首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The aquatic‐to‐terrestrial shift in the life cycle of most anurans suggests that the differences between the larval and adult morphology of the nose are required for sensory function in two media with different physical characteristics. However, a better controlled test of specialization to medium is to compare adult stages of terrestrial frogs with those that remain fully aquatic as adults. The Ceratophryidae is a monophyletic group of neotropical frogs whose diversification from a common terrestrial ancestor gave rise to both terrestrial (Ceratophrys, Chacophrys) and aquatic (Lepidobatrachus) adults. So, ceratophryids represent an excellent model to analyze the morphology and possible changes related to a secondary aquatic life. We describe the histomorphology of the nose during the ontogeny of the Ceratophryidae, paying particular attention to the condition in adult stages of the recessus olfactorius (a small area of olfactory epithelium that appears to be used for aquatic olfaction) and the eminentia olfactoria (a raised ridge on the floor of the principal cavity correlated with terrestrial olfaction). The species examined (Ceratophrys cranwelli, Chacophrys pierottii, Lepidobatrachus laevis, and L. llanensis) share a common larval olfactory organ composed by the principal cavity, the vomeronasal organ and the lateral appendix. At postmetamorphic stages, ceratophryids present a common morphology of the nose with the principal, middle, and inferior cavities with characteristics similar to other neobatrachians at the end of metamorphosis. However, in advanced adult stages, Lepidobatrachus laevis presents a recessus olfactorius with a heightened (peramorphic) development and a rudimentary (paedomorphic) eminentia olfactoria. Thus, the adult nose in Lepidobatrachus laevis arises from a common developmental ‘terrestrial’ pathway up to postmetamorphic stages, when its ontogeny leads to a distinctive morphology related to the evolutionarily derived, secondarily aquatic life of adults of this lineage.  相似文献   

2.
Wang H  Zhao H  Tai F  Zhang Y 《Zoological science》2008,25(5):503-508
We studied by light microscopy the histological development of the olfactory and vomeronasal organ in tadpoles of the Chinese forest frog, Rana chensinensis, from postembryonic periods to the end of metamorphosis. Unlike Bufo americanus, the olfactory epithelium in larval R. chensinensis is not divided into dorsal and ventral branches in the rostral and mid-nasal regions. The olfactory epithelium in the dorsal portion of the buccal cavity in larval R. chensinensis may correspond to the ventral olfactory epithelium of Bufo, which has been argued to provide a chemosensory function in the tadpoles analogous to the role of taste buds in adults. Bowman's glands were present in the olfactory epithelium of R. chensinensis only after the appearance of the forelimbs during metamorphosis. The appearance of Bowman's glands in the olfactory epithelium at this time suggests that the nose first begins to detect odorants in the air, and this is thus also a metamorphic event. The vomeronasal epithelium appeared a little earlier than the vomeronasal gland in R. chensinensis, unlike in toads (bufonids). This study supports Eisthen's hypothesis that the most recent common ancestor to the tetrapods was aquatic and once had a vomeronasal organ, and that this has been lost in various evolutionary lineages.  相似文献   

3.
Abstract The vomeronasal organ in the frog, genus Rana, is composed of three interconnected cavities; superior, middle and inferior, which are separated from and anterior to the principal olfactory cavity. The superior cavity is found just underneath the external naris and forms a vestibule both for the principal olfactory organ and the vomeronasal organ. The vomeronasal sensory epithelium is located in the medial region of the inferior cavity and contains ciliated cells and microvillous receptor cells. Inspection of microscopic sections of frogs that had been swimming in fluorescent colorants revealed fluorescence on the surface of the vomeronasal organ, but not on that of the olfactory organ. Observations in vivo show that water enters via the external naris by two fissures, one on each side of the movable nasal lid, passes the middle cavity to flow via the sensory epithelium of the inferior cavity. The design of the frog nose makes it possible for this amphibious animal to sample the chemical composition of its environment; above water the frog can inhale air and expose its olfactory organ to volatile substances; in water the vomeronasal organ samples water-borne substances. These new findings are discussed in relation to the air/water interface and the position of the amphibians in the evolution of terrestrial vertebrates.  相似文献   

