were through direct protein–protein interactions as judged by in vitro pull-down assays. Direct protein–protein interactions were also observed between Pol1p–Imp4p, Pol1p–Sir4p and Sir4p–Zds2p, whereas no interaction was detected between Imp4p–Sir4p and Zds2p–Imp4p, suggesting that protein interactions were specific in the complex. Pol1p was shown to interact with Cdc13p. Here we show that Zds2p and Imp4p also form a stable complex with Cdc13p in yeast cells, because Zds2p and Imp4p co-immunoprecipitate with Cdc13p, whereas Sir4p does not. The function of the N-terminal 1–252 region of Cdc13p was also analyzed. Expressing Cdc13(252–924)p, which lacks amino acids 1–252 of Cdc13p, causes defects in progressive cell growth and eventually arrested in the G2/M phase of the cell cycle. These growth defects were not caused by progressive shortening of telomeres because telomeres in these cells were long. Point mutants in the amino acids 1–252 region of Cdc13p that reduced the interaction between Cdc13p and its binding proteins resulted in varying level of defects in cell growth and telomeres. These results indicate that the interactions between Cdc13(1–252)p and its binding proteins are important for the function of Cdc13p in telomere regulation and cell growth. Together, our results provide evidence for the formation of a Cdc13p-mediated telosome complex through its N-terminal region that is involved in telomere maintenance, telomere length regulation and cell growth control.  相似文献   

6.
Proliferation and morphogenesis in eukaryotic cells depend on the concerted activity of Rho-type GTPases, including Ras, Cdc42, and Rac. The sexually dimorphic fungus Cryptococcus neoformans, which encodes paralogous, non-essential copies of all three, provides a unique model in which to examine the interactions of these conserved proteins. Previously, we demonstrated that RAS1 mediates C. neoformans virulence by acting as a central regulator of both thermotolerance and mating. We report here that ras1Δ mutants accumulate defects in polarized growth, cytokinesis, and cell cycle progression. We demonstrate that the ras1Δ defects in thermotolerance and mating can be largely explained by the compromised activity of four downstream Rho-GTPases: the Cdc42 paralogs, Cdc42 and Cdc420; and the Rac paralogs, Rac1 and Rac2. Further, we demonstrate that the separate GTPase classes play distinct Ras-dependent roles in C. neoformans morphogenesis and pathogenesis. Cdc42 paralogs primarily control septin localization and cytokinesis, while Rac paralogs play a primary role in polarized cell growth. Together, these duplicate, related signaling proteins provide a robust system to allow microbial proliferation in the presence of host-derived cell stresses.  相似文献   

7.
Yuan Q  Jäntti J 《PloS one》2010,5(10):e13323

Background

The Saccharomyces cerevisiae syntaxin1 homologues Sso1p and Sso2p perform an essential function in membrane fusion in exocytosis. While deletion of either SSO1 or SSO2 causes no obvious phenotype in vegetatively grown cells, deletion of both genes is lethal. In sporulating diploid S. cerevisiae cells only Sso1p, but not Sso2p, is needed for membrane fusion during prospore membrane formation. Mass spectrometry and in vivo labeling data suggest that serines 23, 24, and 79 in Sso1p and serines 31 and 34 in Sso2p can be phosphorylated in vivo. Here we set out to assess the contribution of phosphorylation on Sso protein in vivo function.

Principal Findings

Different mutant versions of SSO1 and SSO2 were generated to target the phosphorylation sites in Sso1p and Sso2p. Basal or overexpression of phospho-mimicking or putative non-phosphorylated Sso1p or Sso2p mutants resulted in no obvious growth phenotype. However, S79A and S79E mutations caused a mild defect in the ability of Sso1p to complement the temperature-sensitive growth phenotype of sso2-1 sso1Δ cells. Combination of all mutations did not additionally compromise Sso1p in vivo function. When compared to the wild type SSO1 and SSO2, the phosphoamino acid mutants displayed similar genetic interactions with late acting sec mutants. Furthermore, diploid cells expressing only the mutant versions of Sso1p had no detectable sporulation defects. In addition to sporulation, also pseudohyphal and invasive growth modes are regulated by the availability of nutrients. In contrast to sporulating diploid cells, deletion of SSO1 or SSO2, or expression of the phospho-mutant versions of SSO1 or SSO2 as the sole copies of SSO genes caused no defects in haploid or diploid pseudohyphal and invasive growth.

