首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 922 毫秒
1.
The effect of various soluble stimuli on the superoxide production by guinea pig eosinophils was studied in comparison to neutrophils. Phorbol myristate acetate, A23187, digitonin, NaF, concanavalin A (Con A), and cytochalasin E stimulated eosinophils and neutrophils to release O2-. The O2- production by these active agents, excluding Con A and cytochalasin E, was much greater in eosinophils than in neutrophils. Formyl-Met-Leu-Phe stimulated the O2- production in neutrophils but not in eosinophils. Neither histamine nor Val/Ala-Gly-Ser-Glu stimulated the O2- production in both types of leukocytes. A23187- or Con A-stimulated O2- production was greatly enhanced by cytochalasin B pretreatment in neutrophils but not in eosinophils. Lineweaver-Burk analysis of NADPH oxidase in particulate fractions showed that eosinophils possessed the same Km values as neutrophils and greater Vmax values than neutrophils, suggesting that eosinophils have a similar, but more active, O2- -generating enzyme system than neutrophils.  相似文献   

2.
Mobilization of circulating neutrophils toward an inflamed area involves adherence of the cells to the vascular endothelium and subsequent penetration through the endothelial cell layer without causing significant damage. To investigate the nature of a possible protective mechanism, granulocytes were incubated with the extracellular matrix (ECM) produced by cultured endothelial cells and tested for release of enzymes, chemoattractants, and free oxygen radicals. In the absence of exogenously added stimuli, the neutrophils adhered to the ECM but there was no detectable release of lysozyme, chemotactic activity, or production of O2-. In contrast, the cells readily released a heparan sulfate-degrading endoglycosidase (heparanase) to an extent comparable with that released in contact with polystyrene surfaces. Neutrophils treated with the calcium ionophore A23187 or with the peptide FMLP produced O2- to a much lesser degree when incubated in contact with ECM-coated surfaces than did those incubated in contact with uncoated polystyrene culture dishes. The ECM itself was devoid of superoxide dismutase activity. Stimulation with opsonized zymosan was not inhibited by the ECM. Experiments with isolated constituents of the ECM revealed that fibronectin but not collagen type IV or laminin could partially inhibit O2- production by Ca2+ ionophore-stimulated neutrophils. Treatment of the ECM with proteolytic enzymes, but not with heparanase, abolished its inhibitory effect on neutrophil activation. These results indicate that the subendothelial basement membrane has the capacity to inhibit release of potentially noxious agents excluding heparanase, suggesting a preferential involvement of this enzyme in neutrophil diapedesis.  相似文献   

3.
The ultrastructural localization of NADH oxidase, a possible enzyme in the increased oxidative activity of polymorphonuclear leukocytes (PMN) during phagocytosis, was studied. A new cytochemical technique for the localization of H2O2, a product of NADH oxidase activity, was developed. Cerous ions, in the presence of peroxide, form an electron-dense precipitate. Resting and phagocytically stimulated PMN were exposed to cerous ions at pH 7.5 to demonstrate sites of NADH-dependent, cyanide-insensitive H2O2 production. Resting PMN exhibites slight activity on the plasma membrane; phagocytizing PMN had extensive deposits of reaction product localized within the phagosome and on the plasma membrane. Peroxide involvement was demonstrated by the inhibitory effect of catalase on cerium precipitation; the surface localization of the enzyme responsible was confirmed by using nonpenetrating inhibitors of enzymatic activity. A correlative study was performed with an NADH-dependent, tetrazolium-reduction system. As with cerium, formazan deposition on the surface of the cell was NADH dependent, cyanide insensitive, and stimulated by phagocytosis. Superoxide dismutase did not inhibit tetrazolium reduction, as observed cytochemically, indicating direct enzymatic dye reduction without superoxide interposition. These findings, combined with oxygen consumption studies on resting and stimulated PMN in the presence or absence of NADH, indicate that NADH oxidase is a surface enzyme in human PMN. It is internalized during phagocytosis and retains its peroxide-generating capacity within the phagocytic vacuole.  相似文献   

