首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
GluA1 (formerly GluR1) AMPA receptor subunit phosphorylation at Ser-831 is an early biochemical marker for long-term potentiation and learning. This site is a substrate for Ca(2+)/calmodulin (CaM)-dependent protein kinase II (CaMKII) and protein kinase C (PKC). By directing PKC to GluA1, A-kinase anchoring protein 79 (AKAP79) facilitates Ser-831 phosphorylation and makes PKC a more potent regulator of GluA1 than CaMKII. PKC and CaM bind to residues 31-52 of AKAP79 in a competitive manner. Here, we demonstrate that common CaMKII inhibitors alter PKC and CaM interactions with AKAP79(31-52). Most notably, the classical CaMKII inhibitors KN-93 and KN-62 potently enhanced the association of CaM to AKAP79(31-52) in the absence (apoCaM) but not the presence of Ca(2+). In contrast, apoCaM association to AKAP79(31-52) was unaffected by the control compound KN-92 or a mechanistically distinct CaMKII inhibitor (CaMKIINtide). In vitro studies demonstrated that KN-62 and KN-93, but not the other compounds, led to apoCaM-dependent displacement of PKC from AKAP79(31-52). In the absence of CaMKII activation, complementary cellular studies revealed that KN-62 and KN-93, but not KN-92 or CaMKIINtide, inhibited PKC-mediated phosphorylation of GluA1 in hippocampal neurons as well as AKAP79-dependent PKC-mediated augmentation of recombinant GluA1 currents. Buffering cellular CaM attenuated the ability of KN-62 and KN-93 to inhibit AKAP79-anchored PKC regulation of GluA1. Therefore, by favoring apoCaM binding to AKAP79, KN-62 and KN-93 derail the ability of AKAP79 to efficiently recruit PKC for regulation of GluA1. Thus, AKAP79 endows PKC with a pharmacological profile that overlaps with CaMKII.  相似文献   

2.
Dehydroepiandrosterone (DHEA) is one of the most abundant neurosteroids synthesized de novo in the CNS. We here found that sigma-1 receptor stimulation by DHEA improves cognitive function through phosphorylation of synaptic proteins in olfactory bulbectomized (OBX) mouse hippocampus. We have previously reported that calcium/calmodulin-dependent protein kinase II (CaMKII), protein kinase C (PKC) and extracellular signal-regulated kinase (ERK) were impaired in OBX mouse hippocampus. OBX mice were administered once a day for 7-8 days with DHEA (30 or 60 mg/kg p.o.) 10 days after operation. The spatial, cognitive and conditioned fear memories in OBX mice were significantly improved as assessed by Y-maze, novel object recognition and passive avoidance task, respectively. DHEA also improved impaired hippocampal long-term potentiation in OBX mice. Notably, DHEA treatment restored PKCα (Ser-657) autophosphorylation and NR1 (Ser-896) and myristoylated alanine-rich protein kinase C substrate (Ser-152/156) phosphorylation to the control levels in the hippocampal CA1 region. Likewise, DHEA treatment improved CaMKIIα (Thr-286) autophosphorylation and GluR1 (Ser-831) phosphorylation to the control levels in the CA1 region. Furthermore, DHEA treatment improved ERK and cAMP-responsive element-binding protein (Ser-133) phosphorylation to the control levels. Finally, NE-100, sigma-1 receptor antagonist, significantly inhibited the DHEA-induced improvement of memory-related behaviors and CaMKII, PKC and ERK phosphorylation in CA1 region. Taken together, sigma-1 receptor stimulation by DHEA ameliorates OBX-induced impairment in memory-related behaviors and long-term potentiation in the hippocampal CA1 region through activation of CaMKII, PKC and ERK.  相似文献   