4.
Western blotting analysis of mouse nasal tissue using a specific anti-mouse secreted carbonic anhydrase (CA VI) antibody has shown that CA VI is present in this tissue. A single immunoreactive band of 42 kD was observed, as has been found previously for salivary tissues. RT-PCR analysis has shown that nasal mucosa expressed CA VI mRNA. By immunohistochemistry (IHC), CA VI was observed in acinar cells, in duct contents of the anterior gland of the nasal septum, and in the lateral nasal gland. The Bowman's gland, the posterior gland of the nasal septum, and the maxillary sinus gland were negative. Immunoreactivity was also observed in the mucus covering the respiratory and olfactory mucosa and in the lumen of the nasolacrimal duct. In contrast, an anti-rat CA II antibody (that crossreacts with the mouse enzyme) stained only known CA II-positive cells and an occasional olfactory receptor neuron. These results indicate that CA VI is produced by the nasal gland and is secreted over the nasal mucosa. By reversible hydration of CO(2), CA VI is presumed to play a role in mucosal functions such as CO(2) sensation and acid-base balance. It may also play a role in olfactory function as a growth factor in maturation of the olfactory epithelial cells.  相似文献   

5.
The olfactory marker protein (OMP) is expressed in mature chemosensory neurons in the nasal neuroepithelium. Here, we report the identification of a novel population of OMP-expressing neurons located bilaterally in the anterior/dorsal region of each nasal cavity at the septum. These cells are clearly separated from the regio olfactoria, harboring the olfactory sensory neurons. During mouse development, the arrangement of the anterior OMP-cells undergoes considerable change. They appear at about stage E13 and are localized in the nasal epithelium during early stages; by epithelial budding, ganglion-shaped clusters are formed in the mesenchyme during the perinatal phase, and a filiform layer directly underneath the nasal epithelium is established in adults. The anterior OMP-cells extend long axonal processes which form bundles and project towards the brain. The data suggest that the newly discovered group of OMP-cells in the anterior region of the nasal cavity may serve a distinct sensory function.  相似文献   

6.
Deposition of inhaled particulates onto the respiratory mucosa is relatively great in that portion of the nasal cavity unprotected by ciliated, goblet, or keratinized superficial cells. The cytochrome P-450 system is an important enzyme system involved in the biotransformation of xenobiotics into metabolites that are more readily absorbed. To examine the transitional region caudal to the nasal vestibule, nasal tissues of hamster and rat were prepared for immunocytochemistry. Blocks of tissue representing four levels along the long axis of the nasal cavity were examined. Paraffin sections were processed through the avidin-biotin peroxidase procedure, with diaminobenzidine tetrahydrochloride as the chromagen. Enzyme localization was accomplished through the use of antibodies for three rabbit cytochrome P-450 isozymes; 2, 5, and 6 (subfamilies IIB, IVB, and IA, respectively); and for rabbit NADPH-cytochrome P-450 reductase. Enzyme distribution was similar in both hamster and rat nasal tissues except in cells of striated and intercalated ducts of nasal glands and in cells of the nasolacrimal duct where immunoreactivity was greater in the hamster. Immunoreactivity for reductase and isozyme 2 was intense in nonciliated cells lining the nonolfactory epithelium, in sustentacular cells of the olfactory epithelium, and in acinar cells of olfactory glands. Distribution of reaction products to isozyme 5 and 6 were similar to but not so intense as those of reductase and isozyme 2. Reaction products for reductase and isozyme 2 occurred generally in the same cellular and intracellular regions with the following exceptions: isozyme 2 was more concentrated in cells of striated ducts and of the nasolacrimal duct, and reductase was more abundant in intercalated ducts of nasal glands.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
We performed a detailed analysis of mouse cytochrome P450 2A5 (CYP2A5) expression by in situ hybridization (ISH) and immunohistochemistry (IHC) in the respiratory tissues of mice. The CYP2A5 mRNA and the corresponding protein co-localized at most sites and were predominantly detected in the olfactory region, with an expression in sustentacular cells, Bowman's gland, and duct cells. In the respiratory and transitional epithelium there was no or only weak expression. The nasolacrimal duct and the excretory ducts of nasal and salivary glands displayed expression, whereas no expression occurred in the acini. There was decreasing expression along the epithelial linings of the trachea and lower respiratory tract, whereas no expression occurred in the alveoli. The hepatic CYP2A5 inducers pyrazole and phenobarbital neither changed the CYP2A5 expression pattern nor damaged the olfactory mucosa. In contrast, the olfactory toxicants dichlobenil and methimazole induced characteristic changes. The damaged Bowman's glands displayed no expression, whereas the damaged epithelium expressed the enzyme. The CYP2A5 expression pattern is in accordance with previously reported localization of protein and DNA adducts and the toxicity of some CYP2A5 substrates. This suggests that CYP2A5 is an important determinant for the susceptibility of the nasal and respiratory epithelia to protoxicants and procarcinogens.  相似文献   