4.
Antisperm antibody (ASA)- and complement (C)-mediated immune injury to human sperm is thought to be caused in part by phagocytic neutrophils. To investigate this process, we co-cultured purified human polymorphonuclear leukocytes (PMN) with swim-up sperm in the presence of ASA-positive and ASA-negative sera and assayed for PMN respiratory burst activity, monitored by the release of superoxide anion (O2-) and hydrogen peroxide (H2O2). Phorbol myristate acetate (PMA) and opsonized zymosan were used as positive controls. Phagocytosis of ASA-positive and C-bound sperm by PMN did not enhance O2- production when compared to incubation of sperm with ASA-negative sera. Phagocytosis of ASA-positive and C-bound sperm also resulted in minimal release of H2O2 when compared with ASA-positive and C-negative sperm that were not phagocytosed. In contrast, PMN were maximally stimulated to release O2- in response to either opsonized zymosan or PMA. The kinetics of PMA-induced O2- release was unaffected by the presence of ASA-positive and C-bound sperm. Cytocentrifuge preparations of PMN incubated with ASA-positive and C-bound sperm revealed limited O2- release at the site of PMN/sperm contact. These results indicated that 1) phagocytosis of motile sperm by PMN requires the binding of both ASA and C to the sperm surface; 2) phagocytosis of ASA-positive and C-positive sperm by PMN fails to release reactive oxygen species; and 3) metabolic processes associated with PMN respiratory burst activity may not be coupled to the ingestion of ASA-positive and C-bound sperm.  相似文献   

5.
Appropriately stimulated neutrophils release peroxidase and undergo a respiratory burst to form hydrogen peroxide (H2O2) and hydroxyl radicals (OH). We report here that both the myeloperoxidase-H2O2-halide system and OH released in this way can degrade the leukotrienes (LT) formed by neutrophils. More LTB4 and LTC4 were recovered from the supernatants of chronic granulomatous disease neutrophils (which are unable to respond to stimulation with a respiratory burst) than from normal or myeloperoxidase-deficient neutrophils when stimulated with the calcium ionophore A23187. When radiolabeled LTC4 was added, 72% of the LTC4 was recovered from the chronic granulomatous disease cells in contrast to 0% from the myeloperoxidase-deficient and normal cells. Inhibitor studies using catalase, superoxide dismutase, azide, mannitol, or ethanol suggested that LTC4 degradation was mediated primarily by the myeloperoxidase system in normal cells and by OH in myeloperoxidase-deficient cells. LTC4 degradation by the cell-free myeloperoxidase-H2O2-halide system and the OH -generating acetaldehyde-xanthine oxidase-Fe2+ system had inhibitor profiles comparable to normal and myeloperoxidase-deficient neutrophils, respectively. LTC4 degradation products formed by the stimulated neutrophils and model systems included the 5-(S), 12-(R)- and 5-(S), 12-(S)-6-trans-isomers of LTB4. Thus phagocytes may modulate LT activity in inflammatory sites by the inactivation of these potent biologic mediators by at least two oxidative mechanisms.  相似文献   

6.
The production of free radicals in human neutrophils was studied in both Pneumocystis carinii derived from cultures of L2 rat lung epithelial-like cells and Pneumocystis carinii purified from human lung. Using the cytochrome C technique, which selectively measured extracellular superoxide generation, hardly any free radical production was observed after stimulation with cultured rat-derived P. carinii. A chemiluminescence technique, which separately measured intra- and extracellular free radical production, was subsequently employed to differentiate the free radical generation. It was established that 1) P. carinii stimulated intra- but not extracellular free radical production in human neutrophils. 2) opsonized cultured rat-derived P. carinii stimulated human neutrophils to a strong intra-cellular response of superoxide production, and 3) opsonized P. carinii. purified from human lung also stimulated human neutrophils to produce intracellular free radicals.  相似文献   