3.
Olfactory bulbectomized (OBX) mice showed significant impairment of learning and memory-related behaviors 14 days after olfactory bulbectomy, as measured by passive avoidance and Y-maze tasks. We here observed a large impairment of hippocampal long-term potentiation (LTP) in the OBX mice. Concomitant with decreased acetylcholinesterase expression, protein kinase C (PKC)alpha autophosphorylation and NR1(Ser-896) phosphorylation significantly decreased in the hippocampal CA1 region of OBX mice. Both PKCalpha and NR1(Ser-896) phosphorylation significantly increased following LTP in the control mice, whereas increases were not observed in OBX mice. Like PKC activities, calcium/calmodulin-dependent protein kinase II (CaMKII) autophosphorylation significantly decreased in the hippocampal CA1 region of OBX mice as compared with that of control mice. In addition, increased CaMKII autophosphorylation following LTP was not observed in OBX mice. Finally, the impairment of CaMKII autophosphorylation was closely associated with reduced pGluR1(Ser-831) phosphorylation, without change in synapsin I (site 3) phosphorylation in the hippocampal CA1 region of OBX mice. Taken together, in OBX mice NMDA receptor hypofunction, possibly through decreased PKCalpha activity, underlies decreased CaMKII activity in the post-synaptic regions, thereby impairing LTP induction in the hippocampal CA1 region. Both decreased PKC and CaMKII activities with concomitant LTP impairment account for the learning disability observed in OBX mice.  相似文献   

4.
Synapse-associated protein 97 (SAP97) has been involved in the correct delivery and clustering of glutamate ionotropic receptors to the postsynaptic compartment. Here we demonstrate that synaptic trafficking of SAP97 itself was modulated by calcium/calmodulin-dependent protein kinase II (CaMKII) in cultured hippocampal neurons. CaMKII activation led to increased targeting of SAP97 into dendritic spines, whereas CaMKII inhibition was responsible for SAP97 high colocalization in the cell soma with the endoplasmic reticulum protein disulfide-isomerase. No effect was detected for other members of the membrane-associated guanylate kinase protein family, such as SAP102 and PSD-95. Transfection of activated alphaCaMKII T286D dramatically increased concentration of both endogenous and transfected SAP97 at postsynaptic terminals. In vitro CaMKII phosphorylation of the SAP97 N-terminal fusion protein and metabolic labeling of transfected COS7 cells indicated SAP97-Ser-39 as a CaMKII phosphosite in the SAP97 protein sequence. Moreover, transfection in hippocampal neurons of SAP97 mutants that blocked or mimicked Ser-39 phosphorylation had effects similar to those observed upon inhibiting or constitutively activating CaMKII. Further, CaMKII-dependent SAP97-Ser-39 phosphorylation determined a redistribution of the glutamate receptor subunit (GluR1) of the AMPA receptor. In conclusion, our data show that CaMKII-dependent SAP97-Ser-39 phosphorylation regulates the association of SAP97 with the postsynaptic complex, thus providing a fine molecular mechanism responsible for the synaptic delivery of SAP97 interacting proteins, i.e. ionotropic glutamate receptor subunits.  相似文献   

5.
1. Changes in the phosphorylation state of AMPA-type glutamate receptors are thought to underlie activity-dependent synaptic modification. It has been established that the GluR1 subunit is phosphorylated on two distinct sites, Ser-831 and Ser-845, by CaMKII and by PKA, respectively, and that phosphorylation by either kinase correlates with an increase in the AMPA receptor-mediated current. GluR1 is concentrated in postsynaptic densities and it is expected that this particular receptor pool is involved in synaptic modification. The present study describes the regulation of the phosphorylation state of GluR1 in isolated postsynaptic densities.2. Addition of Ca2+/calmodulin to the postsynaptic density fraction promotes phosphorylation of GluR1, and under these conditions, dephosphorylation is prevented by the inclusion of phosphatase type 1 inhibitors, microcystin-LR and Inhibitor-1. CaMKII and phosphatase type 1 are also found to be enriched in the PSD fraction compared to the parent fractions.3. On the other hand, the addition of cAMP, either by itself or with exogenous PKA, does not change the phosphorylation state of GluR1. Prior incubation of PSDs under dephosphorylating conditions results in only a small PKA-mediated phosphorylation of GluR1.4. These results support the hypothesis that PSDs contain the molecular machinery to promote the phosphorylation as well as the dephosphorylation of GluR1 on Ser-831, while Ser-845, the site phosphorylated by PKA, appears to be mostly occluded. Thus, it is possible that a large pool of PSD-associated GluR1 is regulated through modification of the phosphorylation state of the Ser-831 site only.  相似文献   

