首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cardiotoxicity of doxorubicin limits its clinical use in the treatment of a variety of malignancies. Previous studies suggest that doxorubicin-associated cardiotoxicity is mediated by reactive oxygen species (ROS)-induced apoptosis. We therefore investigated if baicalein, a natural antioxidant component of Scutellaria baicalensis, could attenuate ROS generation and cell death induced by doxorubicin. Using an established chick cardiomyocyte model, doxorubicin (10 μM) increased cell death in a concentration- and time-dependent manner. ROS generation was increased in a dose-response fashion and associated with loss of mitochondrial membrane potential. Doxorubicin also augmented DNA fragmentation and increased the phosphorylation of ROS-sensitive pro-apoptotic kinase c-Jun N-terminal kinase (JNK). Adjunct treatment of baicalein (25 μM) and doxorubicin for 24 h significantly reduced both ROS generation (587 ± 89 a.u. vs. 932 a.u. ± 121 a.u., P < 0.01) and cell death (30.6 ± 5.1% vs. 46.8 ± 8.3%, P < 0.01). The dissipated mitochondrial potential and increased DNA fragmentation were also ameliorated. Along with the reduction of ROS and apoptosis, baicalein attenuated phosphorylation of JNK induced by doxorubicin (1.7 ± 0.3 vs. 3.0 ± 0.4-fold, P < 0.05). Co-treatment of cardiomyocytes with doxorubicin and JNK inhibitor SP600125 (10 μM; 24 h) reduced JNK phosphorylation and enhanced cell survival, suggesting that the baicalein protection against doxorubicin cardiotoxicity was mediated by JNK activation. Importantly, concurrent baicalein treatment did not interfere with the anti-proliferative effects of doxorubicin in human breast cancer MCF-7 cells. In conclusion, baicalein adjunct treatment confers anti-apoptotic protection against doxorubicin-induced cardiotoxicity without compromising its anti-cancer efficacy.  相似文献   

2.
Although ischemia-reperfusion (I/R) can initiate apoptosis, the timing and contribution of the mitochondrial/cytochrome c apoptosis death pathway to I/R injury is unclear. We studied the timing of cytochrome c release during I/R and whether subsequent caspase activation contributes to reperfusion injury in confluent chick cardiomyocytes. One-hour simulated ischemia followed by 3-h reperfusion resulted in significant cell death, with most cell death evident during the reperfusion phase and demonstrating mitochondrial cytochrome c release within 5 min after reperfusion. By contrast, cells exposed to prolonged ischemia for 4 h had only marginally increased cell death and no detectable cytochrome c release into the cytosol. Caspase activation could not be detected after ischemia only, but it significantly increased after reperfusion. Caspase inhibitors benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone, Ac-Asp-Gln-Thr-Asp-H, or benzyloxycarbonyl-Leu-Glu (Ome)-His-Asp-(Ome)-fluoromethyl ketone given only at reperfusion significantly attenuated cell death and resulted in return of contraction. Antixoxidants decreased cytochrome c release, nuclear condensation, and cell death. These results suggest that reperfusion oxidants initiate cytochrome c release within minutes, and apoptosis within hours, significant enough to increase cell death and contractile dysfunction.  相似文献   

3.
Ischemia-reperfusion injury induces oxidant stress, and the burst of reactive oxygen species (ROS) production after reperfusion of ischemic myocardium is sufficient to induce cell death. Mitochondrial oxidant production may begin during ischemia prior to reperfusion because reducing equivalents accumulate and promote superoxide production. We utilized a ratiometric redox-sensitive protein sensor (heat shock protein 33 fluorescence resonance energy transfer (HSP-FRET)) to assess oxidant stress in cardiomyocytes during simulated ischemia. HSP-FRET consists of the cyan and yellow fluorescent protein fluorophores linked by the cysteine-containing regulatory domain from bacterial HSP-33. During ischemia, ROS-mediated oxidation of HSP-FRET was observed, along with a decrease in cellular reduced glutathione levels. These findings were corroborated by measurements using redox-sensitive green fluorescent protein, another protein thiol ratiometric sensor, which became 93% oxidized by the end of simulated ischemia. However, cell death did not occur during ischemia, indicating that this oxidant stress is not sufficient to induce death before reperfusion. However, interventions that attenuate ischemic oxidant stress, including antioxidants or scavengers of residual O(2) that attenuate/prevent ROS generation during ischemia, abrogated cell death during simulated reperfusion. These findings reveal that, in isolated cardiomyocytes, sublethal H(2)O(2) generation during simulated ischemia regulates cell death during simulated reperfusion, which is mediated by the reperfusion oxidant burst.  相似文献   