7.
A novel approach for the simultaneous optical and electrochemical detection of biologically produced reactive oxygen species has been developed and applied. The set-up consists of a luminol-dependent chemiluminescence assay combined with two amperometric biosensors sensitive to superoxide anion radicals (O(2)(-)) and hydrogen peroxide (H(2)O(2)), respectively. The method permits direct, real-time in vitro determination of both extra- and intracellular O(2)(-) and H(2)O(2) produced by human neutrophil granulocytes. The rate of O(2)(-) production by stimulated neutrophils was calculated to about 10(-17)mol s(-1) per single cell. With inhibited NADPH oxidase, a distinct extracellular release of H(2)O(2) instead of O(2)(-) was obtained from stimulated neutrophils with the rate of about 3 x 10(-18)mol s(-1) per single cell. When the H(2)O(2) release was discontinued, fast H(2)O(2) utilisation was observed. Direct interaction with and possibly attachment of neutrophils to redox protein-modified gold electrodes, resulted in a spontaneous respiratory burst in the population of cells closely associated to the electrode surface. Hence, further stimulation of human neutrophils with a potent receptor agonist (fMLF) did not significantly increase the O(2)(-) sensitive amperometric response. By contrast, the H(2)O(2) sensitive biosensor, based on an HRP-modified graphite electrode, was able to reflect the bulk concentration of H(2)O(2), produced by stimulated neutrophils and would be very useful in modestly equipped biomedical research laboratories. In summary, the system would also be appropriate for assessment of several other metabolites in different cell types, and tissues of varying complexity, with only minor electrode modifications.  相似文献   

8.
Like neutrophils, phagocytizing macrophages undergo a "respiratory burst" in which significant quantities of oxygen are drawn into the cell. The consumed oxygen is not used in oxidative phosphorylation but, rather, in the formation of superoxide anion (O2) and H2O2. These oxygen metabolites and the products of their interaction, in particular hydroxyl radical (OH), have been implicated in the killing of ingested bacteria by neutrophils. Their role in macrophage microbicidal activity has not been fully defined. However, activated macrophages, which mediate increased resistance to infection in vivo, have a markedly increased capacity to generate O2 and H2O2 in vitro when stimulated by phagocytosis or surface perturbation. The enhanced capacity of activated macrophages to generate highly reactive oxygen metabolites during phagocytosis could contribute to the improved microbicidal and tumoricidal activity of these cells.  相似文献   

9.
Phorbol myristate acetate (PMA), a tumor-promoting phorbol ester, and the calcium ionophore A23187 synergistically induced the noncytotoxic release of leukotriene B4 (LTB4) and other 5-lipoxygenase products of arachidonic acid metabolism from human neutrophils. Whereas neutrophils incubated with either A23187 (0.4 microM) or PMA (1.6 microM) alone failed to release any 5-lipoxygenase arachidonate products, neutrophils incubated with both stimuli together for 5 min at 37 degrees C released LTB4 as well as 20-COOH-LTB4, 20-OH-LTB4, 5-(S),12-(R)-6-trans-LTB4, 5-(S),12-(S)-6-trans-LTB4, and 5-hydroxyeicosatetraenoic acid, as determined by high pressure liquid chromatography. This synergistic response exhibited concentration dependence on both PMA and A23187. PMA induced 5-lipoxygenase product release at a concentration causing a half-maximal effect of approximately 5 nM in the presence of A23187 (0.4 microM). Competition binding experiments showed that PMA inhibited the specific binding of [3H]phorbol dibutyrate ([3H]PDBu) to intact neutrophils with a 50% inhibitory concentration (IC50) of approximately 8 nM. 1-oleoyl-2-acetyl-glycerol (OAG) also acted synergistically with A23187 to induce the release of 5-lipoxygenase products. 4 alpha-phorbol didecanoate (PDD), an inactive phorbol ester, did not affect the amount of lipoxygenase products released in response to A23187 or compete for specific [3H]PDBu binding. PMA and A23187 acted synergistically to increase arachidonate release from neutrophils prelabeled with [3H]arachidonic acid but did not affect the release of the cyclooxygenase product prostaglandin E2. Both PMA and OAG, but not PDD, induced the redistribution of protein kinase C activity from the cytosol to the membrane fraction of neutrophils, a characteristic of protein kinase C activation. Thus, activation of protein kinase C may play a physiologic role in releasing free arachidonate substrate from membrane phospholipids and/or in modulating 5-lipoxygenase activity in stimulated human neutrophils.  相似文献   