6.
The densin C-terminal domain can target Ca(2+)/calmodulin-dependent protein kinase IIα (CaMKIIα) in cells. Although the C-terminal domain selectively binds CaMKIIα in vitro, full-length densin associates with CaMKIIα or CaMKIIβ in brain extracts and in transfected HEK293 cells. This interaction requires a second central CaMKII binding site, the densin-IN domain, and an "open" activated CaMKII conformation caused by Ca(2+)/calmodulin binding, autophosphorylation at Thr-286/287, or mutation of Thr-286/287 to Asp. Mutations in the densin-IN domain (L815E) or in the CaMKIIα/β catalytic domain (I205/206K) disrupt the interaction. The amino acid sequence of the densin-IN domain is similar to the CaMKII inhibitor protein, CaMKIIN, and a CaMKIIN peptide competitively blocks CaMKII binding to densin. CaMKII is inhibited by both CaMKIIN and the densin-IN domain, but the inhibition by densin is substrate-selective. Phosphorylation of a model peptide substrate, syntide-2, or of Ser-831 in AMPA receptor GluA1 subunits is fully inhibited by densin. However, CaMKII phosphorylation of Ser-1303 in NMDA receptor GluN2B subunits is not effectively inhibited by densin in vitro or in intact cells. Thus, densin can target multiple CaMKII isoforms to differentially modulate phosphorylation of physiologically relevant downstream targets.  相似文献   

7.
Ionotropic glutamate receptors mediate the majority of excitatory synaptic transmission in the brain and are thought to be involved in learning and memory formation. The activity of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA)-type glutamate receptors can be regulated by direct phosphorylation of their subunits, which affects the electrophysiological properties of the receptor, and the receptor association with numerous proteins that modulate membrane traffic and synaptic targeting of the receptor. In the present study we investigated the association of protein kinase C (PKC) gamma isoform with the GluR4 AMPA receptor subunit. PKC gamma was co-immunoprecipitated with GluR4 AMPA receptor subunit in rat cerebellum and in cultured chick retina cell extracts, and immunocytochemistry experiments showed co-localization of GluR4 and PKC gamma in cultured chick retinal neurons. Pull-down assays showed that native PKC gamma binds the GluR4 C-terminal membrane-proximal region, and recombinant PKC gamma was retained by GST-GluR4 C-terminal fusion protein, suggesting that the kinase binds directly to GluR4. Furthermore, GST-GluR4 C-terminal protein was phosphorylated on GluR4 Ser-482 by bound kinases, retained by the fusion protein, including PKC gamma. The GluR4 C-terminal segment that interacts with PKC gamma, which lacks the PKC phosphorylation sites, inhibited histone H1 phosphorylation by PKC, to the same extent as the PKC pseudosubstrate peptide 19-31, indicating that PKC gamma bound to GluR4 preferentially phosphorylates GluR4 to the detriment of other substrates. Additionally, PKC gamma expression in GluR4 transfected human embryonic kidney 293T cells increased the amount of plasma membrane-associated GluR4. Our results suggest that PKC gamma binds directly to GluR4, thereby modulating the function of GluR4-containing AMPA receptors.  相似文献   

