首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The complete amino acid sequence of sialic acid binding lectin from frog (Rana catesbeiana) egg is presented. The 111-residue sequence was determined by the analysis of peptides generated by digestion of the S-carboxymethylated protein with Achromobacter protease I, chymotrypsin, or cyanogen bromide. The sequence is unique and not homologous to any known protein sequence. The protein may represent a new type of lectin.  相似文献   

2.
Amino-acid sequence of ribonuclease T2 from Aspergillus oryzae   总被引:12,自引:0,他引:12  
The amino acid sequence of ribonuclease T2 (RNase T2) from Aspergillus oryzae has been determined. This has been achieved by analyzing peptides obtained by digestions with Achromobacter lyticus protease I, Staphylococcus aureus V8 protease, and alpha-chymotrypsin of two large cyanogen bromide peptides derived from the reduced and S-carboxymethylated or S-aminoethylated protein. Digestion with A. lyticus protease I was successfully used to degrade the N-terminal half of the S-aminoethylated protein at cysteine residues. RNase T2 is a glycoprotein consisting of 239 amino acid residues with a relative molecular mass of 29,155. The sugar content is 7.9% (by mass). Three glycosylation sites were determined at Asns 15, 76 and 239. Apparently RNase T2 has a very low degree of sequence similarity with RNase T1, but a considerable similarity is observed around the amino acid residues involved in substrate recognition and binding in RNase T1. These similar residues may be important for the catalytic activity of RNase T2.  相似文献   

3.
The complete amino acid sequence of recombinant human Cu-Zn superoxide dismutase (CuZnSOD) is presented. The S-carboxymethylated protein was cleaved at lysine residues (with Achromobacter protease I) to provide a set of nine non-overlapping fragments accounting for 90% of the sequence. These fragments were then overlapped and aligned, and the sequence was completed by using peptides generated by cleavage at glutamic acid residues (with S. aureus V8 protease) and at arginine (with clostripain). The recombinant protein contains a single disulfide bond between cysteine residues 57 and 146. The primary sequence of recombinant human CuZnSOD is identical to that predicted by its cDNA sequence.  相似文献   

4.
The complete amino acid sequence of Achromobacter lyticus protease I (EC 3.4.21.50), which specifically hydrolyzes lysyl peptide bonds, has been established. This has been achieved by sequence analysis of the reduced and S-carboxymethylated protease and of peptides obtained by enzymatic digestion with Achromobacter protease I itself and Staphylococcus aureus V8 protease and by chemical cleavage with cyanogen bromide. The protease consists of 268 residues with three disulfide bonds, which have been assigned to Cys6-Cys216, Cys12-Cys80, and Cys36-Cys58. Comparison of the amino acid sequence of Achromobacter protease and other serine proteases of bacterial and mammalian origins has revealed that Achromobacter protease I is a mammalian-type serine protease of which the catalytic triad comprises His57, Asp113, and Ser194. It has also been shown that the protease has 9- and 26-residue extensions of the peptide chain at the N and C termini, respectively, and overall sequence homology is as low as 20% with bovine trypsin. The presence of a disulfide bridge between the N-terminal extension Cys6 and Cys216 close to the putative active site in the C-terminal region is thought to be responsible for the generation of maximal proteolytic function in the pH range 8.5-10.7 and enhanced stability to denaturation.  相似文献   