10.
Superoxide (O2-)-generating membranes of pig blood neutrophils were studied by the ESR spin-label method. Neutrophils were spin-labeled with doxylstearic acids, consisting of nitroxide free radicals bonded to the 5, 7, 12, or 16 position of stearic acid (5-, 7-, 12-, or 16-DS), to detect the reduction of their nitroxide radicals at different positions in the membrane. The spin-labeled cells were then stimulated with phorbol myristate acetate (PMA). Stimulation of the labeled cells resulted in a marked decrease in the spin concentration of 5-DS due to the reduction by O2-, but not in those of the other three DS labels. This reduction of 5-DS was completely inhibited by copper salicylate (CS), a hydrophobic and permeable O2(-)-scavenger, but not by superoxide dismutase (SOD). CS was not inhibitory on the respiratory burst, i.e., O2(-)-generating activity of neutrophils. On the contrary, if the spin-labels were present in the extracellular medium, SOD inhibited the reduction of all four DS labels due to O2- released from PMA-stimulated cells. These results suggest that the O2(-)-releasing site is not located at the outer surface of the plasma membrane but in an inner hydrophobic environment a short distance (around 4-5 A) from its outer surface.  相似文献   

11.
The effect of calcium and/or magnesium on O2- production by guinea-pig eosinophils stimulated by the calcium ionophore A23187 was studied in comparison to neutrophils. In the absence of calcium, A23187 did not stimulate O2- production in resting eosinophils and neutrophils, regardless of the presence of extracellular magnesium. The A23187-induced O2- production by both cells increased linearly with extracellular Ca2+ concentrations. However, the concentration of Ca2+ required for maximum O2- production in eosinophils was about 10-times lower than that required of neutrophils. The addition of Mg2+ strongly inhibited O2- production, especially in eosinophils at low Ca2+ concentrations. The intracellular Ca2+ concentration was lower in eosinophils than in neutrophils in the resting state, and the enhancement of the intracellular Ca2+ concentration in response to A23187 was much lower in eosinophils than in neutrophils. The activation of the NADPH-dependent O2(-)-forming enzyme (NADPH oxidase) in eosinophils depended on extracellular calcium, as observed in O2- production. However, the NADPH oxidase activity in the particulate fraction from A23187-stimulated eosinophils was only slightly affected by the addition of divalent cations or EDTA. The compound W-7 (N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide hydrochloride), a calmodulin antagonist, significantly inhibited O2- production by both cells. On the other hand, the compound H-7 (1-(5-isoquinolinesulfonyl)-2-methylpiperazine dihydrochloride), a protein kinase C antagonist, was less effective on O2- production than was W-7. H-7 had little effect on O2- production of eosinophils. These findings suggest that NADPH oxidase might be activated by a smaller Ca2+ concentration through the calmodulin-dependent reaction. This was not observed with protein kinase C, at least in eosinophils.  相似文献   