4.
To clarify the relationship between reactive oxygen species (ROS) and cell death during ischemia-reperfusion (I/R), we studied cell death mechanisms in a cellular model of I/R. Oxidant stress during simulated ischemia was detected in the mitochondrial matrix using mito-roGFP, a ratiometric redox sensor, and by Mito-Sox Red oxidation. Reperfusion-induced death was attenuated by over-expression of Mn-superoxide dismutase (Mn-SOD) or mitochondrial phospholipid hydroperoxide glutathione peroxidase (mito-PHGPx), but not by catalase, mitochondria-targeted catalase, or Cu,Zn-SOD. Protection was also conferred by chemically distinct antioxidant compounds, and mito-roGFP oxidation was attenuated by NAC, or by scavenging of residual O2 during the ischemia (anoxic ischemia). Mitochondrial permeability transition pore (mPTP) oscillation/opening was monitored by real-time imaging of mitochondrial calcein fluorescence. Oxidant stress caused release of calcein to the cytosol during ischemia, a response that was inhibited by chemically diverse antioxidants, anoxia, or over-expression of Mn-SOD or mito-PHGPx. These findings suggest that mitochondrial oxidant stress causes oscillation of the mPTP prior to reperfusion. Cytochrome c release from mitochondria to the cytosol was not detected until after reperfusion, and was inhibited by anoxic ischemia or antioxidant administration during ischemia. Although DNA fragmentation was detected after I/R, no evidence of Bax activation was detected. Over-expression of the anti-apoptotic protein Bcl-XL in cardiomyocytes did not confer protection against I/R-induced cell death. Moreover, murine embryonic fibroblasts with genetic depletion of Bax and Bak, or over-expression of Bcl-XL, failed to show protection against I/R. These findings indicate that mitochondrial ROS during ischemia triggers mPTP activation, mitochondrial depolarization, and cell death during reperfusion through a Bax/Bak-independent cell death pathway. Therefore, mitochondrial apoptosis appears to represent a redundant death pathway in this model of simulated I/R. This article is part of a Special Issue entitled: Mitochondria and Cardioprotection.  相似文献   

5.
Ischemia-reperfusion injury induces cell death, but the responsible mechanisms are not understood. This study examined mitochondrial depolarization and cell death during ischemia and reperfusion. Contracting cardiomyocytes were subjected to 60-min ischemia followed by 3-h reperfusion. Mitochondrial membrane potential (DeltaPsi(m)) was assessed with tetramethylrhodamine methyl ester. During ischemia, DeltaPsi(m) decreased to 24 +/- 5.5% of baseline, but no recovery was evident during reperfusion. Cell death assessed by Sytox Green was minimal during ischemia but averaged 66 +/- 7% after 3-h reperfusion. Cyclosporin A, an inhibitor of mitochondrial permeability transition, was not protective. However, pharmacological antioxidants attenuated the fall in DeltaPsi(m) during ischemia and cell death after reperfusion and decreased lipid peroxidation as assessed with C11-BODIPY. Cell death was also attenuated when residual O(2) was scavenged from the perfusate, creating anoxic ischemia. These results suggested that reactive oxygen species (ROS) were important for the decrease in DeltaPsi(m) during ischemia. Finally, 143B-rho(0) osteosarcoma cells lacking a mitochondrial electron transport chain failed to demonstrate a depletion of DeltaPsi(m) during ischemia and were significantly protected against cell death during reperfusion. Collectively, these studies identify a central role for mitochondrial ROS generation during ischemia in the mitochondrial depolarization and subsequent cell death induced by ischemia and reperfusion in this model.  相似文献   