8.
Calcium/calmodulin-dependent protein kinase II (CaMKII), a major component of the postsynaptic density (PSD) of excitatory synapses, plays a key role in the regulation of synaptic function in the mammalian brain. Although many postsynaptic substrates for CaMKII have been characterized in vitro, relatively little is known about their phosphorylation in vivo. By tagging synaptic proteins with a peptide substrate specific for CaMKII and expressing them in cultured neurons, we have visualized substrate phosphorylation by CaMKII at intact synapses. All substrates tested were strongly phosphorylated by CaMKII in HEK293 cells. However, activity-dependent phosphorylation of substrates at synapses was highly selective in that the glutamate receptor subunits NR2B and GluR1 were poorly phosphorylated whereas PSD-95 and Stargazin, proteins implicated in the scaffolding and trafficking of AMPA receptors, were robustly phosphorylated. Phosphatase activity limited phosphorylation of Stargazin but not NR2B and GluR1. These results suggest that the unique molecular architecture of the PSD results in highly selective substrate discrimination by CaMKII.  相似文献   

9.
Stimulation of hippocampal 5-HT(1A) receptors impairs memory retention. The highly selective 5-HT(1A) antagonist, WAY-100635, prevents the cognitive deficits induced not only by 5-HT(1A) stimulation but also by cholinergic or NMDA receptor blockade. On this basis, the effects of WAY-100635 on molecular events associated with memory storage were explored. In rat hippocampus, WAY-100635 produced a rapid increase in phosphorylated Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and in Ca(2+)-independent CaMKII and protein kinase A (PKA) enzyme activity. This increase was followed a few hours later by an enhanced membrane expression of AMPA receptor subunits, especially of the GluR1 subunit phosphorylated at the CaMKII site, pGluR1(Ser831). The same qualitative effects were found with the weaker 5-HT(1A) antagonist NAN-190. The effects of both antagonists were no longer apparent in rats with a previous 5-HT depletion induced by the tryptophan hydroxylase inhibitor p-chlorophenylalanine (PCPA), suggesting that 5-HT(1A) receptor blockade removes the tonic inhibition of 5-HT through 5-HT(1A) receptor stimulation on excitatory hippocampal neurons, with the consequent increase in PKA activity. In addition, administration of WAY-100635 potentiated the learning-specific increase in the hippocampus of phospho-CaMKII, Ca(2+)-independent CaMKII activity, as well as the phosphorylation of either the CaMKII or the PKA site on the AMPA receptor GluR1 subunit. This study suggests that blockade of hippocampal 5-HT(1A) receptors favours molecular events critically involved in memory formation, and provides an in vivo molecular basis for the proposed utility of 5-HT(1A) receptor antagonists in the treatment of cognitive disorders.  相似文献   

10.
Ba M  Kong M  Yang H  Ma G  Lu G  Chen S  Liu Z 《Neurochemical research》2006,31(11):1337-1347
Recent evidence has linked striatal amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor function to the adverse effects of long-term dopaminergic treatment in Parkinson’s disease. The phosphorylation of AMPA subunit, GluR1, reflects AMPA receptor activity. To determine whether serine phosphorylation of GluR1 subunit by activation of Ca2+/calmodulin-dependent protein kinase II (CaMKII) contributes to the process, we examined the effects of unilateral nigrostriatal depletion with 6-hydroxydopamine and subsequent l-dopa treatment on motor responses and phosphorylation states. Three weeks of l-dopa administration to rats shortened the duration of the rotational response. We found a significant reduction in the abundance of both phosphorylated GluR1 at serine-831 site (pGluR1S831) and GluR1 in the cell plasma membrane of lesioned striatum. Chronic treatment of lesioned rats with l-dopa markedly upregulated the phosphorylation of GluR1 in lesioned striatum with a concomitant normalization of the plasma membrane GluR1 abundance, which lasted at least 1 day after withdrawal of chronic l-dopa treatment. Our immunostaining data showed that these changes were confined to parvalbumin-positive neurons where GluR1 subunits are exclusively expressed. Both the altered motor response duration and the degree of pGluR1S831 were attenuated by the intrastriatal administration of CaMKII inhibitor KN-93. These findings suggest that activation of CaMKII contributes to both development and maintenance of motor response duration alterations, through a mechanism that involves an increase in pGluR1S831 within parvalbumin-positive neurons.Maowen Ba and Min Kong are contributed equally to this work.  相似文献   

