首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
B. D. Whitaker 《Planta》1992,187(2):261-265
Chloroplasts from fruits and leaves of Capsicum annuum cv. Bell Tower were purified on sucrose gradients, and the lipids were separated by column and thin-layer chromatography. The glycerolipids mono- and digalactosyldiacylglycerol (MGDG, DGDG), sulfoquinovosyldiacylglycerol (SQDG), and phosphatidylglycerol (PG) were quantified, and the fatty-acid composition at the 1 and 2 positions of the glycerol moiety (sn-1 and sn-2) was determined after hydrolysis with position-specific lipases. In fruit chloroplasts, 3-trans hexadecenoate (trans-3-161) was absent and replaced by palmitate (160) at sn-2 of PG, and 7,10,13-hexadecatrienoate (163) at sn-2 of MGDG was greatly reduced and largely replaced by linoleate (182). The ratio of 182 to linolenate (183) was consistently greater in glycerolipids from fruit compared with leaf chloroplasts. The lower percentage of C-16 fatty acids at sn-2 indicated that prokaryotic molecular species were reduced by 15% in DGDG, 40% in SQDG, and 90% in MGDG, in fruit compared with leaf chloroplasts. The MGDGDGDG ratios in fruit and leaf chloroplasts were 1.21 and 2.21, respectively. Taken together, the data indicate that chloroplasts in Capsicum fruit are deficient in three desaturases: those that convert 1) 160 to 3-trans-161 at sn-2 of PG, 2) 160 to 7cis-161 at sn-2 of MGDG, and 3) 182 to 183 at both sn-1 and sn-2 of various chloroplast glycerolipids.Abbreviations Chl chlorophyll - DGDG digalactosyldiacylglycerol - FS free sterol - GL galactolipid - MGDG monogalactosyldiacylglycerol - PE phosphatidyl ethanolamine - PG phosphatidylglycerol - PL phospholipid - SQDG sulfoquinovosyldiacylglycerol We are grateful to Dr. Roger Calza for providing us with the tobacco gt11 cDNA expression library and to Dr. Eric Huttner for his advice throughout the screening procedure. We also wish to thank M. Gosse for his assistance in growing and maintaining our plants. T.W.B. was supported by a BAP research grant from the Commission of the European Communities.  相似文献   

2.
By means of reaction calorimetry we measured the apparent enthalpy change, Happ, of the binding of Mn2+-ions to goat -lactalbumin as a function of temperature. The observed Happ can be written as the sum of contributions resulting from a conformational and a binding process. In combination with the thermal unfolding curve of goat -lactalbumin, we succeeded in separating the complete set of thermodynamic parameters (H, G, S, Cp) into the binding and conformational contributions. By circular dichroism we showed that NH 4 + -ions, upon binding to bovine a-lactalbumin, induce the same conformational change as do Na+ and K+: the binding constant equals 98 ± 9 M–1.Abbreviations BLA bovine -lactalbumin - GLA goat -lactalbumin - HLA human -lactalbumin - CD circular dichroism Offprint requests to: H. Van DaelDeceased  相似文献   

3.
Clostridium sporogenes MD1 grew rapidly with peptides and amino acids as an energy source at pH 6.7. However, the proton motive force (p) was only –25 mV, and protonophores did not inhibit growth. When extracellular pH was decreased with HCl, the chemical gradient of protons (ZpH) and the electrical membrane potential () increased. The p was –125 mV at pH 4.7, even though growth was not observed. At pH 6.7, glucose addition did not cause an increase in growth rate, but increased to –70 mV. Protein synthesis inhibitors also significantly increased . Non-growing, arginine-energized cells had a of –80 mV at pH 6.7 or pH 4.7, but was not detected if the F1F0 ATPase was inhibited. Arginine-energized cells initiated growth if other amino acids were added at pH 6.7, and and ATP declined. At pH 4.7, ATP production remained high. However, growth could not be initiated, and neither nor the intracellular ATP concentration declined. Based on these results, it appears that C. sporogenes MD1 does not need a large p to grow, and p appears to serve as a mechanism of ATP dissipation or energy spilling.Mandatory disclaimer: Proprietary or brand names are necessary to report factually on available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by the USDA implies no approval of the product, and exclusion of others that may be suitable.  相似文献   

