首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Our previous studies showed that an adenovirus (Ad) serotype 5 vector expressing Flt3 ligand (Ad-FL) as nasal adjuvant activates CD11c(+) dendritic cells (DCs) for the enhancement of antigen (Ag)-specific IgA antibody (Ab) responses. In this study, we examined the molecular mechanism for activation of CD11c(+) DCs and their roles in induction of Ag-specific Th1- and Th2-cell responses. Ad-FL activated CD11c(+) DCs expressed increased levels of the Notch ligand (L)-expression and specific mRNA. When CD11c(+) DCs from various mucosal and systemic lymphoid tissues of mice given nasal OVA plus Ad-FL were cultured with CD4(+) T cells isolated from non-immunized OVA TCR-transgenic (OT II) mice, significantly increased levels of T cell proliferative responses were noted. Furthermore, Ad-FL activated DCs induced IFN-γ, IL-2 and IL-4 producing CD4(+) T cells. Of importance, these APC functions by Ad-FL activated DCs were down-regulated by blocking Notch-Notch-L pathway. These results show that Ad-FL induces CD11c(+) DCs to the express Notch-ligands and these activated DCs regulate the induction of Ag-specific Th1- and Th2-type cytokine responses.  相似文献   

2.
We assessed the role of CCR5+/CCR6+/CD11b+/CD11c+ dendritic cells (DCs) for induction of ovalbumin (OVA)-specific antibody (Ab) responses following mucosal immunization. Mice given nasal OVA plus an adenovirus expressing Flt3 ligand (Ad-FL) showed early expansion of CCR5+/CCR6+/CD11b+/CD11c+ DCs in nasopharyngeal-associated lymphoid tissue (NALT) and cervical lymph nodes (CLNs). Subsequently, this DC subset became resident in submandibular glands (SMGs) and nasal passages (NPs) in response to high levels of CCR-ligands produced in these tissues. CD11b+/CD11c+ DCs were markedly decreased in both CCR5−/− and CCR6−/− mice. Chimera mice reconstituted with bone marrow cells from CD11c-diphtheria toxin receptor (CD11c-DTR) and CCR5−/− or CD11c-DTR and CCR6−/− mice given nasal OVA plus Ad-FL had elevated plasma IgG, but reduced IgA as well as low anti-OVA secretory IgA (SIgA )Ab responses in saliva and nasal washes. These results suggest that CCR5+CCR6+ DCs play an important role in the induction of Ag-specific SIgA Ab responses.  相似文献   

3.
RANTES potentiates antigen-specific mucosal immune responses   总被引:8,自引:0,他引:8  
RANTES is produced by lymphoid and epithelial cells of the mucosa in response to various external stimuli and is chemotactic for lymphocytes. The role of RANTES in adaptive mucosal immunity has not been studied. To better elucidate the role of this chemokine, we have characterized the effects of RANTES on mucosal and systemic immune responses to nasally coadministered OVA. RANTES enhanced Ag-specific serum Ab responses, inducing predominately anti-OVA IgG2a and IgG3 followed by IgG1 and IgG2b subclass Ab responses. RANTES also increased Ag-specific Ab titers in mucosal secretions and these Ab responses were associated with increased numbers of Ab-forming cells, derived from mucosal and systemic compartments. Splenic and mucosally derived CD4(+) T cells of RANTES-treated mice displayed higher Ag-specific proliferative responses and IFN-gamma, IL-2, IL-5, and IL-6 production than control groups receiving OVA alone. In vitro, RANTES up-regulated the expression of CD28, CD40 ligand, and IL-12R by Ag-activated primary T cells from DO11.10 (OVA-specific TCR-transgenic) mice and by resting T cells in a dose-dependent fashion. These studies suggest that RANTES can enhance mucosal and systemic humoral Ab responses through help provided by Th1- and select Th2-type cytokines as well as through the induction of costimulatory molecule and cytokine receptor expression on T lymphocytes. These effects could serve as a link between the initial innate signals of the host and the adaptive immune system.  相似文献   