8.
Frogs of the family Mantellidae are endemic to Madagascar and the Comoran island of Mayotte. Like many other animals in this biogeographical region, they have passed through millions of years of isolated evolution which led to ecological, physiological and anatomical specialization. The present study compares the intranasal anatomy of a mantellid, the Malagasy Common Marsh Frog (Mantidactylus betsileanus Boulenger, 1882) with that of the Malaysian Green Flying Frog (Rhacophorus reinwardtii Schlegel, 1840), a representative of the sister group of mantellids (the family Rhacophoridae). Histological examination revealed that the structure of the nasal cavities of M. betsileanus strongly deviates from the usual nasal morphology of anurans. In the typical condition, to which also R. reinwardtii conforms, the two parts of the nasal cavity (main chamber and accessory chambers), containing two different chemosensory systems (main olfactory organ and vomeronasal organ respectively), are connected by a slit-like longitudinal opening. In M. betsileanus, this elongated opening is almost completely reduced. Therefore, main chamber and accessory nasal chambers are markedly separated anatomically, leading to an enhanced spatial segregation of the two different organs of smell. Whether these anatomical alterations correspond to a more significant role of vomeronasal perception and might be related to the presence of characteristic pheromone-producing femoral glands in mantellid frogs requires further study.  相似文献   

9.
除单鼻型的圆口类外, 脊椎动物的左、右两侧嗅觉器官和嗅神经皆互为独立地分布于头前端, 而且它们的前鼻孔(外鼻孔)、嗅腔、嗅觉副囊腔(部分鱼具嗅觉副囊)与后鼻孔(或内鼻孔)也都互为相通, 且多呈开放状态。它们还通常具有一个体积相对较大且较稳定的嗅腔, 而嗅上皮则多位于嗅腔的一侧。此外, 鱼类的嗅囊与鼻窝之间通常也无明显间隙。然而, 运用常规的解剖学方法发现, 黄鳝(Monopterus albus)外周嗅觉系统(嗅觉器官和嗅神经)在解剖结构上已发生如下重大变化: (1)虽然具有前、后鼻孔, 但两者互不相通, 而嗅腔仅靠前鼻孔通至外界; (2)两侧嗅囊的末端及两侧嗅神经的前段均分别发生了合并。此外, 在该鱼上还发现:(1)嗅囊为一柔软而扁塌的长管囊结构, 其唯一的开口(即位于前鼻孔球上的前鼻孔)却常呈关闭状, 故此时该嗅腔实际上是一个体积被压扁到最小且暂时被封闭的空间; (2)嗅囊纵向地贴附于长鼻窝的内侧壁上, 它仅占鼻窝的一小部分空间, 故鼻窝显得相对很宽敞; (3)嗅觉副囊不与嗅腔相通, 而与鼻窝共同经后鼻孔通至外界; (4)两侧嗅囊的末端相向地穿越鼻窝内侧壁, 进入筛骨与额骨之间的“筛-额横管”, 在那里发生嗅囊合并;(5)嗅囊壁周缘几乎都内衬着嗅上皮, 且具数个褶窝(说明该嗅囊有扩张的可能)。因此, 黄鳝的这套解剖学特征不同于包括鱼类在内的所有脊椎动物的外周嗅觉系统。研究所发现的黄鳝这套形态学特征不仅为脊椎动物外周嗅觉系统的研究提供了一个独特的解剖学新模型, 同时也为动物进化研究提供了一个有关前、后鼻孔互不相通的进化特例。此外, 研究还依据上述发现提出嗅囊扩张-压缩假说以解释气味媒质进出于黄鳝这种特殊嗅腔的动力学机制。    相似文献   