5.
The complete amino acid sequence of fibrolase, a fibrinolytic enzyme from southern copperhead (Agkistrodon contortrix contortrix) venom, has been determined. This is the first report of the sequence of a direct-acting, nonhemorrhagic fibrinolytic enzyme found in snake venom. The majority of the sequence was established by automated Edman degradation of overlapping peptides generated by a variety of selective cleavage procedures. The amino-terminus is blocked by a cyclized glutamine (pyroglutamic acid) residue, and the sequence of this region of the molecule was determined by mass spectrometry. Fibrolase is composed of 203 residues in a single polypeptide chain with a molecular weight of 22,891, as determined by the sequence. Its sequence is homologous to the sequence of the hemorrhagic toxin Ht-d of Crotalus atrox venom and with the sequences of two metalloproteinases from Trimeresurus flavoviridis venom. Microheterogeneity in the sequence was found at both the amino-terminus and at residues 189 and 192. All six cysteine residues in fibrolase are involved in disulfide bonds. A disulfide bond between cysteine-118 and cysteine-198 has been established and bonds between cysteines-158/165 and between cysteines-160/192 are inferred from the homology to Ht-d. Secondary structure prediction reveals a very low percentage of alpha-helix (4%), but much greater beta-structure (39.5%). Analysis of the sequence reveals the absence of asparagine-linked glycosylation sites defined by the consensus sequence: asparagine-X-serine/threonine.  相似文献   

6.
A novel bacteriolytic enzyme CwhA (cell wall hydrolytic amidase) was purified by ion exchange and gel-filtration chromatographies from a commercial bacteriolytic preparation from Achromobacter lyticus. CwhA exhibited optimal pH at 8.5 and lysed CHCl(3)-treated Escherichia coli more efficiently than Micrococcus luteus, Staphylococcus aureus, Enterococcus faecalis, and Pediococcus acidilactici. The enzyme was inhibited by 1,10-phenanthroline strongly and by EDTA to a lesser extent, suggesting that it is probably a metalloenzyme. Amino acid composition and mass spectrometric analyses for the CwhA-derived M. luteus muropeptides revealed that CwhA is N-acetylmuramoyl-L-alanine amidase [EC 3.5.1. 28]. The complete amino acid sequence of CwhA was established by a combination of Edman degradation and mass spectrometry for peptides obtained by Achromobacter protease I (API) digestion and cyanogen bromide (CNBr) cleavage. The enzyme consists of a single polypeptide chain of 177 amino acid residues with one disulfide bond, Cys114-Cys121. CwhA was found to be homologous to N-acetylmuramoyl-L-alanine amidase from bacteriophage T7 (BPT7). Its sequence identity with BPT7 is 35%, but the amino acid residues functioning as zinc ligands in BPT7 are absent in CwhA. These results suggest that CwhA is a new type of N-acetylmuramoyl-L-alanine amidase.  相似文献   

7.
Primary structure of nuclease P1 from Penicillium citrinum   总被引:3,自引:0,他引:3  
The primary structure of nuclease P1, which cleaves both RNA and single-stranded DNA, from Penicillium citrinum was elucidated. The complete amino acid sequence consisting of 270 residues was determined by analysis of peptides obtained by digestion with Achromobacter protease I of the reduced and S-aminoethylated protein and by digestion with Staphylococcus aureus V8 protease of the reduced and S-carboxymethylated protein. Four half-cystine residues were assigned to Cys72-Cys217 and Cys80-Cys85. N-Glycosylated asparagine residues were identified at positions 92, 138, 184 and 197. Fast-atom-bombardment and laser-ionization MS were successfully used to confirm the determined amino acid sequences of peptides and to estimate the molecular mass of this glycoprotein having heterogenous sugar moieties, respectively. Comparison of the amino acid sequence of nuclease P1 with other nucleases revealed that the protein has a high degree of sequence identity (50%) with nuclease S1 from Aspergillus oryzae. The His-Phe-Xaa-Asp-Ala sequence (positions 60-64) is similar to the sequence (His-Phe-Asp-Ala) involving the active-site His119 of bovine pancreatic RNase A, and the Pro-Leu-His sequence (positions 124-126) is identical with the sequence involving the active-site His134 of porcine pancreatic DNase I.  相似文献   