Conclusions

The identified phosphorylation sites do not significantly contribute to the in vivo functionality of Sso1p and Sso2p in S. cerevisiae.  相似文献   

8.
The yeast protein Spa2p localizes to growth sites and is important for polarized morphogenesis during budding, mating, and pseudohyphal growth. To better understand the role of Spa2p in polarized growth, we analyzed regions of the protein important for its function and proteins that interact with Spa2p. Spa2p interacts with Pea2p and Bud6p (Aip3p) as determined by the two-hybrid system; all of these proteins exhibit similar localization patterns, and spa2Δ, pea2Δ, and bud6Δ mutants display similar phenotypes, suggesting that these three proteins are involved in the same biological processes. Coimmunoprecipitation experiments demonstrate that Spa2p and Pea2p are tightly associated with each other in vivo. Velocity sedimentation experiments suggest that a significant portion of Spa2p, Pea2p, and Bud6p cosediment, raising the possibility that these proteins form a large, 12S multiprotein complex. Bud6p has been shown previously to interact with actin, suggesting that the 12S complex functions to regulate the actin cytoskeleton. Deletion analysis revealed that multiple regions of Spa2p are involved in its localization to growth sites. One of the regions involved in Spa2p stability and localization interacts with Pea2p; this region contains a conserved domain, SHD-II. Although a portion of Spa2p is sufficient for localization of itself and Pea2p to growth sites, only the full-length protein is capable of complementing spa2 mutant defects, suggesting that other regions are required for Spa2p function. By using the two-hybrid system, Spa2p and Bud6p were also found to interact with components of two mitogen-activated protein kinase (MAPK) pathways important for polarized cell growth. Spa2p interacts with Ste11p (MAPK kinase [MEK] kinase) and Ste7p (MEK) of the mating signaling pathway as well as with the MEKs Mkk1p and Mkk2p of the Slt2p (Mpk1p) MAPK pathway; for both Mkk1p and Ste7p, the Spa2p-interacting region was mapped to the N-terminal putative regulatory domain. Bud6p interacts with Ste11p. The MEK-interacting region of Spa2p corresponds to the highly conserved SHD-I domain, which is shown to be important for mating and MAPK signaling. spa2 mutants exhibit reduced levels of pheromone signaling and an elevated level of Slt2p kinase activity. We thus propose that Spa2p, Pea2p, and Bud6p function together, perhaps as a complex, to promote polarized morphogenesis through regulation of the actin cytoskeleton and signaling pathways.  相似文献   

9.
The majority of Crenarchaeota utilize the cell division system (Cdv) to divide. This system consists of three highly conserved genes, cdvA, cdvB and cdvC that are organized in an operon. CdvC is homologous to the AAA-type ATPase Vps4, involved in multivesicular body biogenesis in eukaryotes. CdvA is a unique archaeal protein that interacts with the membrane, while CdvB is homologous to the eukaryal Vps24 and forms helical filaments. Most Crenarcheota contain additional CdvB paralogs. In Sulfolobus acidocaldarius these are termed CdvB1–3. We have used a gene inactivation approach to determine the impact of these additional cdvB genes on cell division. Independent deletion mutants of these genes were analyzed for growth and protein localization. One of the deletion strains (ΔcdvB3) showed a severe growth defect on plates and delayed growth on liquid medium. It showed the formation of enlarged cells and a defect in DNA segregation. Since these defects are accompanied with an aberrant localization of CdvA and CdvB, we conclude that CdvB3 fulfills an important accessory role in cell division.  相似文献   