4.
Nasal administration of Ags using a novel hybrid Ag delivery vehicle composed of envelope glycoproteins of Sendai virus on the surface of liposome membranes (fusogenic liposome) efficiently delivered Ags to Ag-sampling M cells in nasopharyngeal-associated lymphoreticular tissue. Additionally, fusogenic liposomes also effectively delivered the Ags into epithelial cells and macrophages in nasopharyngeal-associated lymphoreticular tissue and nasal passages. In vitro Ag presentation assays clearly showed that fusogenic liposomes effectively presented encapsulated Ags via the MHC class II-dependent pathway of epithelial cells as well as macrophages. Fusogenic liposomes also have an adjuvant activity against mucosal epithelial cells to enhance MHC class II expression. According to these high delivery and adjuvant activities of fusogenic liposomes, nasal immunization with OVA-encapsulated fusogenic liposomes induced high levels of OVA-specific CD4(+) Th1 and Th2 cell responses. Furthermore, Ag-specific CTL responses and Ab productions were also elicited at both mucosal and systemic sites by nasal immunization with Ag-encapsulated fusogenic liposomes. These results indicate that fusogenic liposome is a versatile and effective system for the stimulation of Ag-specific immune responses at both mucosal and systemic compartments.  相似文献   

5.
The use of the nontoxic B subunit of cholera toxin (CTB) as mucosal adjuvant and carrier-delivery system for inducing secretory Ab responses has been documented previously with different soluble Ags. In this study, we have evaluated this approach for inducing CTL responses against a prototype Ag, OVA, in the female genital mucosa. We report here the ability of an immunogen comprised of CTB conjugated to OVA (CTB-OVA) given by intravaginal (ivag) route to induce genital OVA-specific CTLs in mice. Using adoptive transfer models, we demonstrate that ivag application of CTB-OVA activates OVA-specific IFN-gamma-producing CD4 and CD8 T cells in draining lymph nodes (DLN). Moreover, ivag CTB induces an expansion of IFN-gamma-secreting CD8+ T cells in DLN and genital mucosa and promotes Ab responses to OVA. In contrast, ivag administration of OVA alone or coadministered with CTB failed to induce such responses. Importantly, we demonstrate that ivag CTB-OVA generates OVA-specific CTLs in DLN and the genital mucosa. Furthermore, genital CD11b+ CD11c+ dendritic cells (DCs), but not CD8+ CD11c+ or CD11c- APCs, present MHC class I epitopes acquired after ivag CTB-OVA, suggesting a critical role of this DC subset in the priming of genital CTLs. Inhibition studies indicate that the presentation of OVA MHC class I epitopes by DCs conditioned with CTB-OVA involves a proteasome-dependent and chloroquine-sensitive mechanism. These results demonstrate that CTB is an efficient adjuvant-delivery system for DC-mediated induction of genital CTL responses and may have implications for the design of vaccines against sexually transmitted infections.  相似文献   

6.
Our previous studies showed that mucosal immunity was impaired in 1-year-old mice that had been orally immunized with OVA and native cholera toxin (nCT) as mucosal adjuvant. In this study, we queried whether similar immune dysregulation was also present in mucosal compartments of mice immunized by the nasal route. Both 1-year-old and young adult mice were immunized weekly with three nasal doses of OVA and nCT or with a nontoxic chimeric enterotoxin (mutant cholera toxin-A E112K/B subunit of native labile toxin) from Brevibacillus choshinensis. Elevated levels of OVA-specific IgG Abs in plasma and secretory IgA Abs in mucosal secretions (nasal washes, saliva, and fecal extracts) were noted in both young adult and 1-year-old mice given nCT or chimeric enterotoxin as mucosal adjuvants. Significant levels of OVA-specific CD4(+) T cell proliferative and OVA-induced Th1- and Th2-type cytokine responses were noted in cervical lymph nodes and spleen of 1-year-old mice. In this regard, CD4(+), CD45RB(+) T cells were detected in greater numbers in the nasopharyngeal-associated lymphoreticular tissues of 1-year-old mice than of young adult mice, but the same did not hold true for Peyer's patches or spleen. One-year-old mice given nasal tetanus toxoid plus the chimeric toxin as adjuvant were protected from lethal challenge with tetanus toxin. This result reinforced our findings that age-associated immune alterations occur first in gut-associated lymphoreticular tissues, and thus nasal delivery of vaccines for nasopharyngeal-associated lymphoreticular tissue-based mucosal immunity offers an attractive possibility to protect the elderly.  相似文献   