8.
A basic protein (pI 10.3), named basic protein II, was purified to homogeneity from the venom of Trimeresurus flavoviridis (Habu snake) after four chromatographic steps. The amino acid sequence of this protein was determined by sequencing the S-pyridylethylated derivative and its peptides produced by chemical (cyanogen bromide) and enzymatic (chymotrypsin, clostripain, and Staphylococcus aureus V8 protease) cleavages. The protein consisted of 122 amino acid residues and was found to be identical in sequence to basic protein I from the same source except that Asp-58 of basic protein I is replaced by asparagine. Like basic protein I, the structural feature of basic protein II is that Tyr-28 and Asp-49 common in phospholipases A2 from snake venoms and mammalian pancreas are replaced by asparagine and lysine, respectively. Thus, basic protein II belongs to the category of lysine-49-phospholipase A2. The action of basic protein II on 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphorylcholine released only oleic acid, indicating that it has phospholipase A2 activity. Its molar activity toward 1,2-dilauroyl-sn-glycero-3-phosphorylcholine, however, was only 1.7% of that of T. flavoviridis phospholipase A2 isolated previously. Affinity for Ca2+ and reactivity toward p-bromophenacyl bromide of basic protein II were 8 and 5.3 times, respectively, smaller than those of phospholipase A2 from the same source, substantiating the low phospholipase A2 activity of basic protein II.  相似文献   

9.
10.
M Peretz  Y Burstein 《Biochemistry》1989,28(16):6549-6555
The complete amino acid sequence of alcohol dehydrogenase of Thermoanaerobium brockii (TBAD) is presented. The S-carboxymethylated protein was cleaved at methionine residues (with cyanogen bromide) to provide a set of 10 nonoverlapping fragments accounting for 90% of the sequence. These fragments were then overlapped and aligned, and the sequence was completed by using peptides generated by proteolytic cleavage at lysine residues (with Achromobacter protease I). The protein subunit contained 352 amino acid residues corresponding to a molecular weight of 37,652. The sequence showed about 35% identity with that of the prokaryotic Alcaligenes eutrophus alcohol dehydrogenase and about 25% identity with any one of the eukaryotic alcohol/polyol dehydrogenases known today. Of these, only 18 residues (5%) are strictly conserved: 11 Gly, 2 Asp, and 1 each of Cys, His, Glu, Pro, and Val.  相似文献   

11.
A coagulant enzyme, named okinaxobin I, has been purified to homogeneity from the venom of Trimeresurus okinavensis (Himehabu) by chromatographies on Sephadex G-100 and CM-Toyopearl 650M columns. The enzyme was a monomer with a molecular weight of 37,000 and its isoelectric point was 5.4. The enzyme acted on fibrinogen to form fibrin clots with a specific activity of 77 NIH units/mg. Fibrinopeptide B was released at a rate much faster than fibrinopeptide A. The enzyme exhibited 2 to 3 times higher activity toward tosyl-L-arginine methyl ester and benzoyl-L-arginine p-nitroanilide than bovine thrombin. The esterase activity was strongly inhibited by diisopropylfluorophosphate and phenylmethanesulfonyl fluoride, and to a lesser extent by tosyl-L-lysine chloromethyl ketone, indicating that the enzyme is a serine protease like thrombin. The N-terminal sequence was highly homologous to those of coagulant enzymes from T. flavoviridis and Bothrops atrox, moojeni venoms which preferentially release fibrinopeptide A. In order to remove most, if not all, of the bonded carbohydrates, the enzyme was treated with anhydrous hydrogen fluoride (HF), thereby reducing the molecular weight to 30,000. The protein contained approximately 260 amino acid residues when computation was based on this value. The HF-treated enzyme retained about 50% of the clotting and esterolytic (TAME) activities and preferentially released fibrinopeptide B from fibrinogen. The carbohydrate moiety is not crucial for enzyme activity but might be necessary for eliciting full activity.  相似文献   