10.
Yeast Saccharomyces cerevisiae Cdc13p is the telomere-binding protein that protects telomeres and regulates telomere length. It is documented that Cdc13p binds specifically to single-stranded TG1–3 telomeric DNA sequences and interacts with Stn1p. To localize the region for single-stranded TG1–3 DNA binding, Cdc13p mutants were constructed by deletion mutagenesis and assayed for their binding activity. Based on in vitro electrophoretic mobility shift assay, a 243-amino-acid fragment of Cdc13p (amino acids 451–693) was sufficient to bind single-stranded TG1–3 with specificity similar to that of the native protein. Consistent with the in vitro observation, in vivo one-hybrid analysis also indicated that this region of Cdc13p was sufficient to localize itself to telomeres. However, the telomere-binding region of Cdc13p (amino acids 451693) was not capable of complementing the growth defects of cdc13 mutants. Instead, a region comprising the Stn1p-interacting and telomere-binding region of Cdc13p (amino acids 252924) complemented the growth defects of cdc13 mutants. These results suggest that binding to telomeres by Cdc13p is not sufficient to account for the cell viability, interaction with Stn1p is also required. Taken together, we have defined the telomere-binding domain of Cdc13p and showed that both binding to telomeres and Stn1p by Cdc13p are required to maintain cell growth.  相似文献   

11.
We identified two predicted proteins in Schizosaccharomyces pombe, Rrp1 (SPAC17A2.12) and Rrp2 (SPBC23E6.02) that share 34% and 36% similarity to Saccharomyces cerevisiae Ris1p, respectively. Ris1p is a DNA-dependent ATP-ase involved in gene silencing and DNA repair. Rrp1 and Rrp2 also share similarity with S. cerevisiae Rad5 and S. pombe Rad8, containing SNF2-N, RING finger and Helicase-C domains. To investigate the function of the Rrp proteins, we studied the DNA damage sensitivities and genetic interactions of null mutants with known DNA repair mutants. Single Δrrp1 and Δrrp2 mutants were not sensitive to CPT, 4NQO, CDPP, MMS, HU, UV or IR. The double mutants Δrrp1 Δrhp51 and Δrrp2 Δrhp51 plus the triple Δrrp1 Δrrp2 Δrhp51 mutant did not display significant additional sensitivity. However, the double mutants Δrrp1 Δrhp57 and Δrrp2 Δrhp57 were significantly more sensitive to MMS, CPT, HU and IR than the Δrhp57 single mutant. The checkpoint response in these strains was functional. In S. pombe, Rhp55/57 acts in parallel with a second mediator complex, Swi5/Sfr1, to facilitate Rhp51-dependent DNA repair. Δrrp1 Δsfr1 and Δrrp2 Δsfr1 double mutants did not show significant additional sensitivity, suggesting a function for Rrp proteins in the Swi5/Sfr1 pathway of DSB repair. Consistent with this, Δrrp1 Δrhp57 and Δrrp2 Δrhp57 mutants, but not Δrrp1 Δsfr1 or Δrrp2 Δsfr1 double mutants, exhibited slow growth and aberrations in cell and nuclear morphology that are typical of Δrhp51.  相似文献   

12.
Oxysterol-binding protein (OSBP) and OSBP-related proteins (ORPs) are a conserved family of soluble cytoplasmic proteins that can bind sterols, translocate between membrane compartments, and affect sterol trafficking. These properties make ORPs attractive candidates for lipid transfer proteins (LTPs) that directly mediate nonvesicular sterol transfer to the plasma membrane. To test whether yeast ORPs (the Osh proteins) are sterol LTPs, we studied endoplasmic reticulum (ER)-to-plasma membrane (PM) sterol transport in OSH deletion mutants lacking one, several, or all Osh proteins. In conditional OSH mutants, ER-PM ergosterol transport slowed ~20-fold compared with cells expressing a full complement of Osh proteins. Although this initial finding suggested that Osh proteins act as sterol LTPs, the situation is far more complex. Osh proteins have established roles in Rho small GTPase signaling. Osh proteins reinforce cell polarization and they specifically affect the localization of proteins involved in polarized cell growth such as septins, and the GTPases Cdc42p, Rho1p, and Sec4p. In addition, Osh proteins are required for a specific pathway of polarized secretion to sites of membrane growth, suggesting that this is how Osh proteins affect Cdc42p- and Rho1p-dependent polarization. Our findings suggest that Osh proteins integrate sterol trafficking and sterol-dependent cell signaling with the control of cell polarization.  相似文献   