6.
Apoptosis of cardiomyocytes following ischemia and Apoptosis of cardiomyocytes following ischemia and known about the mechanism by which it is induced. Recently, essential roles of a Cl- channel whose activity triggers the apoptotic volume decrease and of reactive oxygen species (ROS) in activation of this channel have been identified in mitochondrion-mediated apoptosis. Therefore, in this study, involvement of Cl- channels and ROS in apoptosis was studied in primary mouse cardiomyocyte cultures subjected to ischemia-reperfusion. Apoptotic cell death as measured by caspase-3 activation, chromatin condensation, DNA laddering, and cell viability reduction was observed tens of hours after reperfusion but never immediately after ischemia. A non-selective Cl-channel blocker (DIDS or NPPB) rescued cells from apoptotic death when applied during the reperfusion, but not ischemia, period. Another blocker relatively specific to the volume-sensitive outwardly rectifying (VSOR) Cl-channel (phloretin) was also effective in protecting ischemic cardiomyocytes from apoptosis induced by reperfusion. A profound increase in intracellular ROS was detected in cardiomyocytes during the reperfusion, but not ischemia, period. Scavengers for ROS, H2O2 and superoxide all inhibited apoptosis induced by ischemia-reperfusion. Thus, it is concluded that the mechanism by which cardiomyocyte apoptosis is induced by ischemia-reperfusion involves VSOR Cl- channel activity and intracellular ROS production.  相似文献   

7.

Background

Recent work by our laboratory and others has implicated NADPH oxidase as having an important role in reactive oxygen species (ROS) generation and neuronal damage following cerebral ischemia, although the mechanisms controlling NADPH oxidase in the brain remain poorly understood. The purpose of the current study was to examine the regulatory and functional role of the Rho GTPase, Rac1 in NADPH oxidase activation, ROS generation and neuronal cell death/cognitive dysfunction following global cerebral ischemia in the male rat.

Methodology/Principal Findings

Our studies revealed that NADPH oxidase activity and superoxide (O2 ) production in the hippocampal CA1 region increased rapidly after cerebral ischemia to reach a peak at 3 h post-reperfusion, followed by a fall in levels by 24 h post-reperfusion. Administration of a Rac GTPase inhibitor (NSC23766) 15 min before cerebral ischemia significantly attenuated NADPH oxidase activation and O2 production at 3 h after stroke as compared to vehicle-treated controls. NSC23766 also attenuated “in situ” O2 production in the hippocampus after ischemia/reperfusion, as determined by fluorescent oxidized hydroethidine staining. Oxidative stress damage in the hippocampal CA1 after ischemia/reperfusion was also significantly attenuated by NSC23766 treatment, as evidenced by a marked attenuation of immunostaining for the oxidative stress damage markers, 4-HNE, 8-OHdG and H2AX at 24 h in the hippocampal CA1 region following cerebral ischemia. In addition, Morris Water maze testing revealed that Rac GTPase inhibition after ischemic injury significantly improved hippocampal-dependent memory and cognitive spatial abilities at 7–9 d post reperfusion as compared to vehicle-treated animals.

Conclusions/Significance

The results of the study suggest that Rac1 GTPase has a critical role in mediating ischemia/reperfusion injury-induced NADPH oxidase activation, ROS generation and oxidative stress in the hippocampal CA1 region of the rat, and thus contributes significantly to neuronal degeneration and cognitive dysfunction following cerebral ischemia.  相似文献   

8.
Ischemia-reperfusion (I/R) is a condition leading to serious complications due to death of cardiac myocytes. We used the cardiomyocyte-like cell line H9c2 to study the mechanism underlying cell damage. Exposure of the cells to simulated I/R lead to their apoptosis. Over-expression of Bcl-2 and Bcl-x(L) protected the cells from apoptosis while over-expression of Bax sensitized them to programmed cell death induction. Mitochondria-targeted coenzyme Q (mitoQ) and superoxide dismutase both inhibited accumulation of reactive oxygen species (ROS) and apoptosis induction. Notably, mtDNA-deficient cells responded to I/R by decreased ROS generation and apoptosis. Using both in situ and in vivo approaches, it was found that apoptosis occurred during reperfusion following ischemia, and recovery was enhanced when hearts from mice were supplemented with mitoQ. In conclusion, I/R results in apoptosis in cultured cardiac myocytes and heart tissue largely via generation of mitochondria-derived superoxide, with ensuing apoptosis during the reperfusion phase.  相似文献   