12.
The complete amino acid sequence of 6-phospho-fructo-2-kinase/fructose-2,6-bisphosphatase from rat liver was determined by direct analysis of the S-carboxamidomethyl protein. A complete set of nonoverlapping peptides was produced by cleavage with a combination of cyanogen bromide and specific proteolytic enzymes. The active enzyme is a dimer of two identical polypeptide chains composed of 470 amino acids each. The NH2-terminal amino acid residue of the polypeptide chain was shown to be N-acetylserine by fast atom bombardment mass spectrometry of the purified N-terminal tetradecapeptide isolated after cleavage of the intact S-carboxamidomethylated protein with lysyl endoproteinase (Achromobacter protease I). Alignment of the set of unique peptides was accomplished by the analysis of selected overlapping peptides generated by proteolytic cleavage of the intact protein and the larger purified cyanogen bromide peptides with trypsin, Staphylococcus aureus V8 protease, and lysyl endoproteinase. Four nonoverlapping peptides were aligned by comparison with the amino acid sequence predicted from a partial cDNA clone encoding amino acid positions 166-470 of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (Colosia, A.D., Lively, M., El-Maghrabi, M. R., and Pilkis, S. J. (1987) Biochem. Biophys. Res. Commun. 143, 1092-1098). The nucleotide sequence of the cDNA corroborated the peptide sequence determined by direct methods. A search of the Protein Identification Resource protein sequence database revealed that the overall amino acid sequence appears to be unique since no obviously homologous sequences were identified. However, a 100-residue segment of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (residues 250-349), including the active site histidine residue of the bisphosphatase domain, was found to be homologous to the active site regions of yeast phosphoglycerate mutase and human bisphosphoglycerate mutase.  相似文献   

13.
Dipeptidyl peptidase activity was investigated in snake venoms from Gloydius blomhoffi brevicaudus, Gloydius halys blomhoffii, Trimeresurus flavoviridis and Crotalus atrox. The strongest dipeptidyl peptidase IV (DPP IV) activity was found in venom from G. blomhoffi brevicaudus. The substrate specificity, susceptibility to inhibitors, and pH optimum of the partially purified enzyme were similar to those of known DPP IVs from bacteria and eukaryotes. The G. blomhoffi brevicaudus venom gland cDNA library was screened to isolate cDNA clones using probes based on amino acid sequences highly conserved in known DPP IVs. Two cDNA species encoding DPP IV were obtained, and designated as DPP IVa and DPP IVb. This is the first study to report the primary structure of DPP IV from a reptile. The deduced amino acid sequences for DPP IVa and DPP IVb both consist of 751amino acid residues and are highly homologous to each other. A putative catalytic triad for serine proteases, Ser-616, Asp-694, and His-726, is present. It is of particular interest that the deduced NH(2)-terminal sequence associated with the characteristic signal peptide is identical to that determined from the purified DPP IV. This indicates that the signal peptide of snake venom DPP IV is not cleaved off during biosynthesis, unlike those of other snake venom proteins.  相似文献   

14.
The complete amino acid sequence of rat kidney ornithine aminotransferase [EC 2.6.1.13] is presented. The 404-residue sequence was determined by analysis of peptides generated by digestion of the S-carboxyamidomethylated protein with CNBr, Achromobacter protease I, arginylendopeptidase, or Staphylococcus aureus V8 protease. Mueckler and Pitot have reported the amino acid sequence of the rat liver enzyme (440 residues) as predicted from the nucleotide sequence of the cDNA [Mueckler, M.M. & Pitot, H.C. (1985) J. Biol. Chem. 260, 12993-12997]. The amino acid sequence of the rat kidney enzyme presented herein coincides with residue 36 (Gly) through 440 (Phe) of the predicted precursor protein, indicating that the liver and kidney enzymes are identical, and that the enzyme is processed at the amino-terminal region after translation.  相似文献   