4.
The maximal growth rate of the marine cyanobacterium Oscillatoria brevis was reached at 200–400 mM NaCl and pH 9.0–9.6. NaCl was found (i) to stimulate the rate of the light-supported generation across the cytoplasmic membrane of the cells and (ii) to decrease the sensitivity of level and motility of the O. brevis trichomes to protonophorous uncouplers. The Na+/H+ antiporter, monensin, increased both and the uncoupler sensitivity of the cells. The data obtained agree with the assumption that O. brevis possesses a primary Na+ pump in its cytoplasmic membrane.Abbreviations ATP adenosine-5-triphosphate - TTFB tetrachlortrifluoromethylimidazol - CCCP carbonyl cyanide m-chlorophenylhydrazone - Na+ transmembrane electrochemical potential differences of Na+ - transmembrane electric potential difference - pNa transmembrane pNa difference  相似文献   

5.
The mechanism for synthesis of monounsaturated fatty acids under aerobic and anaerobic conditions was studied in the facultative anaerobic cyanobacterium, Oscillatoria limnetica. The hexadecenoic acid (C161) of aerobically grown O. limnetica was shown to contain both the 7 (79%) and 9 (21%) isomers, while the octadecenoic (C181) acid was entirely the 9 acid. Incorporation of [2-14C] acetate into the fatty acids under aerobic conditions resulted in synthesis of the 7 and 9 C161 and the 9 C181. Synthesis of unsaturated fatty acids in the presence of DCMU required sulfide. Anaerobic incubations in the presence of DCMU and sulfide (less than 0.003% atmospheric oxygen) resulted in a two-fold increase in monounsaturated fatty acids of both 7 and 9 C161 and 9 and 11 C181. The synthesis of these isomers is characteristic of a bacterialtype, anaerobic pathway.Abbreviations DCMU 3(3,4-dichlorophenyl)-1,1-dimethylurea - MFA monounsaturated fatty acid  相似文献   

6.
We have taken a systematic genetic approach to study the potential role of glutathione metabolism in aluminum (Al) toxicity and resistance, using disruption mutants available in Saccharomyces cerevisiae. Yeast disruption mutants defective in phospholipid hydroperoxide glutathione peroxidases (PHGPX; phgpx1 , phgpx2 , and phgpx3), were tested for their sensitivity to Al. The triple mutant, phgpx1 /2/3, was more sensitive to Al (55% reduction in growth at 300 M Al) than any single phgpx mutant, indicating that the PHGPX genes may collectively contribute to Al resistance. The hypersensitivity of phgpx3 to Al was overcome by complementation with PHGPX3, and all PHGPX genes showed increased expression in response to Al in the wild-type strain (YPH250), with maximum induction of approximately 2.5-fold for PHGPX3. Both phgpx3 and phgpx1/2/3 mutants were sensitive to oxidative stress (exposure to H2O2 or diamide). Lipid peroxidation was also increased in the phgpx1/2/3 mutant compared to the parental strain. Disruption mutants defective in genes for glutathione S-transferases (GSTs) (gtt1 and gtt2), glutathione biosynthesis (gsh1 and gsh2), glutathione reductase (glr1) and a glutathione transporter (opt1) did not show hypersensitivity to Al relative to the parental strain BY4741. Interestingly, a strain deleted for URE2, a gene which encodes a prion precursor with homology to GSTs, also showed hypersensitivity to Al. The hypersensitivity of the ure2 mutant could be overcome by complementation with URE2. Expression of URE2 in the parental strain increased approximately 2-fold in response to exposure to 100 M Al. Intracellular oxidation levels in the ure2 mutant showed a 2-fold (non-stressed) and 3-fold (when exposed-to 2 mM H2O2) increase compared to BY4741; however, the ure2 mutant showed no change in lipid peroxidation compared to the control. The phgpx1/2/3 and ure2 mutants both showed increased accumulation of Al. These findings suggest the involvement of PHGPX genes and a novel role of URE2 in Al toxicity/resistance in S. cerevisiae.Communicated by D.Y. Thomas  相似文献   

7.
Summary The excision of a Ds-like transposable element (Ac) is mediated in trans by the transposable element Ac or its derivatives in Petunia protoplasts cotransfected with two plasmid DNAs. Excision restores the activity of the -glucuronidase (GUS) gene that is otherwise shut off by the presence of Ac in its leader sequence. A transient expression assay (histochemical test) is used to detect the -glucuronidase activity at the protoplast level. The number of blue-stained protoplasts is a measure of the excision frequency. With Ac alone a near-zero background of GUS activity is detected, which is weakly enhanced by the presence, in trans, of either the wild-type Ac or the coding region (ORFa) transcribed from the 2 promoter of Agrobacterium tumefaciens TR-DNA. A strong enhancement is observed when a truncated Ac coding region, also under the control of the 2 promoter, is supplied in trans. The truncated version has ATG10 at codon 103 in frame with ORFa and is preceded by 7 out-of-frame ATGs. The assay is quick and well suited for detection of excision frequencies above the value obtained with the wild-type Ac. The presence of empty donor sites following excision can be demonstrated by PCR amplification and direct sequencing of the appropriate DNA fragment.  相似文献   