7.
Oral delivery of a large dose or prolonged feeding of protein Ags induce systemic unresponsiveness most often characterized as reduced IgG and IgE Ab- and Ag-specific CD4(+) T cell responses. It remains controversial whether oral tolerance extends to diminished mucosal IgA responses in the gastrointestinal tract. To address this issue, mice were given a high oral dose of OVA or PBS and then orally immunized with OVA and cholera toxin as mucosal adjuvant, and both systemic and mucosal immune responses were assessed. OVA-specific serum IgG and IgA and mucosal IgA Ab levels were markedly reduced in mice given OVA orally compared with mice fed PBS. Furthermore, when OVA-specific Ab-forming cells (AFCs) in both systemic and mucosa-associated tissues were examined, IgG AFCs in the spleen and IgA AFCs in the gastrointestinal tract lamina propria of mice given OVA orally were dramatically decreased. Furthermore, marked reductions in OVA-specific CD4(+) T cell proliferative and cytokine responses in spleen and Peyer's patches were seen in mice given oral OVA but were unaffected in PBS-fed mice. We conclude that high oral doses of protein induce both mucosal and systemic unresponsiveness and that use of mucosal adjuvants that induce both parenteral and mucosal immunity may be a better way to assess oral tolerance.  相似文献   

8.
Andoh A  Masuda A  Kumazawa Y  Kasajima T 《Cytokine》2002,20(3):107-112
Immunization via the nasal route is effective for inducing not only mucosal immunity but also antibody (Ab) response in serum. Nasal lymphoid tissue (NALT) is important for induction of systemic immunity. It remains controversial which T effector cell response is important for serum Ab response after nasal immunization. We investigated serum Ab responses and NALT structures in interleukin (IL)-4 gene targeted (IL-4(-/-)) and interferon (IFN)-gamma gene targeted (IFN-gamma(-/-)) mice. Mice were immunized via nostrils with ovalbumin (OVA) and cholera toxin as adjuvant and serum Ab titers were measured 1 week after final antigen challenge. OVA-specific IgG titers in sera of IL-4(-/-) mice indicated a Th(1) type response, whereas titers in IFN-gamma(-/-) mice and wild-type mice indicated a Th(2) type response. Enhanced serum Ab responses were observed in IL-4(-/-) mice but not IFN-gamma(-/-) mice. OVA-specific Ab-forming cells were detected in the cervical draining lymph nodes but were rare or absent in and around the NALT of all strains of mice. Numbers of OVA-specific Ab-forming cells in cervical lymph nodes were significantly higher in IL-4(-/-) mice than in wild-type and IFN-gamma(-/-) mice. Germinal centers of lymphoid follicles were present in NALT of IL-4(-/-) and other mice. Immunohistochemistry for B and T cell markers revealed that NALT of all mice had approximately the same cellular compositions. Although the absence of IL-4 had no effect on NALT structure, IL-4 may suppress induction of serum Ab responses by nasal immunization.  相似文献   

9.
OVA-induced allergic diarrhea occurs as a consequence of over-expression of Th1 inhibitory IL-12p40 monomers and homodimers in the large intestine, establishing a dominant Th2-type environment. In this study, we demonstrate that intranasally administered murine IL-12p70 naked DNA expression plasmids resulted in the synthesis of corresponding cytokine in the large intestinal CD11c(+) dendritic cells, leading to the inhibition of Ag-specific Th2-type response for the prevention of allergic diarrhea and the suppression of clinical symptoms including OVA-specific IgE Ab synthesis. The nasal IL-12p70 DNA treatment proved effective even after the establishment of allergic diarrhea. These results suggest that the mucosal administration of naked IL-12p70 DNA plasmid should be considered as a possible preventive and therapeutic treatment for Th2 cell-mediated food allergic diseases in the intestinal tract.  相似文献   