12.
The effect of modification of maleimide derivatives on superoxide production by guinea-pig neutrophils induced by a variety of different soluble stimuli was studied. Pretreatment of neutrophils by showdomycin, a very slowly penetrating-SH reagent, did not affect superoxide production by all of the stimuli used, suggesting no exposure of sulfhydryl groups involved in superoxide-generating system on the cell surface. Pretreatment with N-ethylmaleimide (MalNEt), a considerably penetrating-SH reagent, markedly inhibited superoxide production stimulated by formyl-methionyl-leucyl-phenylalanine (HCO-Met-Leu-Phe), cytochalasin E or digitonin, but not superoxide production stimulated by the ionophore A23187 or sodium fluoride. The oxygen consumption stimulated by HCO-Met-Leu-Phe or cytochalasin E was inhibited by MalNEt pretreatment, whereas the oxygen consumption stimulated by A23187 was not inhibited by MalNEt. The inhibition by MalNEt of superoxide production did not appear to be due to the interference with binding of the affected stimuli, since MalNEt pretreatment did not inhibit the release of lysozyme, granule enzyme, induced by HCO-Met-Leu-Phe, cytochalasin E or digitonin. Particulate fractions from MalNEt-pretreated neutrophils before exposure to the stimulus exhibited the inhibition of the enhancement of NADPH-dependent superoxide production induced by HCO-Met-Leu-Phe, cytochalasin E or digitonin, but not A23187, whereas treatment of neutrophils with MalNEt after activation by these stimuli had no effect on the NADPH oxidase activity in particulate fractions. Direct exposure of particulate fractions from A23187-stimulated neutrophils to MalNEt showed no actual susceptibility of NADPH oxidase to MalNEt inhibition. These findings suggest that the inhibitory effect of MalNEt is caused by the modification of the process of the activation by the affected stimuli of the superoxide system, probably NADPH oxidase and that at least two mechanisms exist for activation of superoxide-generating system in guinea-pig neutrophils on the basis of the susceptibility to MalNEt inhibition.  相似文献   

13.
The role of specific granules and cytochrome b in superoxide (O(2)) release was studied by comparing the effects of three different stimuli on normal human neutrophils, neutrophils congenitally deficient in specific granules, and granule-free normal neutrophil cytoplasts. Phorbol myristate acetate (PMA) stimulated normal neutrophils to release more O(2) than did N-formylmethionylleucylphenylalanine (fMet-Leu-Phe), which stimulated greater release than the calcium ionophore A23187. Neutrophils lacking specific granules produced variable amounts of O(2) in response to all stimuli. Stimulation with PMA, fMet-Leu-Phe, and A23187 produced maximal rates of O(2) release that were 32, 55, and 21% of that by normal cells. Likewise, granule-free neutrophil cytoplasts released 24, 20, and 0% of the O(2) released by intact cells. These data suggest that the stimuli require different mechanisms for activation. Three subcellular fractions (azurophil granule rich, specific granule rich, and plasma membrane rich) were separated by Percoll gradients from normal resting and stimulated neutrophils. In resting neutrophils, the cytochrome b content in the plasma membrane was 31% of the total, with the rest in the specific granule-rich fraction. Ten minutes after stimulation, PMA, fMet-Leu-Phe, and A23187 induced translocation of 27, 8, and 49%, respectively, of the cytochrome b from the specific granule-rich fraction to the plasma membrane. Although our data support a role for specific granule factors in A23187-induced O(2) release, there is no correlation between the amount of cytochrome b incorporated into the plasma membrane and the extent of O(2) production activated by the different stimuli.  相似文献   

14.
A Penfield  M M Dale 《FEBS letters》1985,181(2):335-338
Superoxide release from human neutrophils was stimulated either by receptor activation (using fMet-Leu-Phe) or by activating, independently, each of the two pathways considered to be involved in signal transduction--calcium mobilization (using the ionophore, A23187) and protein kinase C activation (using phorbol myristate acetate or 1-oleoyl-2-acetylglycerol). Prostaglandin E1 (3 X 10(-5) M) decreased fMet-Leu-Phe-stimulated superoxide release, had no effect on superoxide release stimulated by A23187, or by phorbol myristate acetate, and markedly enhanced the superoxide release stimulated by 1-oleoyl-2-acetylglycerol. Similar enhancement was obtained with prostaglandin E2.  相似文献   