13.
In the budding yeast Saccharomyces cerevisiae, Cdc14 is sequestered within the nucleolus before anaphase entry through its association with Net1/Cfi1, a nucleolar protein. Protein phosphatase PP2ACdc55 dephosphorylates Net1 and keeps it as a hypophosphorylated form before anaphase. Activation of the Cdc fourteen early anaphase release (FEAR) pathway after anaphase entry induces a brief Cdc14 release from the nucleolus. Some of the components in the FEAR pathway, including Esp1, Slk19, and Spo12, inactivate PP2ACdc55, allowing the phosphorylation of Net1 by mitotic cyclin-dependent kinase (Cdk) (Clb2-Cdk1). However, the function of another FEAR component, the Polo-like kinase Cdc5, remains elusive. Here, we show evidence indicating that Cdc5 promotes Cdc14 release primarily by stimulating the degradation of Swe1, the inhibitory kinase for mitotic Cdk. First, we found that deletion of SWE1 partially suppresses the FEAR defects in cdc5 mutants. In contrast, high levels of Swe1 impair FEAR activation. We also demonstrated that the accumulation of Swe1 in cdc5 mutants is responsible for the decreased Net1 phosphorylation. Therefore, we conclude that the down-regulation of Swe1 protein levels by Cdc5 promotes FEAR activation by relieving the inhibition on Clb2-Cdk1, the kinase for Net1 protein.  相似文献   

14.
The yeast actin-regulating kinases Ark1p and Prk1p are signaling proteins localized to cortical actin patches, which may be sites of endocytosis. Interactions between the endocytic proteins Pan1p and End3p may be regulated by Prk1p-dependent threonine phosphorylation of Pan1p within the consensus sequence [L/I]xxQxTG. We identified two Prk1p phosphorylation sites within the Pan1p-binding protein Ent1p, a yeast epsin homologue, and demonstrate Prk1p-dependent phosphorylation of both threonines. Converting both threonines to either glutamate or alanine mimics constitutively phosphorylated or dephosphorylated Ent1p, respectively. Synthetic growth defects were observed in a pan1-20 ENT1(EE) double mutant, suggesting that Ent1p phosphorylation negatively regulates the formation/activity of a Pan1p-Ent1p complex. Interestingly, pan1-20 ent2 Delta but not pan1-20 ent1 Delta double mutants had improved growth and endocytosis over the pan1-20 mutant. We found that actin-regulating Ser/Thr kinase (ARK) mutants exhibit endocytic defects and that overexpressing either wild-type or alanine-substituted Ent1p partially suppressed phenotypes associated with loss of ARK kinases, including growth, endocytosis, and actin localization defects. Consistent with synthetic growth defects of pan1-20 ENT1(EE) cells, overexpressing glutamate-substituted Ent1p was deleterious to ARK mutants. Surprisingly, overexpressing the related Ent2p protein could not suppress ARK kinase mutant phenotypes. These results suggest that Ent1p and Ent2p are not completely redundant and may perform opposing functions in endocytosis. These data support the model that, as for clathrin-dependent recycling of synaptic vesicles, yeast endocytic protein phosphorylation inhibits endocytic functions.  相似文献   