10.
The vomeronasal cavity in adult humans   总被引:3,自引:0,他引:3  
We observed the surface of the anterior part of the nasal septum of living subjects using an endoscope. In approximately 13% of 1842 patients without pathology of the septum, the vomeronasal pit was clearly observed on each side of the septum, and in 26% it was observed only on one side. The remaining observations indicated either the presence of putative pits or no visible evidence of a pit. However, repetitive observations on 764 subjects depicted changes over time, from nothing visible to well-defined pits and vice versa. Based on 130 subjects observed at least four times, we estimate that approximately 73% of the population exhibits at least one clearly defined pit on some days. By computer tomography, the vomeronasal cavities were located at the base of the most anterior part of the nasal septum. Histological studies indicated that the vomeronasal cavities consisted of a pit generally connected to a duct extending in a posterior direction under the nasal mucosa. Many glands were present around the duct, which contained mucus. There was no sign of the pumping elements found in other mammalian species. Most cells in the vomeronasal epithelium expressed keratin, a protein not expressed by olfactory neurons. Vomeronasal epithelial cells were not stained by an antibody against the olfactory marker protein, a protein expressed in vomeronasal receptor neurons of other mammals. Moreover, an antibody against protein S100, expressed in Schwann cells, failed to reveal the existence of vomeronasal nerve bundles that would indicate a neural connection with the brain. Positive staining was obtained with the same antibodies on specimens of human olfactory epithelium. The lack of neurons and vomeronasal nerve bundles, together with the results of other studies, suggests that the vomeronasal epithelium, unlike in other mammals, is not a sensory organ in adult humans.  相似文献   

11.
The septal organ of Masera (SO) is a small, isolated patch of olfactory epithelium, located in the ventral part of the nasal septum. We investigated in this systematic study the postnatal development of the SO in histological sections of rats at various ages from the day of birth (P1) to P666. The SO-area increases to a maximum at P66-P105, just as the animals reach sexual maturity, and decreases thereafter, significantly however only in males, indicating a limited neurogenetic capacity for regeneration. In contrast, the main olfactory epithelium area continues to expand beyond P300. The modified respiratory epithelium ('zwischen epithelium') separating the SO and the main olfactory epithelium contains a few olfactory neurons up to age P66. Its length increases postnatally so that the SO becomes more ventral to the OE. Although the position of the SO relative to other anatomical landmarks changes with development it is consistently located just posterior to the opening of the nasopalatine duct (NPAL). Thus, a possible function of the SO is in sensing chemicals in fluids entering the mouth by licking and then delivered to the nasal cavity via the NPAL; therefore the SO may be involved in social/sexual behavior as is the vomeronasal organ (VNO). We suggest that the SO is a separate accessory olfactory organ with properties somewhat different from both OE and VNO and may exist only in species where the NPAL does not open into the VNO.  相似文献   

12.
Nearly all vertebrates possess an olfactory organ but the vomeronasal organ is a synapomorphy for tetrapods. Nevertheless, it has been lost in several groups of tetrapods, including aquatic and marine animals. The present study examines the development of the olfactory and vomeronasal organs in two terrestrial anurans that exhibit different developmental modes. This study compares the development of the olfactory and vomeronasal organs in metamorphic anurans that exhibit an aquatic larva (Bufo americanus) and directly developing anurans that have eliminated the tadpole (Eleutherodactylus coqui). The olfactory epithelium in larval B. americanus is divided into dorsal and ventral branches in the rostral and mid-nasal regions. The larval olfactory pattern in E. coqui has been eliminated. Ontogeny of the olfactory system in E. coqui embryos starts to vary substantially from the larval pattern around the time of operculum development, the temporal period when the larval stage is hypothesized to have been eliminated. The nasal anatomy of the two frogs does not appear morphologically similar until the late stages of embryogenesis in E. coqui and the terminal portion of metamorphosis in B. americanus. Both species and their respective developing offspring, aquatic tadpoles and terrestrial egg/embryos, possess a vomeronasal organ. The vomeronasal organ develops at mid-embryogenesis in E. coqui and during the middle of the larval period in B. americanus, which is relatively late for neobatrachians. Development of the vomeronasal organ in both frogs is linked to the developmental pattern of the olfactory system. This study supports the hypothesis that the most recent common ancestor of tetrapods possessed a vomeronasal organ and was aquatic, and that the vomeronasal organ was retained in the Amphibia, but lost in some other groups of tetrapods, including aquatic and marine animals.  相似文献   