15.
M Ishiguro  K Takio  M Suzuki  R Oyama  T Matsuzawa  K Titani 《Biochemistry》1991,30(43):10451-10457
The complete amino acid sequence of human liver cytosolic alanine aminotransferase (GPT) (EC 2.6.1.2) is presented. Two primary sets of overlapping fragments were obtained by cleavage of the pyridylethylated protein at methionyl and lysyl bonds with cyanogen bromide and Achromobacter protease I, respectively. Isolated peptides were analyzed with a protein sequencer or with a plasma desorption time of flight mass spectrometer and placed in the sequence on the basis of their molecular mass and homology to the sequence of rat GPT. The protein was found to be acetylated at the amino terminus and contained 495 amino acid residues. The Mr of the subunit was calculated to be 54,479, which was in good agreement with a Mr of 55,000 estimated by SDS-PAGE, and also indicated that the active enzyme with a Mr of 114,000 was a homodimer composed of two identical subunits. The amino acid sequence is highly homologous to that of rat GPT (87.9% identity) recently determined [Ishiguro, M., Suzuki, M., Takio, K., Matsuzawa, T., & Titani, K. (1991) Biochemistry 30, 6048-6053]. All of the crucial amino acid residues are conserved in human GPT, which seem to be hydrogen bonding to pyridoxal 5'-phosphate in rat GPT by the sequence homology to other alpha-aminotransferases with known tertiary structures.  相似文献   

16.
The sequence of two overlapping cDNA clones for the zinc metalloproteinase hemorrhagic toxin e (also known as atrolysin e, EC 3.4.24.44) from the venom gland of Crotalus atrox, the Western diamondback rattlesnake, is presented. The assembled cDNA sequence is 1975 nucleotides in length and encodes an open reading frame of 478 amino acids. The mature hemorrhagic toxin e protein as isolated from the crude venom has a molecular weight of approximately 24,000 and thus represents the processed product of this open reading frame. From the deduced amino acid sequence, it can be hypothesized that the enzyme is translated with a signal sequence of 18 amino acids, an amino-terminal propeptide of 169 amino acids, a central hemorrhagic proteinase domain of 202 amino acids, and a carboxy-terminal sequence of 89 amino acids. The propeptide has a short region similar to the region involved in the activation of matrix metalloproteinase zymogens. The proteinase domain is similar to other snake venom metalloproteinases, with over 57% identity to the low molecular weight proteinases HR2a and H2-proteinase from the Habu snake Trimeresurus flavoviridis. The carboxy-terminal region, which is not observed in the mature protein, strongly resembles the protein sequence immediately following the proteinase domain of HR1B (a high molecular weight hemorrhagic proteinase from the venom of T. flavoviridis) and the members of a different family of snake venom polypeptides known for their platelet aggregation inhibitory activity, the disintegrins. The cDNA sequence bears striking similarity to a previously reported sequence for a disintegrin cDNA. This report is evidence that this subfamily of venom metalloproteinases is synthesized in a proenzyme form which must be proteolytically activated.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
T Isobe  T Okuyama 《FEBS letters》1985,182(2):389-392
The amino acid sequence of bovine brain micro glutamic acid-rich protein was determined by analysis of tryptic and Trimeresurus flavoviridis protease peptides of the molecule. The protein comprised 82 amino acid residues and has an Mr of 8992. The established sequence was highly homologous (90% identity) to the sequence of C-terminal 82 residues of the neurofilament 68-kDa protein from porcine spinal cord; there are differences of 8 residues which could be species-specific amino acid substitutions. This indicates that the micro glutamic acid-rich protein may arise by a restricted proteolysis of the neurofilament 68-kDa protein, with the break occuring toward the C-terminus.  相似文献   

18.
When Trimeresurus flavoviridis phospholipase A2 was reacted with methyl p-nitrobenzenesulfonate, its activity decreased following first-order kinetics. The pH dependence of the rate constants of inactivation showed that His-48 with an apparent pKa of 6.5 controls the reaction. In the pH region below 6.5, N1-methylhistidine was predominantly formed. On the other hand, N1,N3-dimethylhistidine was almost exclusively produced in the pH region above 6.5. No N3-methylhistidine was detected at any pH tested. Such observations suggested that the first methylation occurred at the N1-position of the imidazole ring followed by a second methylation at the N3-position, and that His-48 couples the carboxylate of Asp-99 at the N3-position of the imidazole ring, in accord with the interaction observed in the crystal structure of homologous Crotalus atrox phospholipase A2. As it has been reported that, in the reaction of chymotrypsin with methyl p-nitrobenzenesulfonate at pH 7.8, only monomethylation occurred at the N1-position of the His-57 imidazole group (Nakagawa, Y. & Bender, M.L. (1970) Biochemistry 9, 259-267), the nature of the active site histidine-aspartate couple of T. flavoviridis phospholipase A2 seems not to be identical with that of chymotrypsin.  相似文献   