15.
Reversible phosphorylation of the phospholipid phosphatidylinositol (PI) is a key event in the determination of organelle identity and an underlying regulatory feature in many biological processes. Here, we investigated the role of PI signaling in the regulation of the mitogen-activated protein kinase (MAPK) pathway that controls filamentous growth in yeast. Lipid kinases that generate phosphatidylinositol 4-phosphate [PI(4)P] at the Golgi (Pik1p) or PI(4,5)P2 at the plasma membrane (PM) (Mss4p and Stt4p) were required for filamentous-growth MAPK pathway signaling. Introduction of a conditional allele of PIK1 (pik1-83) into the filamentous (Σ1278b) background reduced MAPK activity and caused defects in invasive growth and biofilm/mat formation. MAPK regulatory proteins that function at the PM, including Msb2p, Sho1p, and Cdc42p, were mislocalized in the pik1-83 mutant, which may account for the signaling defects of the PI(4)P kinase mutants. Other PI kinases (Fab1p and Vps34p), and combinations of PIP (synaptojanin-type) phosphatases, also influenced the filamentous-growth MAPK pathway. Loss of these proteins caused defects in cell polarity, which may underlie the MAPK signaling defect seen in these mutants. In line with this possibility, disruption of the actin cytoskeleton by latrunculin A (LatA) dampened the filamentous-growth pathway. Various PIP signaling mutants were also defective for axial budding in haploid cells, cell wall construction, or proper regulation of the high-osmolarity glycerol response (HOG) pathway. Altogether, the study extends the roles of PI signaling to a differentiation MAPK pathway and other cellular processes.  相似文献   

16.
The replication initiation protein Cdc6p forms a tight complex with Cdc28p, specifically with forms of the kinase that are competent to promote replication initiation. We now show that potential sites of Cdc28 phosphorylation in Cdc6p are required for the regulated destruction of Cdc6p that has been shown to occur during the Saccharomyces cerevisiae cell cycle. Analysis of Cdc6p phosphorylation site mutants and of the requirement for Cdc28p in an in vitro ubiquitination system suggests that targeting of Cdc6p for degradation is more complex than previously proposed. First, phosphorylation of N-terminal sites targets Cdc6p for polyubiquitination probably, as expected, through promoting interaction with Cdc4p, an F box protein involved in substrate recognition by the Skp1-Cdc53-F-box protein (SCF) ubiquitin ligase. However, in addition, mutation of a single, C-terminal site stabilizes Cdc6p in G2 phase cells without affecting substrate recognition by SCF in vitro, demonstrating a second and novel requirement for specific phosphorylation in degradation of Cdc6p. SCF-Cdc4p- and N-terminal phosphorylation site-dependent ubiquitination appears to be mediated preferentially by Clbp/Cdc28p complexes rather than by Clnp/Cdc28ps, suggesting a way in which phosphorylation of Cdc6p might control the timing of its degradation at then end of G1 phase of the cell cycle. The stable cdc6 mutants show no apparent replication defects in wild-type strains. However, stabilization through mutation of three N-terminal phosphorylation sites or of the single C-terminal phosphorylation site leads to dominant lethality when combined with certain mutations in the anaphase-promoting complex.  相似文献   

17.
DNA replication stress activates the S-phase checkpoint that arrests the cell cycle, but it is poorly understood how cells recover from this arrest. Cyclin-dependent kinase (CDK) and protein phosphatase 2A (PP2A) are key cell cycle regulators, and Cdc55 is a regulatory subunit of PP2A in budding yeast. We found that yeast cells lacking functional PP2ACdc55 showed slow growth in the presence of hydroxyurea (HU), a DNA synthesis inhibitor, without obvious viability loss. Moreover, PP2A mutants exhibited delayed anaphase entry and sustained levels of anaphase inhibitor Pds1 after HU treatment. A DNA damage checkpoint Chk1 phosphorylates and stabilizes Pds1. We show that chk1Δ and mutation of the Chk1 phosphorylation sites in Pds1 largely restored efficient anaphase entry in PP2A mutants after HU treatment. In addition, deletion of SWE1, which encodes the inhibitory kinase for CDK or mutation of the Swe1 phosphorylation site in CDK (cdc28F19), also suppressed the anaphase entry delay in PP2A mutants after HU treatment. Our genetic data suggest that Swe1/CDK acts upstream of Pds1. Surprisingly, cdc55Δ showed significant suppression to the viability loss of S-phase checkpoint mutants during DNA synthesis block. Together, our results uncover a PP2A-Swe1-CDK-Chk1-Pds1 axis that promotes recovery from DNA replication stress.  相似文献   