9.
This study used an in vivo ESR spectroscopy/spin probe technique to measure directly the generation of reactive oxygen species (ROS) in the brain after cerebral ischemia-reperfusion. Transient middle cerebral artery occlusion (MCAO) was induced in rats by inserting a nylon thread into the internal carotid artery for 1 h. The in vivo generation of ROS and its location in the brain were analyzed from the enhanced ESR signal decay data of three intra-arterially injected spin probes with different membrane permeabilities. The ESR signal decay of the probe with intermediate permeability was significantly enhanced 30 min after reperfusion following MCAO, whereas no enhancement was observed with the other probes or in the control group. The enhanced in vivo signal decay was significantly suppressed by superoxide dismutase (SOD). Brain damage was barely discernible until 3 h of reperfusion, and was clearly suppressed with the probe of intermediate permeability. The antioxidant MCI-186 completely suppressed the enhanced in vivo signal decay after transient MCAO. These results clearly demonstrate that ROS are generated at the interface of the cerebrovascular cell membrane when reperfusion follows MCAO in rats, and that the ROS generated during the initial stages of transient MCAO cause brain injury.  相似文献   

10.
We postulated that anesthetic preconditioning (APC) is triggered by reactive oxygen/nitrogen species (ROS/RNS). We used the isolated guinea pig heart perfused with L-tyrosine, which reacts with ROS and RNS to form strong oxidants, principally peroxynitrite (ONOO(-)), and then forms fluorescent dityrosine. ROS scavengers superoxide dismutase, catalase, and glutathione (SCG) and NO. synthesis inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME) were given 5 min before and after sevoflurane preconditioning stimuli. Drugs were washed out before 30 min of ischemia and 120 min of reperfusion. Groups were control (nontreated ischemia control), APC (two, 2-min periods of perfusion with 0.32 +/- 0.02 mM of sevoflurane; separated by a 6-min period of perfusion without sevoflurane), SCG, APC + SCG, L-NAME, and APC + L-NAME. Effluent dityrosine at 1 min reperfusion was 56 +/- 6 (SE), 15 +/- 5, 40 +/- 5(++), 39 +/- 4(++), 35 +/- 4(++) , and 33 +/- 5(++) units ((++)P< 0.05 vs. APC), respectively; left ventricular pressure (%baseline) at 60 min of reperfusion was 30 +/- 5(++), 60 +/- 4, 35 +/- 5(++), 37 +/- 5(++), 44 +/- 4, and 47 +/- 4; and infarct size (%total heart weight) was 50 +/- 5(++), 19 +/- 2, 48 +/- 3(++), 46 +/- 4(++), 42 +/- 4(++), and 45 +/- 2(++). Thus APC is initiated by ROS as shown by improved function, reduced infarct size, and reduced dityrosine on reperfusion; protective and ROS/RNS-reducing effect of APC were attenuated when bracketed by ROS scavengers or NO* inhibition.  相似文献   

11.
Mitochondrial reactive oxygen species generation has been implicated in the pathophysiology of ischemia-reperfusion (I/R) injury; however, its exact role and its spatial-temporal relationship with inflammation are elusive. Herein we explore the spatial-temporal relationship of oxidative/nitrative stress and inflammatory response during the course of hepatic I/R and the possible therapeutic potential of mitochondrial-targeted antioxidants, using a mouse model of segmental hepatic ischemia-reperfusion injury. Hepatic I/R was characterized by early (at 2h of reperfusion) mitochondrial injury, decreased complex I activity, increased oxidant generation in the liver or liver mitochondria, and profound hepatocellular injury/dysfunction with acute proinflammatory response (TNF-α, MIP-1α/CCL3, MIP-2/CXCL2) without inflammatory cell infiltration, followed by marked neutrophil infiltration and a more pronounced secondary wave of oxidative/nitrative stress in the liver (starting from 6h of reperfusion and peaking at 24h). Mitochondrially targeted antioxidants, MitoQ or Mito-CP, dose-dependently attenuated I/R-induced liver dysfunction, the early and delayed oxidative and nitrative stress response (HNE/carbonyl adducts, malondialdehyde, 8-OHdG, and 3-nitrotyrosine formation), and mitochondrial and histopathological injury/dysfunction, as well as delayed inflammatory cell infiltration and cell death. Mitochondrially generated oxidants play a central role in triggering the deleterious cascade of events associated with hepatic I/R, which may be targeted by novel antioxidants for therapeutic advantage.  相似文献   