13.
林蛙在中国的分布   总被引:7,自引:2,他引:5  
李昂  陆宇燕  李丕鹏 《四川动物》2005,24(3):268-270
作者收集有关我国林蛙分布的资料绘制了林蛙分布图,其中图1标明了主要分布于中国北方的中国林蛙种绀(Rana chensinensis species-group)和黑龙江林蛙种组(R.amurensis species-group)的分布,图2标明出了在亲缘关系上与日本林蛙很相近(R.jaonica)的分布于南方的长肢林蛙种组(R.longicrus species-group)的分布,图3重点标明了环渤海区域已知6种林蛙的分布。最后,作者提出环渤海区域是林蛙重要的分布中心,并对镇海林蛙(R.zhenhaiensis)和中国林蛙(R.chensinensis)的一些可疑或有争议的分布问题进行了简要讨论。  相似文献   

14.
The olfactory receptor cell is characterized by a distal process (the dendrite) which terminates in the olfactory passage as the olfactory rod. The olfactory rod is provided with numerous cilia which are similar in structure to those seen in other tissues. The central processes of the bipolar cell constitute the fila olfactoria. The cytoplasmic organelles of the sustentacular cell are concentrated at the apical and basal ends of the cell with a paucity of cytoplasmic elements in the region of the nucleus. The plasma membrane of the supporting cell forms a mesaxon for both the dendrite and axon of the bipolar cell. Terminal bars are present in the epithelial cells. The axons constituting the fila olfactoria form fascicles which are ensheathed by mesaxons of adjacent Schwann cells. Thus the olfactory neurons are ensheathed throughout their course by the membranes of sustentacular and Schwann cells. Observations of the olfactory mucosa with the electron microscope are discussed with respect to recent electrophysiological studies.  相似文献   

15.
Two specimens of Campinasuchus dinizi (CPPLIP 1319 and CPPLIP 1360) belonging to Baurusuchidae (Crocodyliformes, Notosuchia) from the Upper Cretaceous Bauru Group of Minas Gerais state (Brazil) were scanned in a Toshiba Aquilion 64 CT machine. Based on these data, it was possible to identify and reconstruct the paranasal sinuses, the nasal cavity proper, the nasopharyngeal duct, the encephalon, the paratympanic sinuses, and the semicircular canals of the inner ear. The paranasal sinuses present similar morphology to those of other mesoeucrocodylians, especially eusuchians. The nasal cavity proper occupies the entire rostral region, with an expansion in the olfactory region. The expansion in the nasal cavity is present in other notosuchians and theropod dinosaurs (e.g., Tyrannosaurus rex Osborn, 1905), but less developed in aquatic crocodilians, which may indicate an olfactory acuity related to terrestrial habits. The encephalon is similar in shape to that of other mesoeucrocodylians. The rostral semicircular canal is smaller than the caudal one, differing from most mesoeucrocodylians. The paratympanic sinuses are more developed in C. dinizi than in eusuchians, being more similar to Tyrannosaurus rex. Campinasuchus dinizi presents few variations in the internal structures of the skull in relation to taxa with different ecological niches, probably indicating that ecological factors do not strongly influence the morphology of these structures.  相似文献   

16.
Crossing experiments were made among various brown frog species and populations collected from Japan, China, Russia and Taiwan. The main purpose of these experiments was to confirm the existence of reproductive isolating mechanisms among Rana pirica from Japan, R. chensinensis from China and R. chensinensis from Russia, and between these three taxa and the other brown frogs distributed in the Palearctic and Oriental regions. It was found that there was no or a slight gametic isolation among the three taxa. While there was a nearly equal number of male and female offspring in the control groups, the hybrid frogs were all males, and completely sterile upon attaining sexual maturity. Thus, each of the Japanese R. pirica and the Russian R. chensinensis is a valid species, distinct from the Chinese R. chensinensis. The phylogenetic tree based on nucleotide sequence data from the mitochondrial 12S and 16S rRNA genes of the Palearctic and Oriental brown frogs showed that the three taxa are included in a cluster together with the other species with 2n=24 chromosomes. The present crossing experiments and molecular data support the hypothesis that each of them is a separate but closely related species.  相似文献   