18.
Human immunodeficiency virus type 1 (HIV-1) Vpr induces cell cycle G2 arrest in fission yeast (Schizosaccharomyces pombe) and mammalian cells, suggesting the cellular pathway(s) targeted by Vpr is conserved among eukaryotes. Our previous studies in fission yeast demonstrated that Vpr induces G2 arrest in part through inhibition of Cdc25, a Cdc2-specific phosphatase that promotes G2/M transition. The goal of this study was to further elucidate molecular mechanism underlying the inhibitory effect of Vpr on Cdc25. We show here that, similar to the DNA checkpoint controls, expression of vpr promotes subcellular relocalization of Cdc25 from nuclear to cytoplasm and thereby prevents activation of Cdc2 by Cdc25. Vpr-induced nuclear exclusion of Cdc25 appears to depend on the serine/threonine phosphorylation of Cdc25 and the presence of Rad24/14-3-3 protein, since amino acid substitutions of the nine possible phosphorylation sites of Cdc25 with Ala (9A) or deletion of the rad24 gene abolished nuclear exclusion induced by Vpr. Interestingly, Vpr is still able to promote Cdc25 nuclear export in mutants defective in the checkpoints (rad3 and chk1/cds1), the kinases that are normally required for Cdc25 phosphorylation and nuclear exclusion of Cdc25, suggesting that others kinase(s) might modulate phosphorylation of Cdc25 for the Vpr-induced G2 arrest. We report here that this kinase is Srk1. Deletion of the srk1 gene blocks the nuclear exclusion of Cdc25 caused by Vpr. Overexpression of srk1 induces cell elongation, an indication of cell cycle G2 delay, in a similar fashion to Vpr; however, no additive effect of cell elongation was observed when srk1 and vpr were coexpressed, indicating Srk1 and Vpr are likely affecting the cell cycle G2/M transition through the same cellular pathway. Immunoprecipitation further shows that Vpr and Srk1 are part of the same protein complex. Consistent with our findings in fission yeast, depletion of the MK2 gene, a human homologue of Srk1, either by small interfering RNA or an MK2 inhibitor suppresses Vpr-induced cell cycle G2 arrest in mammalian cells. Collectively, our data suggest that Vpr induces cell cycle G2 arrest at least in part through a Srk1/MK2-mediated mechanism.  相似文献   

19.
Centrioles and basal bodies are essential for a variety of cellular processes that include the recruitment of proteins to these structures for both centrosomal and ciliary function. This recruitment is compromised when centriole/basal body assembly is defective. Mutations that cause basal body assembly defects confer supersensitivity to Taxol. These include bld2, bld10, bld12, uni3, vfl1, vfl2, and vfl3. Flagellar motility mutants do not confer sensitivity with the exception of mutations in the p60 (pf19) and p80 (pf15) subunits of the microtubule severing protein katanin. We have identified additional pf15 and bld2 (ε-tubulin) alleles in screens for Taxol sensitivity. Null pf15 and bld2 alleles are viable and are not essential genes in Chlamydomonas. Analysis of double mutant strains with the pf15-3 and bld2-6 null alleles suggests that basal bodies in Chlamydomonas may recruit additional proteins beyond katanin that affect spindle microtubule stability. The bld2-5 allele is a hypomorphic allele and its phenotype is modulated by nutritional cues. Basal bodies in bld2-5 cells are missing proximal ends. The basal body mutants show aberrant localization of an epitope-tagged p80 subunit of katanin. Unlike IFT proteins, katanin p80 does not localize to the transition fibers of the basal bodies based on an analysis of the uni1 mutant as well as the lack of colocalization of katanin p80 with IFT74. We suggest that the triplet microtubules are likely to play a key role in katanin p80 recruitment to the basal body of Chlamydomonas rather than the transition fibers that are needed for IFT localization.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号