10.
The progeny of mice treated with lymphotoxin (LT)-beta receptor (LTbetaR) and Ig (LTbetaR-Ig) lack Peyer's patches but not mesenteric lymph nodes (MLN). In this study, we used this approach to determine the importance of Peyer's patches for induction of mucosal IgA Ab responses in the murine gastrointestinal tract. Immunohistochemical analysis revealed that LTbetaR-Ig-treated, Peyer's patch null (PP null) mice possessed significant numbers of IgA-positive (IgA+) plasma cells in the intestinal lamina propria. Further, oral immunization of PP null mice with OVA plus cholera toxin as mucosal adjuvant resulted in Ag-specific mucosal IgA and serum IgG Ab responses. OVA-specific CD4+ T cells of the Th2 type were induced in MLN and spleen of PP null mice. In contrast, when TNF and LT-alpha double knockout (TNF/LT-alpha-/-) mice, which lack both Peyer's patches and MLN, were orally immunized with OVA plus cholera toxin, neither mucosal IgA nor serum IgG anti-OVA Abs were induced. On the other hand, LTbetaR-Ig- and TNF receptor 55-Ig-treated normal adult mice elicited OVA- and cholera toxin B subunit-specific mucosal IgA responses, indicating that both LT-alphabeta and TNF/LT-alpha pathways do not contribute for class switching for IgA Ab responses. These results show that the MLN plays a more important role than had been appreciated until now for the induction of both mucosal and systemic Ab responses after oral immunization. Further, organized Peyer's patches are not a strict requirement for induction of mucosal IgA Ab responses in the gastrointestinal tract.  相似文献   

11.
Native cholera toxin (nCT) and the heat-labile toxin 1 (nLT) of enterotoxigenic Escherichia coli are AB5-type enterotoxins. Both nCT and nLT are effective adjuvants that promote mucosal and systemic immunity to protein Ags given by either oral or nasal routes. Previous studies have shown that nCT as mucosal adjuvant requires IL-4 and induces CD4-positive (CD4+) Th2-type responses, while nLT up-regulates Th1 cell production of IFN-gamma and IL-4-independent Th2-type responses. To address the relative importance of the A or B subunits in CD4+ Th cell subset responses, chimeras of CT-A/LT-B and LT-A/CT-B were constructed. Mice nasally immunized with CT-A/LT-B or LT-A/CT-B and the weak immunogen OVA developed OVA-specific, plasma IgG Abs titers similar to those induced by either nCT or nLT. Both CT-A/LT-B and LT-A/CT-B promoted secretory IgA anti-OVA Ab, which established their retention of mucosal adjuvant activity. The CT-A/LT-B chimera, like nLT, induced OVA-specific mucosal and peripheral CD4+ T cells secreting IFN-gamma and IL-4-independent Th2-type responses, with plasma IgG2a anti-OVA Abs. Further, LT-A/CT-B, like nCT, promoted plasma IgG1 more than IgG2a and IgE Abs with OVA-specific CD4+ Th2 cells secreting high levels of IL-4, but not IFN-gamma. The LT-A/CT-B chimera and nCT, but not the CT-A/LT-B chimera or nLT, suppressed IL-12R expression and IFN-gamma production by activated T cells. Our results show that the B subunits of enterotoxin adjuvants regulate IL-12R expression and subsequent Th cell subset responses.  相似文献   