15.
Polymorphonuclear neutrophils (PMN) respond to a variety of stimuli with a sequence of reactions that lead to the production of "active oxygen" species, including H2O2, free radicals, such as superoxide (O2-.) and hydroxyl (HO.), and singlet molecular oxygen (1O2). Some of these can oxidize (5-amino-2,3-dihydrophthalazine 1,4-dione) (luminol) to the ground state aminophthalate ion; this reaction sequence is accompanied by the generation of a photon and forms the basis for the chemiluminescence (CL) response. In this work we used a dedicated photon counting instrument to record CL from PMN incubated with bacterial lipopolysaccharide (LPS). We have studied the CL response to the LPS from Escherichia coli strains 026:B6 and 055:B5, as well as Salmonella minnesota RE 595 and have determined that CL requires heat-labile serum factors, these most likely being intact components of the complement system.  相似文献   

16.
Activated by bacterial peptides, phorbol esters, calcium ionophores and other agonists, neutrophils (PMNs) release the proinflammatory mediator, arachidonic acid (AA) via the intervention of phospholipase A(2) (PLA(2)). AA may play an essential role in activation of NADPH-oxidase, which is involved in the generation of superoxide anion by neutrophils. The present study is focused on the involvement of PLA(2) in the respiratory burst developed by PMNs isolated from patients with rheumatoid arthritis (RA). PLA(2) exists in very high levels in diseases such as rheumatoid arthritis and may cause acute inflammatory and proliferative changes in synovial structures. The respiratory burst was evaluated as superoxide anion release, using an amplified chemiluminescence method. The assays were performed using PMNs untreated or treated with different doses of stimulatory reagents (phorbol 12-myristate-13-acetate (PMA), calcium ionophore (A23187)). Our data suggested that PMA stimulated the production of superoxide anion in a dose-response manner, as compared with A23187, which did not induce a significant release of superoxide anion in PMNs-RA. The exogenous addition of AA significantly amplified the superoxide anion release by PMNs-RA stimulated with PMA and to a lesser extent, by PMNs stimulated with A23187. AA has also reversed the inhibitory effect of arachidonyl-trifluorometylketone and E-6-(bromomethylene)tetrahydro-3-(1-naphthalenyl)2H-pyran-2-one (BEL) on the superoxide anion release by PMNs-RA. In conclusion, the differential responses to these two agents suggested that different isoforms of PLA(2) were activated by A23187 or PMA, and support the idea that activation of these different PLA(2) served distinct functions of PMNs. Therefore, the inhibition of PLA(2) enzymes might be of great importance in the immunotherapy of rheumatoid arthritis.  相似文献   

17.
The catalytic oxidation of [14C]-formate to 14CO2 was adapted to measure H2O2 formation in cellfree system. Standard curves employing glucose-glucose oxidase and xanthine-xanthine oxidase demonstrated linearity between 14CO2 evolution and enzyme concentration. A particulate fraction from human neutrophils was capable of oxidizing [14C]-formate; this reaction was dependent upon the presence of catalase, reduced pyridine nucleotide, and cellular material. Reaction increased with time of incubation and protein concentration, although not in a strictly linear fashion. The pH optimum was approximately 5.5 NADPH was a significantly better substrate than NADH, although both were capable of generating H2O2. The particulate fraction derived from phagocytizing cells was more active than a corresponding fraction from resting cells with either substrate. H2O2 production was abnormal in particulate fractions derived from 2 patients with chronic granulomatous disease. H2O2 production was markedly inhibited by superoxide dismutase or cytochrome c (scavengers of superoxide anion) but not by scavengers of singlet oxygen or hydroxyl radical. Reaction was greatly stimulated by the addition of manganous ion. These results are consistent with the hypothesis that the respiratory burst in human neutrophils is initiated by an oxidase that can utilize either NADPH or NADH but exhibits a marked preference for the former. Further, the inhibitor studies strongly support a mechanism involving an initial enzymatic reaction followed by a self-sustaining free radical reaction involving superoxide anion.  相似文献   