19.
The complete amino acid sequence of the Drosophila melanogaster Cu,Zn superoxide dismutase subunit has been determined by automated Edman degradation. Sequence analyses were performed on the intact S-carboxymethylated protein, two fragments derived from CNBr cleavage, and three peptides recovered from mouse submaxillary protease digestion of the reduced and S-carboxymethylated enzyme. The peptides were aligned by characterizing peptides yielded by trypsin and Staphylococcus aureus V8 protease. All the peptides studied were purified exclusively by reverse-phase columns of HPLC and were analyzed with an improved liquid-phase sequencer. A molecular weight of 15,750 (subunit) was calculated from the 151 residues sequenced. The amino acid sequence of the Drosophila superoxide dismutase subunit is compared with that of four other eucaryotes: man, horse, cow, and yeast. Comparison of the five primary structures reveals very different rates of evolution at different times. Copper-zinc superoxide dismutase appears to be a very erratic evolutionary clock. Val-Val-Lys-Ala- Val-Cys-Val-Ile-Asn-Gly-Asp-Ala-Lys-Gly-Thr-Val-Phe-Phe-Glu-Gln- Glu-Ser-Ser-Gly-Thr-Pro-Val-Lys-Val-Ser-Gly-Glu-Val-Cys-Gly-Leu- Ala-Lys-Gly-Leu-His-Gly-Phe-His-Val-His-Glu-Phe-Gly-Asp-Asn-Thr- Asn-Gly-Cys-Met-Ser-Ser-Gly-Pro-His-Phe-Asn-Pro-Tyr-Gly-Lys-Glu- His-Gly-Ala-Pro-Val-Asp-Glu-Asn-Arg-His-Leu-Gly-Asp-Leu-Gly-Asn- Ile-Glu-Ala-Thr-Gly-Asp-Cys-Pro-Thr-Lys-Val-Asn-Ile-Thr-Asp-Ser- Lys-Ile-Thr-Leu-Phe-Gly-Ala-Asp-Ser-Ile-Ile-Gly-Arg-Thr-Val-Val-Val- His-Ala-Asp-Ala-Asp-Asp-Leu-Gly-Gln-Gly-Gly-His-Glu-Leu-Ser-Lys- Ser-Thr-Gly-Asn-Ala-Gly-Ala-Arg-Ile-Gly-Cys-Gly-Val-Ile-Gly-Ile- Ala-Lys.  相似文献   

20.
The refined high resolution crystal structure of the bovine phospholipase A2 was compared with its counterpart from the venom of Crotalus atrox, the western diamondbacked rattlesnake. The strong similarity in their backbone conformations forms the basis of a common numbering system for the amino acid sequence. The three common major helices and much of the extended chain form a nearly identical "homologous core" structure. The variations in conformation usually arise from deletions/insertions or en bloc shifts of structural units. The exception to this is part of the highly conserved calcium-binding loop; however, this is to be expected as 1) there is no calcium ion sequestered in the venom dimer as there is in the case of the bovine enzyme and 2) two side chains in that segment form dimer-stabilizing interactions between the subunits of the C. atrox enzyme. The absolutely conserved catalytic network of hydrogen-bonded side chains formed by His 48, Tyr 52, Tyr 73, and Asp 99, as well as the hydrophobic wall that shields it, are virtually superimposable in the two structures. However, the details of the structural relationship between the amino terminus and the catalytic network differ in the two species and the ordered water molecules thought to be either functionally or structurally important in the pancreatic enzymes are not found in the crystal structure of the phospholipase A2 from C. atrox. The most striking difference from a functional standpoint is the fact that the surface depression in the region of the catalytic network that has been commonly considered the active site is shielded substantially in forming the intersubunit contact surface of the dimeric venom enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号