12.
The injection of soluble Ag into the anterior chamber (a.c.) of the eye induces systemic tolerance, termed a.c.-associated immune deviation (ACAID), characterized by Ag-specific inhibition of delayed-type hypersensitivity responses and a reduction in complement-fixing Abs. Recently, we have shown that CD8(+) CTL responses are also inhibited in ACAID. In this study, we have used an adoptive transfer approach to follow the fate of Ag-specific CD8(+) TCR transgenic (OT-I) T cells in vivo during the induction and expression of ACAID. C57BL/6 (B6) recipients of OT-I splenocytes that were injected with chicken OVA in the a.c. displayed reduced OVA-specific delayed-type hypersensitivity and CTL responses, compared with those of mice given OVA in the subconjunctiva or an irrelevant Ag human IgG in the a.c. OT-I T cells increased 9-fold in the submandibular lymph nodes and 3-fold in the spleen following an a.c. injection with OVA, indicating that expansion rather than deletion of Ag-specific CD8(+) T cells was induced by this treatment. OT-I T cells expanded equivalently upon administration of OVA in CFA to mice previously given OVA in the a.c. or subconjunctiva. However, the lytic activity attributed to OT-I T cells was reduced on a per-cell basis in mice previously given OVA in the a.c. We conclude that tolerance of CTL responses in mice given Ag via the a.c. results from unresponsiveness of Ag-specific CD8(+) T cells.  相似文献   

13.
Intratracheal instillation of L-selectin-deficient (L-Sel(-/-)) mice with an adenovirus 2 (Ad2) vector resulted in the lack of respiratory Ad2- or beta-galactosidase-specific CTLs with concomitant long-lived beta-galactosidase transgene expression in the lungs. The absence of Ag-specific CTLs was attributed to a deficiency in lymphoid CD11c(+)CD8(+) dendritic cells (DCs) in the lower respiratory lymph nodes (LRLNs). To enable L-Sel(-/-) CTL activity, cell-sorted L-Sel(-/-)CD8(+) T cells were cocultured with cell-sorted L-Sel(+/+)CD8(+) or CD8(-) DCs or L-Sel(-/-)CD8(-) DCs. Only the CD8(+) DCs restored CTL activity; L-Sel(-/-)CD8(-) DCs failed to support L-Sel(+/+) CTLs because these remained immature, lacking the ability to express costimulatory molecules CD40, CD80, or CD86. Although no lung CD8(+) DCs were detected, the DC environment remained suppressive in L-Sel(-/-) mice evident by the lack of CTL responses following adenoviral challenge with OVA in recipient L-Sel(-/-) adoptively transferred with OT-1 CD8(+) T cells. To assess whether the L-Sel(-/-)CD8(-) DCs could be induced into maturity, microbial stimulation studies were performed showing the failure of L-Sel(-/-) LRLN to make matured DCs. When L-Sel(-/-) mice were subjected in vivo to microbial activation before Ad2 vector dosing, CTL activity was restored stimulating the renewed presence of LRLN CD8(+) DCs in L-Sel(-/-) mice. These studies show that impairment of L-Sel(-/-) DC maturation results in insufficient mature DCs that require microbial activation to restore increases in respiratory CD8(+) DCs to support CTL responses.  相似文献   

14.
The lymphoid chemokines CCL19 and CCL21 are known to be crucial both for lymphoid cell trafficking and for the structural organization of lymphoid tissues such as nasopharynx-associated lymphoid tissue (NALT). However, their role in allergic responses remains unclear, and so our current study aims to shed light on the role of CCL19/CCL21 in the development of allergic rhinitis. After nasal challenge with OVA, OVA-sensitized plt (paucity of lymph node T cells) mice, which are deficient in CCL19/CCL21, showed more severe allergic symptoms than did identically treated wild-type mice. OVA-specific IgE production, eosinophil infiltration, and Th2 responses were enhanced in the upper airway of plt mice. Moreover, in plt mice, the number of CD4(+)CD25(+) regulatory T cells declined in the secondary lymphoid tissues, whereas the number of Th2-inducer-type CD8alpha(-)CD11b(+) myeloid dendritic cells (m-DCs) increased in cervical lymph nodes and NALT. Nasal administration of the plasmid-encoding DNA of CCL19 resulted in the reduction of m-DCs in the secondary lymphoid tissues and the suppression of allergic responses in plt mice. These results suggest that CCL19/CCL21 act as regulatory chemokines for the control of airway allergic disease and so may offer a new strategy for the control of allergic disease.  相似文献   