18.
Trifluoperazine inhibits superoxide production and O2 uptake by guinea pig neutrophils incubated with arachidonic acid, N-formylmethionylphenylalanine, digitonin or ionophore A23187, with IC50 values of 7–37uM. Since this inhibition is produced by concentrations of trifluoperazine which inhibit interaction of calmodulin with proteins, we examined the effects of two other phenothiazines which interact less effectively with calmodulin. Chlorpromazine, promethazine and trifluoperazine all inhibit N-formylmethionylphenylalanine-stimulated superoxide production with similar efficiency. Furthermore, degranulation stimulated by A23187 or N-formylmethionylphenylalanine is inhibited similarly by all three phenothiazines with IC50 values of 18–45 uM. These results are consistent with the suggestion that phenothiazines may inhibit neutrophil function as a result of non-specific interactions with the cells' membranes rather than by specific interaction with calmodulin.  相似文献   

19.
We have investigated the effects of a sinusoidal 60 Hz magnetic field on free radical (superoxide anion) production, degranulation (beta-glucuronidase and lysozyme release) and viability in human neutrophils (PMNs). Experiments were performed blindly in very controlled conditions to examine the effects of a magnetic field in resting PMNs and in PMNs stimulated with a tumor promoter: phorbol 12-myristate 13-acetate (PMA). Exposure of unstimulated human PMNs to a 60 Hz magnetic field did not affect the functions examined. In contrast, exposure of PMNs to a 22 milliTesla (mT), 60 Hz magnetic field induced significant increases in superoxide anion (O2-) production (26.5%) and in beta-glucuronidase release (53%) when the cells were incubated with a suboptimal stimulating dose of PMA. Release of lysozyme and lactate dehydrogenase was unchanged by the magnetic field, whether the cells were stimulated or not. A 60 Hz magnetic field did not have any effect on O2- generation by a cell-free system xanthine/xanthine oxidase, suggesting that a magnetic field could upregulate common cellular events (signal transduction) leading to O2- generation and beta-glucuronidase release. In conclusion, exposure of PMNs to a 22 mT, 60 Hz magnetic field potentiates the effect of PMA on O2- generation and beta-glucuronidase release. This effect could be the result of an alteration in the intracellular signaling.  相似文献   

20.
Endothelium produces oxygen-derived free radicals (nitric oxide, NO&z.rad;; superoxide anion, O(2)(*-)) which play a major role in physiology and pathology of the vessel wall. However, little is known about endothelium-derived O(2)(*-) production, particularly due to the difficulty in assessing O(2)(*-) when its production is low and to controversies recently raised about the use of lucigenin-enhanced chemiluminescence. We compared four techniques of O(2)(*-) assessment when its production is low. In the present study, we have compared ferricytochrome c reduction, electron spin resonance (ESR) spectroscopy using DMPO as spin trap, hydroethidine fluorescence, and lucigenin-enhanced chemiluminescence to assess O(2)(*-) production in cultured bovine aortic endothelial cells (BAEC). We focused our study on extracellular O(2)(*-) production because the specificity of the signal is provided by the use of superoxide dismutase, and this control cannot be obtained intracellularly. We found that the calcium ionophore A23187 dose-dependently stimulated O(2)(*-) production, with a good correlation between all four techniques. The signals evoked by postconfluent BAEC were increased 2- to 7-fold in comparison to just-confluent BAEC, according to the technique used. Ferricytochrome c 20 microm rather than at 100 microm appears more suitable to detect O(2)(*-). However, in the presence of electron donors such as NADH or NADPH, lucigenin-enhanced chemiluminescence generated high amounts of O(2)(*-). Thus, ferricytochrome c reduction, electron spin resonance (ESR), and hydroethidine fluorescence appear as adequate tools for the detection of extracellular endothelium-derived O(2)(*-) production, whereas lucigenin may be artifactual, even when a low concentration of lucigenin is employed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号