12.
Reactive oxygen species (ROS) contribute to ischemia-reperfusion injury of the heart. This study investigates the effects of tempol, a membrane-permeable radical scavenger on (i) the infarct size caused by regional myocardial ischemia and reperfusion of the heart in vivo (rat, rabbit) and in vitro (rat), and (ii) the cell injury caused by hydrogen peroxide (H2O2) in rat cardiac myoblasts (H9c2 cells). In the anesthetized rat, tempol reduced the infarct size caused by regional myocardial ischemia (25 min) and reperfusion (2 h) from 60 +/- 3% (control, n = 8) to 24 +/- 5% (n = 6, p < .05). In the anesthetized rabbit, tempol also attenuated the infarct size caused by myocardial ischemia (45 min) and reperfusion (2 h) from 59 +/- 3% (control, n = 6) to 39 +/- 5% (n = 5, p < .05). Regional ischemia (35 min) and reperfusion (2 h) of the isolated, buffer-perfused heart of the rat resulted in an infarct size of 54 +/- 4% (control n = 7). Reperfusion of hearts with buffer containing tempol (n = 6) caused a 37% reduction in infarct size (n = 6, p < .05). Pretreatment of rat cardiac myoblasts with tempol attenuated the impairment in mitochondrial respiration caused by H2O2 (1 mM for 4 h). Thus, the membrane-permeable radical scavenger tempol reduces myocardial infarct size in rodents.  相似文献   

13.
Abnormal mitochondrial fission and mitophagy participate in the pathogenesis of many cardiovascular diseases. Baicalein is a key active component in the roots of traditional Chinese medicinal herb Scutellaria baicalensis Georgi. It has been reported that baicalein can resist cardiotoxicity induced by several stress, but the mechanisms of baicalein operate in the protection of cardiomyocytes need to be researched further. Here we report that baicalein can promote cell survival under oxidative stress by up‐regulating the expression level of MARCH5 in cardiomyocytes. Pre‐treatment cells or mice with baicalein can stabilize the expression of MARCH5, which plays a crucial role in the regulation of mitochondrial network and mitophagy. Overexpressed MARCH5 is able to against H2O2 and ischaemia/reperfusion (I/R) stress by suppressing mitochondrial fission and enhancing mitophagy, and then attenuate cells apoptosis. Altogether, our present study investigated that baicalein exerts a protective effect through regulating KLF4‐MARCH5‐Drp1 pathway, our research also provided a novel theoretical basis for the clinical application of baicalein.  相似文献   

14.
It has been well accepted that increased reactive oxygen species (ROS) and the subsequent oxidative stress is one of the major causes of ischemia/reperfusion (I/R) injury. DJ‐1 protein, as a multifunctional intracellular protein, plays an important role in regulating cell survival and antioxidant stress. Here, we wondered whether DJ‐1 overexpression attenuates simulated ischemia/reperfusion (sI/R)‐induced oxidative stress. A rat cDNA encoding DJ‐1 was inserted into a mammalian expression vector. After introduction of this construct into H9c2 myocytes, stable clones were obtained. Western blot analysis of the derived clones showed a 2.6‐fold increase in DJ‐1 protein expressing. Subsequently, the DJ‐1 gene‐transfected and control H9c2 cells were subjected to sI/R, and then cell viability, lactate dehydrogenase, malondialdehyde, intracellular ROS and antioxidant enzymes (superoxide dismutase, catalase and glutathione peroxidase) were measured appropriately. The results showed that stable overexpression of DJ‐1 efficiently attenuated sI/R‐induced viability loss and lactate dehydrogenase leakage. Additionally, stable overexpression of DJ‐1 inhibited sI/R‐induced the elevation of ROS and MDA contents followed by the increase of antioxidant enzymes (superoxide dismutase, catalase and glutathione peroxidase) activities and expression. Our data indicate that overexpression of DJ‐1 attenuates ROS generation, enhances the cellular antioxidant capacity and prevents sI/R‐induced oxidative stress, revealing a novel mechanism of cardioprotection. Importantly, DJ‐1 overexpression may be an important part of a protective strategy against ischemia/reperfusion injury. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
Abstract