15.
BACKGROUND: Dendritic cells (DCs) are the most potent antigen-presenting cells in initiating primary immune responses. Given the unique properties of DCs, gene-modified DCs represent a particularly attractive approach for immunotherapy of diseases such as cancer. METHODS: Gene-modified DCs were obtained by a receptor-mediated gene delivery system using adenovirus (Ad) particles as ligand and RNA or DNA condensed by polyethylenimine (PEI). In vitro transcribed polyadenylated or non-polyadenylated RNA was used. RNA-transduced DCs were generated expressing chicken ovalbumin (OVA) or chimeric constructs thereof, and compared with DNA-transduced DCs. RESULTS: Ad/PEI transfection complexes efficiently delivered RNA into DCs. Such RNA-transduced DCs induced OVA-specific T cell responses more effectively than DNA-transduced DCs. Furthermore, DCs transduced with polyadenylated RNA were more potent in stimulating CD4(+) and CD8(+) T cell responses than DCs transduced with non-polyadenylated RNA and this was particularly important for CD4(+) T cell responses. CONCLUSIONS: Ad/PEI/RNA transfection is an efficient means for generating RNA-transduced DCs and for stimulating antigen-specific T cell responses. Polyadenylation of RNA enhances CD8(+) T cell responses and is essential for CD4(+) T cell responses.  相似文献   

16.
Priming of CTLs at mucosal sites, where various tumors are originated, seems critical for controlling tumors. In the present study, the effect of the oral administration of OVA plus adjuvant cholera toxin (CT) on the induction of Ag-specific mucosal CTLs as well as their effect on tumor regression was investigated. Although OVA-specific TCRs expressing lymphocytes requiring in vitro restimulation to gain specific cytotoxicity could be detected by OVA peptide-bearing tetramers in both freshly isolated intraepithelial lymphocytes and spleen cells when OVA was orally administered CT, those showing direct cytotoxic activity without requiring in vitro restimulation were dominantly observed in intraepithelial lymphocytes. The magnitude of such direct cytotoxicity at mucosal sites was drastically enhanced after the second oral administration of OVA with intact whole CT but not with its subcomponent, an A subunit (CTA) or a B subunit (CTB). When OVA plus CT were orally administrated to C57BL/6 mice bearing OVA-expressing syngeneic tumor cells, E.G7-OVA, in either gastric tissue or the dermis, tumor growth was significantly suppressed after the second oral treatment; however, s.c. or i.p. injection of OVA plus CT did not show any remarkable suppression. Those mucosal OVA-specific CTLs having direct cytotoxicity expressed CD8alphabeta but not CD8alphaalpha, suggesting that they originated from thymus-educated cells. Moreover, the infiltration of such OVA-specific CD8(+) CTLs was observed in suppressed tumor tissues. These results indicate that the growth of ongoing tumor cells can be suppressed by activated CD8alphabeta CTLs with tumor-specific cytotoxicity via an orally administered tumor Ag with a suitable mucosal adjuvant.  相似文献   

17.
Cancer vaccines aim to induce CTL responses against tumors. Challenges for vaccine design are targeting Ag to dendritic cells (DCs) in vivo, facilitating cross-presentation, and conditioning the microenvironment for Th1 type immune responses. In this study, we report that ISCOM vaccines, which consist of ISCOMATRIX adjuvant and protein Ag, meet these challenges. Subcutaneous injection of an ISCOM vaccine in mice led to a substantial influx and activation of innate and adaptive immune effector cells in vaccine site-draining lymph nodes (VDLNs) as well as IFN-γ production by NK and NKT cells. Moreover, an ISCOM vaccine containing the model Ag OVA (OVA/ISCOM vaccine) was efficiently taken up by CD8α(+) DCs in VDLNs and induced their maturation and IL-12 production. Adoptive transfer of transgenic OT-I T cells revealed highly efficient cross-presentation of the OVA/ISCOM vaccine in vivo, whereas cross-presentation of soluble OVA was poor even at a 100-fold higher concentration. Cross-presenting activity was restricted to CD8α(+) DCs in VDLNs, whereas Langerin(+) DCs and CD8α(-) DCs were dispensable. Remarkably, compared with other adjuvant systems, the OVA/ISCOM vaccine induced a high frequency of OVA-specific CTLs capable of tumor cell killing in different tumor models. Thus, ISCOM vaccines combine potent immune activation with Ag delivery to CD8α(+) DCs in vivo for efficient induction of CTL responses.  相似文献   