11.
We have studied the regulation of AMPA (alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid) receptor channels by serotonin signaling in pyramidal neurons of prefrontal cortex (PFC). Application of serotonin reduced the amplitude of AMPA-evoked currents, an effect mimicked by 5-HT(1A) receptor agonists and blocked by 5-HT(1A) antagonists, indicating the mediation by 5-HT(1A) receptors. The serotonergic modulation of AMPA receptor currents was blocked by protein kinase A (PKA) activators and occluded by PKA inhibitors. Inhibiting the catalytic activity of protein phosphatase 1 (PP1) also eliminated the effect of serotonin on AMPA currents. Furthermore, the serotonergic modulation of AMPA currents was occluded by application of the Ca(2+)/calmodulin-dependent kinase II (CaMKII) inhibitors and blocked by intracellular injection of calmodulin or recombinant CaMKII. Application of serotonin or 5-HT(1A) agonists to PFC slices reduced CaMKII activity and the phosphorylation of AMPA receptor subunit GluR1 at the CaMKII site in a PP1-dependent manner. We concluded that serotonin, by activating 5-HT(1A) receptors, suppress glutamatergic signaling through the inhibition of CaMKII, which is achieved by the inhibition of PKA and ensuing activation of PP1. This modulation demonstrates the critical role of CaMKII in serotonergic regulation of PFC neuronal activity, which may explain the neuropsychiatric behavioral phenotypes seen in CaMKII knockout mice.  相似文献   

12.
The enhanced AMPA receptor phosphorylation at GluA1 serine 831 sites in the central pain-modulating system plays a pivotal role in descending pain facilitation after inflammation, but the underlying mechanisms remain unclear. We show here that, in the rat brain stem, in the nucleus raphe magnus, which is a critical relay in the descending pain-modulating system of the brain, persistent inflammatory pain induced by complete Freund adjuvant (CFA) can enhance AMPA receptor-mediated excitatory postsynaptic currents and the GluA2-lacking AMPA receptor-mediated rectification index. Western blot analysis showed an increase in GluA1 phosphorylation at Ser-831 but not at Ser-845. This was accompanied by an increase in distribution of the synaptic GluA1 subunit. In parallel, the level of histone H3 acetylation at bdnf gene promoter regions was reduced significantly 3 days after CFA injection, as indicated by ChIP assays. This was correlated with an increase in BDNF mRNA levels and BDNF protein levels. Sequestering endogenous extracellular BDNF with TrkB-IgG in the nucleus raphe magnus decreased AMPA receptor-mediated synaptic transmission and GluA1 phosphorylation at Ser-831 3 days after CFA injection. Under the same conditions, blockade of TrkB receptor functions, phospholipase C, or PKC impaired GluA1 phosphorylation at Ser-831 and decreased excitatory postsynaptic currents mediated by GluA2-lacking AMPA receptors. Taken together, these results suggest that epigenetic up-regulation of BDNF by peripheral inflammation induces GluR1 phosphorylation at Ser-831 sites through activation of the phospholipase C-PKC signaling cascade, leading to the trafficking of GluA1 to pain-modulating neuronal synapses.  相似文献   