Ischemia-reperfusion (I/R) is a condition leading to serious complications due to death of cardiac myocytes. We used the cardiomyocyte-like cell line H9c2 to study the mechanism underlying cell damage. Exposure of the cells to simulated I/R lead to their apoptosis. Over-expression of Bcl-2 and Bcl-xL protected the cells from apoptosis while over-expression of Bax sensitized them to programmed cell death induction. Mitochondria-targeted coenzyme Q (mitoQ) and superoxide dismutase both inhibited accumulation of reactive oxygen species (ROS) and apoptosis induction. Notably, mtDNA-deficient cells responded to I/R by decreased ROS generation and apoptosis. Using both in situ and in vivo approaches, it was found that apoptosis occurred during reperfusion following ischemia, and recovery was enhanced when hearts from mice were supplemented with mitoQ. In conclusion, I/R results in apoptosis in cultured cardiac myocytes and heart tissue largely via generation of mitochondria-derived superoxide, with ensuing apoptosis during the reperfusion phase.  相似文献   

16.
We investigated the role of pH, reactive oxygen species (ROS), Ca2+, and the mitochondrial permeability transition (MPT) in pH-dependent ischemia-reperfusion injury to adult rat myocytes. Myocytes were incubated in anoxic Krebs-Ringer-HEPES buffer at pH 6.2 for 3 h to simulate ischemia. To simulate reperfusion, myocytes were reoxygenated at pH 6.2 or 7.4 for 2 h. Some myocytes were treated with MPT blockers (cyclosporin A and N-methyl-4-isoleucine cyclosporin) and antioxidants (desferal, diphenylphenylene diamine, and 2-mercaptopropionyl glycine). Mitochondrial membrane potential, inner membrane permeabilization, and ROS formation were imaged with tetramethylrhodamine methyl ester, calcein, and chloromethyldichlorofluorescein diacetate, respectively. For Ca2+ imaging, myocytes were coloaded with rhod-2 and fluo-4 to evaluate mitochondrial and cytosolic Ca2+, respectively. After 10 min of reperfusion at pH 7.4, calcein redistributed across the mitochondrial inner membrane, an event preceded by mitochondrial ROS formation and accompanied by hypercontracture, mitochondrial depolarization, and then cell death. Acidotic reperfusion, antioxidants, and MPT blockers each prevented the MPT, depolarization, hypercontraction, and cell killing. Antioxidants, but neither MPT blockers nor acidotic reperfusion, inhibited ROS formation after reperfusion. Furthermore, anoxic reperfusion at pH 7.4 prevented cell death. Both mitochondrial and cytosolic Ca2+ increased during ischemia but recovered in the first minutes of reperfusion. Mitochondrial and cytosolic Ca2+ overloading again occurred late after reperfusion. This late Ca2+ overloading was blocked by MPT inhibition. Intramitochondrial Ca2+ chelation by cold loading/warm incubation of BAPTA did not prevent cell death after reperfusion. In conclusion, mitochondrial ROS, together with normalization of pH, promote MPT onset and subsequent myocyte death after reperfusion. In contrast, Ca2+ overloading appears to be the consequence of bioenergetic failure after the MPT and is not a factor promoting MPT onset.  相似文献   