18.
The activation of Ag-specific T cells locally in the CNS could potentially contribute to the development of immune-mediated brain diseases. We addressed whether Ag-specific T cells could be stimulated in the CNS in the absence of peripheral lymphoid tissues by analyzing Ag-specific T cell responses in organotypic brain slice cultures. Organotypic brain slice cultures were established 1 h after intracerebral OVA Ag microinjection. We showed that when OVA-specific CD8(+) T cells were added to Ag-containing brain slices, these cells became activated and migrated into the brain to the sites of their specific Ags. This activation of OVA-specific T cells was abrogated by the deletion of CD11c(+) cells from the brain slices of the donor mice. These data suggest that brain-resident CD11c(+) cells stimulate Ag-specific naive CD8(+) T cells locally in the CNS and may contribute to immune responses in the brain.  相似文献   

19.
T regulatory cells 1 inhibit a Th2-specific response in vivo   总被引:20,自引:0,他引:20  
We recently described a new population of CD4(+) regulatory T cells (Tr1) that inhibits proliferative responses of bystander T cells and prevents colitis induction in vivo through the secretion of IL-10. IL-10, which had been primarily described as a Th2-specific cytokine inhibiting Th1 responses, has displayed in several models a more general immune suppression on both types of effector T cell responses. Using an immediate hypersensitivity model in which BALB/c mice immunized with OVA (alum) normally generate Th2-dominated responses, we examined the ability of OVA-specific Tr1 T cell clones to inhibit OVA-specific cytokines and Ab responses. In contrast to Th2 or Th1 T cell clones, transfer of Tr1 T cell clones coincident with OVA immunization inhibited Ag-specific serum IgE responses, whereas IgG1 and IgG2a synthesis were not affected. This specific inhibition was mediated in part through IL-10 secretion as anti-IL-10 receptor Abs treatment reverted the inhibitory effect of Tr1 T cell clones. Although specifically targeted to IgE responses, Tr1 clones' inhibitory effects were more profound as they affected Ag-specific Th2 cell priming both in term of proliferative responses and cytokine secretion. These results suggest that regulatory T cells may play a fundamental role in maintaining the balance of the immune system to prevent allergic disorders.  相似文献   

20.
Intestinal autoimmune diseases are thought to be associated with a breakdown in tolerance, leading to mucosal lymphocyte activation perhaps as a result of encounter with bacterium-derived Ag. To study mucosal CD8(+) T cell activation, tolerance, and polarization of autoimmune reactivity to self-Ag, we developed a novel (Fabpl(4x at -132)-OVA) transgenic mouse model expressing a truncated form of OVA in intestinal epithelia of the terminal ileum and colon. We found that OVA-specific CD8(+) T cells were partially tolerant to intestinal epithelium-derived OVA, because oral infection with Listeria monocytogenes-encoding OVA did not elicit an endogenous OVA-specific MHC class I tetramer(+)CD8(+) T cell response and IFN-gamma-, IL-4-, and IL-5-secreting T cells were decreased in the Peyer's patches, mesenteric lymph nodes, and intestinal mucosa of transgenic mice. Adoptive transfer of OVA-specific CD8(+) (OT-I) T cells resulted in their preferential expansion in the Peyer's patches and mesenteric lymph nodes and subsequently in the epithelia and lamina propria but failed to cause mucosal inflammation. Thus, CFSE-labeled OT-I cells greatly proliferated in these tissues by 5 days posttransfer. Strikingly, OT-I cell-transferred Fabpl(4x at -132)-OVA transgenic mice underwent a transient weight loss and developed a CD8(+) T cell-mediated acute enterocolitis 5 days after oral L. monocytogenes-encoding OVA infection. These findings indicate that intestinal epithelium-derived "self-Ag" gains access to the mucosal immune system, leading to Ag-specific T cell activation and clonal deletion. However, when Ag is presented in the context of bacterial infection, the associated inflammatory signals drive Ag-specific CD8(+) T cells to mediate intestinal immunopathology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号