17.
用光镜观察了4种两栖爬行动物嗅器和犁鼻器的组织结构.结果显示,北方山溪鲵(Batrachuperus tibetanus)鼻囊内开始分化出犁鼻器,犁鼻器位于嗅器的腹外侧,但犁鼻器还不发达;隆肛蛙(Feirana quadranus)犁鼻器与嗅器虽然共同位于鼻囊内,但犁鼻器较为发达且其周围有发达的犁鼻腺,犁鼻器通过一细小管道与嗅器相通;秦岭蝮(Gloydius qinlingensis)和菜花烙铁头(Trimeresurus jerdonii)犁鼻腔与鼻腔已经完全分离形成两个独立的囊,而且鼻腔又进一步分化为嗅部与呼吸部.说明犁鼻器从有尾两栖动物开始出现,至无尾两栖类开始分化,到蛇类高度发达且成为一个独立器官.犁鼻器的形成是脊椎动物适应陆地生活的直接结果,是四足动物的特征之一.  相似文献   

18.
19.
This study examines the dosage dependency of thyroid hormone (TH)-mediated remodelling in the cranial skeleton of the hemidactyliine plethodontid urodele, Eurycea bislineata. One set of experiments quantifies morphogenetic responses in 21 tissues for four size-age classes of larvae immersed in four different T4 concentrations. A second set varies both the period and concentration of T4 treatment to evaluate the effect of different TH profiles on adult tissue shape. The tissues surveyed in this study exhibit a 100-fold range in TH sensitivity. Those in regressive morphogenesis have tissue-specific sensitivities which correlate with the timing of their remodelling in natural development: bone resorption is more sentitive than cartilage resorption and is initiated earlier in metamorphosis. In contrast, the TH sensitivities of tissues in progressive morphogenesis vary within each tissue type and even within some tissues, and they do not correlate with timing in natural development. Some explanation for this discrepancy is offered by the constant spatial and temporal relationships between nasal cartilage and dermal bone, which suggest that some TH-mediated ossification may additionally require induction by cartilage. Also, the failure of nasolacrimal duct morphogenesis at all but the lowest dosage correlates with the inductdion of integumentary changes that may preclude duct formation. Variable T4 treatments produce no effect upon the adult skull, other than loss of the nasolacrimal duct and/or foramen. These results have two developmental implicatons. First, the dosage dependencies of the nasolacrimal duct, ossification sequences, and cranial remodelling patterns all support a TH profile with exceptionally low levels at larval stages and at least a 100-fold increase at metamorphosis. Second, a small change in the rate of TH activity has the potential to effect a large-scale rearranggement and restructuring of TH-dependent remodelling. The lack of such transformations in metamorphic plethodontids suggests that TH activity is highly conserved in this group. © 1995 Wiley-Liss, Inc.  相似文献   

20.
The first step in the olfactory perception is the activation by odorants of sensory neurones in the olfactory epithelium. In humans, this sensory epithelium is located at 2 narrow passages, the olfactory clefts, at the upper part of the nasal cavities. Little is known about the physiology of these clefts. We examined, in 34 patients, the impact of obstructed clefts upon detection and postlearning identification of 5 odorants. The location and extension of the obstructions were assessed using endoscopy, CT scans, and MRI. The inflammatory obstruction was usually bilateral, extending anteroposteriorly, and confined to the clefts, with no sign of obstruction or any inflammatory disease in the rest of the nasal cavities and sinuses. When tested with 5 odorants, these patients showed greatly impaired olfaction compared with a group of 73 normosmic subjects. The majority of these 34 patients had sensory deficits equivalent to that found in another group of 41 congenital anosmic patients, where inspection with MRI indicated the lack of olfactory bulbs. This study demonstrates that the olfactory clefts, in human, function as an entity that is different from other regions of the nasal cavity and is the target for local inflammatory events that are apparently not responding to corticoid and antibiotic treatments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号