13.
AMPA receptors mediate fast excitatory synaptic transmission in the brain, and are dynamically regulated by phosphorylation of multiple residues within the C-terminal domain. CaMKII phosphorylates Ser831 within the AMPA receptor GluA1 subunit to increase single channel conductance, and biochemical studies show that PKC can also phosphorylate this residue. In light of the discovery of additional PKC phosphorylation sites within the GluA1 C-terminus, it remains unclear whether PKC phosphorylation of Ser831 increases GluA1 conductance in intact receptors. Here, we report that the purified, catalytic subunit of PKC significantly increases the conductance of wild-type GluA1 AMPA receptors expressed in the presence of stargazin in HEK293T cells. Furthermore, the mutation GluA1-S831A blocks the functional effect of PKC. These findings suggest that GluA1 AMPA receptor conductance can be increased by activated CaMKII or PKC, and that phosphorylation at this site provides a mechanism for channel modulation via a variety of protein signaling cascades.  相似文献   

14.
AMPA receptors mediate fast excitatory synaptic transmission in the brain, and are dynamically regulated by phosphorylation of multiple residues within the C-terminal domain. CaMKII phosphorylates Ser831 within the AMPA receptor GluA1 subunit to increase single channel conductance, and biochemical studies show that PKC can also phosphorylate this residue. In light of the discovery of additional PKC phosphorylation sites within the GluA1 C-terminus, it remains unclear whether PKC phosphorylation of Ser831 increases GluA1 conductance in intact receptors. Here, we report that the purified, catalytic subunit of PKC significantly increases the conductance of wild-type GluA1 AMPA receptors expressed in the presence of stargazin in HEK293T cells. Furthermore, the mutation GluA1-S831A blocks the functional effect of PKC. These findings suggest that GluA1 AMPA receptor conductance can be increased by activated CaMKII or PKC, and that phosphorylation at this site provides a mechanism for channel modulation via a variety of protein signaling cascades.  相似文献   

15.
Ca2+/calmodulin-dependent protein kinase II (CaMKII) promotes trafficking and activation of the GluR1 subunit of α-amino- 3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptors (AMPARs) during synaptic plasticity. GluR1 is also modulated in parallel by multiprotein complexes coordinated by synapse-associated protein 97 (SAP97) that contain A-kinase anchoring protein 79/150 (AKAP79/150), protein kinase A, and protein phosphatase 2B. Here we show that SAP97 is present in CaMKII immune complexes isolated from rodent brain as well as from HEK293 cells co-expressing CaMKIIα and SAP97. CaMKIIα phosphorylated recombinant SAP97 within immune complexes in vitro and in intact cells. Four alternative mRNA splice variants of SAP97 expressing combinations of four inserts (I2, I3, I4, I5) in the U5 region between Src homology 3 (SH3) and guanylyl kinase-like (GK) domains were identified in rat brain at postnatal day 21. CaMKIIα preferentially phosphorylated a full-length SAP97 and a glutathione S-transferase (GST) fusion protein containing the I3 and I5 inserts (SAP97-I3I5 and GST-SH3-I3I5-GK, respectively) and also specifically interacted with GST-SH3-I3I5-GK compared with GST proteins containing other naturally occurring insert combinations. AKAP79/150 also directly and specifically bound only to GST-SH3-I3I5-GK, but CaMKII phosphorylation of GST-SH3-I3I5-GK prevented this interaction. AKAP79-dependent down-regulation of GluR1 AMPAR currents was ablated by overexpression of SAP97-I2I5 (which does not bind AKAP79) or by infusion of active CaMKIIα. Collectively, the data suggest that CaMKIIα targets a specific SAP97 splice variant to disengage AKAP79/150 from regulating GluR1 AMPARs, providing new insight into protein-protein interactions and phosphorylation events that are required for normal regulation of glutamatergic synaptic transmission, learning, and memory.  相似文献   