17.
Zinc pyrithione (ZPT), has a strong anti-apoptotic effect when administered just before reperfusion. Because oxidative stress has been proposed to contribute to myocardial reperfusion injury, we tested whether ZPT can reduce the production of reactive oxygen species during reoxygenation in cultured neonatal rat cardiac myocytes and evaluated the role of NADPH oxidase in hypoxia/reoxygenation (H/R) injury. The cells were subjected to 8 h of simulated ischemia, followed by either 30 min or 16 h of reoxygenation. ZPT when started just before reoxygenation significantly reduced superoxide generation, LDH release and improved cell survival compared to H/R. Attenuation of the ROS production by ZPT paralleled its capacity to prevent pyknotic nuclei formation. In addition, ZPT reversed the H/R-induced expression of NOX2 and p47phox phosphorylation indicating that ZPT directly protects cardiomyocytes from reperfusion injury by a mechanism that attenuates NADPH oxidase mediated intracellular oxidative stress.  相似文献   

18.
We examined the acute toxicity of dieldrin, a possible environmental risk factor of Parkinson's disease, in a dopaminergic cell model, PC12 cells, to determine early cellular events underlying the pesticide-induced degenerative processes. EC(50) for 1 h dieldrin exposure was 143 microM for PC12 cells, whereas EC(50) for non-dopaminergic cells was 292-351 microM, indicating that dieldrin is more toxic to dopaminergic cells. Dieldrin also induced rapid, dose-dependent releases of dopamine and its metabolite, DOPAC, resulting in depletion of intracellular dopamine. Additionally, dieldrin exposure caused depolarization of mitochondrial membrane potential in a dose-dependent manner. Flow cytometric analysis showed generation of reactive oxygen species (ROS) within 5 min of dieldrin treatment, and significant increases in lipid peroxidation were also detected following 1 h exposure. ROS generation was remarkably inhibited in the presence of SOD. Dieldrin-induced apoptosis was significantly attenuated by both SOD and MnTBAP (SOD mimetic), suggesting that dieldrin-induced superoxide radicals serve as important signals in initiation of apoptosis. Furthermore, pretreatment with deprenyl (MAO-inhibitor) or alpha-methyl-L-p-tyrosine (TH-inhibitor) also suppressed dieldrin-induced ROS generation and DNA fragmentation. Taken together, these results suggest that rapid release of dopamine and generation of ROS are early cellular events that may account for dieldrin-induced apoptotic cell death in dopaminergic cells.  相似文献   

19.
X Ma  H Liu  SR Foyil  RJ Godar  CJ Weinheimer  A Diwan 《Autophagy》2012,8(9):1394-1396
Accumulating evidence attests to a prosurvival role for autophagy under stress, by facilitating removal of damaged proteins and organelles and recycling basic building blocks, which can be utilized for energy generation and targeted macromolecular synthesis to shore up cellular defenses. These observations are difficult to reconcile with the dichotomous prosurvival and death-inducing roles ascribed to macroautophagy in cardiac ischemia and reperfusion injury, respectively. A careful reexamination of 'flux' through the macroautophagy pathway reveals that autophagosome clearance is markedly impaired with reperfusion (reoxygenation) in cardiomyocytes following an ischemic (hypoxic) insult, resulting from reactive oxygen species (ROS)-mediated decline in LAMP2 and increase in BECN1 abundance. This results in impaired autophagy that is 'ineffective' in protecting against cell death with ischemia-reperfusion injury. Restoration of autophagosome clearance and by inference, 'adequate' autophagy, attenuates reoxygenation-induced cell death.  相似文献   

20.
《Autophagy》2013,9(9):1394-1396
Accumulating evidence attests to a prosurvival role for autophagy under stress, by facilitating removal of damaged proteins and organelles and recycling basic building blocks, which can be utilized for energy generation and targeted macromolecular synthesis to shore up cellular defenses. These observations are difficult to reconcile with the dichotomous prosurvival and death-inducing roles ascribed to macroautophagy in cardiac ischemia and reperfusion injury, respectively. A careful reexamination of ‘flux’ through the macroautophagy pathway reveals that autophagosome clearance is markedly impaired with reperfusion (reoxygenation) in cardiomyocytes following an ischemic (hypoxic) insult, resulting from reactive oxygen species (ROS)-mediated decline in LAMP2 and increase in BECN1 abundance. This results in impaired autophagy that is ‘ineffective’ in protecting against cell death with ischemia-reperfusion injury. Restoration of autophagosome clearance and by inference, ‘adequate’ autophagy, attenuates reoxygenation-induced cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号