16.
Nefiracetam is a pyrrolidine-related nootropic drug exhibiting various pharmacological actions such as cognitive-enhancing effect. We previously showed that nefiracetam potentiates NMDA-induced currents in cultured rat cortical neurons. To address questions whether nefiracetam affects NMDA receptor-dependent synaptic plasticity in the hippocampus, we assessed effects of nefiracetam on NMDA receptor-dependent long-term potentiation (LTP) by electrophysiology and LTP-induced phosphorylation of synaptic proteins by immunoblotting analysis. Nefiracetam treatment at 1-1000 nM increased the slope of fEPSPs in a dose-dependent manner. The enhancement was associated with increased phosphorylation of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptor through activation of calcium/calmodulin-dependent protein kinase II (CaMKII) without affecting synapsin I phosphorylation. In addition, nefiracetam treatment increased PKCalpha activity in a bell-shaped dose-response curve which peaked at 10 nM, thereby increasing phosphorylation of myristoylated alanine-rich protein kinase C substrate and NMDA receptor. Nefiracetam treatment did not affect protein kinase A activity. Consistent with the bell-shaped PKCalpha activation, nefiracetam treatment enhanced LTP in the rat hippocampal CA1 region with the same bell-shaped dose-response curve. Furthermore, nefiracetam-induced LTP enhancement was closely associated with CaMKII and PKCalpha activation with concomitant increases in phosphorylation of their endogenous substrates except for synapsin I. These results suggest that nefiracetam potentiates AMPA receptor-mediated fEPSPs through CaMKII activation and enhances NMDA receptor-dependent LTP through potentiation of the post-synaptic CaMKII and protein kinase C activities. Together with potentiation of nicotinic acetylcholine receptor function, nefiracetam-enhanced AMPA and NMDA receptor functions likely contribute to improvement of cognitive function.  相似文献   

17.
Wang Y  Mu X  Wu J  Wu A  Fang L  Li J  Yue Y 《Neurochemical research》2011,36(1):170-176

Previous studies have demonstrated that the enhanced levels of phosphorylated α-amino-3-hydroxy-5-methy-4-isoxazole propionate (AMPA) receptor GluR1 subunits at Serine-831 (pGluR1-Ser-831) and Serine-845 (pGluR1-Ser-845) in the spinal cord dorsal horn are involved in central sensitization of inflammatory pain. However, whether the phosphorylatory regulation of AMPA receptor GluR1 subunits is implicated in the development and maintenance of post-operative pain remains unclear. The current study aims to examine the functional regulation of AMPA receptor GluR1 subunit through its phosphorylation mechanism during the period of post-operative painful events in rats. Our data indicated that the expression of pGluR1-Ser-831 in ipsilateral spinal cord dorsal horn increased significantly at 3 h after incision, then decreased gradually, and returned to the normal level 3 day post-incision. Meanwhile, the expression of pGluR1-Ser-845 and GluR1 in ipsilateral spinal cord dorsal horn remained unchanged. The cumulative pain scores increased at 3 h after incision, gradually decreased afterwards and returned to the baseline values at 4 day after incision and the trend was almost parallel to the expression changes of pGluR1-Ser-831 in spinal dorsal horn. Intrathecal injection of a calcium-dependent protein kinase (PKC) inhibitor, Gö6983 (10 μM), significantly reversed the incision-mediated over-expression of pGluR1-Ser-831 in spinal dorsal horn at 3 h after incision and decreased the cumulative pain scores as well. These results indicate that the phosphorylation of GluR1 subunits at Serine-831 and Serine-845 sites might be differentially regulated following surgical procedures and support a neurobiological mechanism of post-operative pain involved in phosphorylation of AMPA subunits GluR1-Ser-831, but not pGluR1-Ser-845. Our study suggests that the therapeutic targeting the phosphorylation regulation of AMPA receptor GluR1 subunit at Serine-831 site would be potentially significant for treating postoperative pain.

  相似文献   

18.
Protein kinase D (PKD) regulates cardiac myocyte growth and contractility through phosphorylation of proteins such as class IIa histone deacetylases (HDACs) and troponin I (TnI). In response to agonists that activate G-protein-coupled receptors (GPCRs), PKD is phosphorylated by protein kinase C (PKC) on two serine residues (Ser-738 and Ser-742 in human PKD1) within an activation loop of the catalytic domain, resulting in stimulation of PKD activity. Here, we identify a novel PKC target site located adjacent to the auto-inhibitory pleckstrin homology (PH) domain in PKD. This site (Ser-412 in human PKD1) is conserved in each of the three PKD family members and is efficiently phosphorylated by multiple PKC isozymes in vitro. Employing a novel anti-phospho-Ser-412-specific antibody, we demonstrate that this site in PKD is rapidly phosphorylated in primary cardiac myocytes exposed to hypertrophic agonists, including norepinephrine (NE) and endothelin-1 (ET-1). Differential sensitivity of this event to pharmacological inhibitors of PKC, and data from in vitro enzymatic assays, suggest a predominant role for PKCδ in the control of PKD Ser-412 phosphorylation. Together, these data suggest a novel, signal-dependent mechanism for controlling PKD function in cardiac myocytes.  相似文献   

19.
Regulation of neuronal NMDA receptor (NMDAR) is critical in synaptic transmission and plasticity. Protein kinase C (PKC) promotes NMDAR trafficking to the cell surface via interaction with NMDAR-associated proteins (NAPs). Little is known, however, about the NAPs that are critical to PKC-induced NMDAR trafficking. Here, we showed that calcium/calmodulin-dependent protein kinase II (CaMKII) could be a NAP that mediates the potentiation of NMDAR trafficking by PKC. PKC activation promoted the level of autophosphorylated CaMKII and increased association with NMDARs, accompanied by functional NMDAR insertion, at postsynaptic sites. This potentiation, along with PKC-induced long term potentiation of the AMPA receptor-mediated response, was abolished by CaMKII antagonist or by disturbing the interaction between CaMKII and NR2A or NR2B. Further mutual occlusion experiments demonstrated that PKC and CaMKII share a common signaling pathway in the potentiation of NMDAR trafficking and long-term potentiation (LTP) induction. Our results revealed that PKC promotes NMDA receptor trafficking and induces synaptic plasticity through indirectly triggering CaMKII autophosphorylation and subsequent increased association with NMDARs.  相似文献   

20.
The regulation of the multifunctional calcium/calmodulin dependent protein kinase II (CaMKII) by serine/threonine protein phosphatases has been extensively studied in neuronal cells; however, this regulation has not been investigated previously in fibroblasts. We cloned a cDNA from SV40-transformed human fibroblasts that shares 80% homology to a rat calcium/calmodulin-dependent protein kinase phosphatase that encodes a PPM1F protein. By using extracts from transfected cells, PPM1F, but not a mutant (R326A) in the conserved catalytic domain, was found to dephosphorylate in vitro a peptide corresponding to the auto-inhibitory region of CaMKII. Further analyses demonstrated that PPM1F specifically dephosphorylates the phospho-Thr-286 in autophosphorylated CaMKII substrate and thus deactivates the CaMKII in vitro. Coimmunoprecipitation of CaMKII with PPM1F indicates that the two proteins can interact intracellularly. Binding of PPM1F to CaMKII involves multiple regions and is not dependent on intact phosphatase activity. Furthermore, overexpression of PPM1F in fibroblasts caused a reduction in the CaMKII-specific phosphorylation of the known substrate vimentin(Ser-82) following induction of the endogenous CaM kinase. These results identify PPM1F as a CaM kinase phosphatase within fibroblasts, although it may have additional functions intracellularly since it has been presented elsewhere as POPX2 and hFEM-2. We conclude that PPM1F, possibly together with the other previously described protein phosphatases PP1 and PP2A, can regulate the activity of CaMKII. Moreover, because PPM1F dephosphorylates the critical autophosphorylation site of CaMKII, we propose that this phosphatase plays a key role in the regulation of the kinase intracellularly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号