8.
The reaction of methanol dehydrogenase with cytochrome c L from Methylophaga marina and the reactions of the non-physiological substrates, Wurster's blue and ascorbic acid, with both proteins were studied as a function of temperature (4–32 °C), pressure (1–2000 bar) and ionic strength using the optical high pressure stopped-flow method. The thermodynamic parameters H, S and V were determined for all reactions where electron transfers are involved. These data allowed the determination of the Maxwell relationships which proved the internal thermodynamic consistency of the system under study. A conformational change on the cytochrome c L level was deduced from both breaks in the Arrhenius plots and the variation of the V with temperature.Abbreviations MOPS 4-morpholinepropanesulfonic acid - CHES 2-(cyclohexylamino)ethanesulfonic acid - MDH methanol dehydrogenase - EDTA ethylenedinitrilotetraacetic acid disodium salt - BTB bromothymol blue (3,3-dibromothymolsulfoneph-thalein) - PQQ 2,7,9-tricarboxy-lH-pyrrolo-[2,3f]quinoline-4,5-dione - cytochrome c HH mammalian horse heart cytochrome c  相似文献   

9.
A new method for cytofluorometric analysis of mitochondrial membrane potential has been developed by using TMRM as a cationic, mitochondrial selective probe. The method is based on limited treatment of cultured cells with digitonin which permeabilises the plasma membrane and leaves mitochondria intact. The resulting signal of TMRM-stained cells thus represents only the probe accumulated in mitochondria. Fibroblasts and cybrids were used as a model cell systems and optimal conditions for digitonin treatment and staining by TMRM were described. The TMRM signal collapsed by valinomycin, KCN and antimycin A and FCCP titration was used to gradually lower and characterise the stability of . The method is suitable for sensitive measurement of in different types of cultured cells.  相似文献   

10.
Summary Phlorizin binding is studied in isolated intestinal epithelial cells of the chick. Cells are ATP depleted to allow extensive manipulation of ionic gradients and membrane potential (). Phlorizin binding is assayed at steady state. Carrier specific phlorizin binding is defined asd-glucose (90 mM) inhibitable binding. Specific binding displays simple Michaelian kinetics as a function of phlorizin. indicating the presence of a single homogeneous binding site. Sodium concentrations and modify the apparent binding affinity but not the maximum number of binding sites. In contrast, the activation curve as a function of sodium concentrations is sigmoid and the apparent maximum number of binding sites at saturating sodium is phlorizin dependent. The rate of phlorizin association is both and sodium-concentration dependent. Dissociation is sodium-concentration dependent but not dependent. Theoretical analysis indicates binding order of substrates is random. In addition, data suggests that the phlorizin/sodium stoichiometry is 2:1. The dependence can be explained by two models: either translocation is the -dependent step and the free carrier is anionic, or sodium binding is the -dependent step.  相似文献   

11.
The magnitude of the proton motive force (p) and its constituents, the electrical () and chemical potential (-ZpH), were established for chemostat cultures of a protease-producing, relaxed (rel ) variant and a not protease-producing, stringent (rel +) variant of an industrial strain ofBacillus licheniformis (respectively referred to as the A- and the B-type). For both types, an inverse relation of p with the specific growth rate was found. The calculated intracellular pH (pHin) was not constant but inversely related to . This change in pHin might be related to regulatory functions of metabolism but a regulatory role for pHin itself could not be envisaged. Measurement of the adenylate energy charge (EC) showed a direct relation with for glucose-limited chemostat cultures; in nitrogen-limited chemostat cultures, the EC showed an approximately constant value at low and an increased value at higher . For both limitations, the ATP/ADP ratio was directly related to .The phosphorylation potential (G'p) was invariant with . From the values for G'p and p, a variable H+/ATP-stoichiometry was inferred: H+/ATP=1.83+0.52µ, so that at a given H+/O-ratio of four (4), the apparent P/O-ratio (inferred from regression analysis) showed a decline of 2.16 to 1.87 for =0 to max (we discuss how more than half of this decline will be independent of any change in internal cell-volume). We propose that the constancy of G'p and the decrease in the efficiency of energy-conservation (P/O-value) with increasing are a way in which the cells try to cope with an apparent less than perfect coordination between anabolism and catabolism to keep up the highest possible with a minimum loss of growth-efficiency. Protease production in nitrogen-limited cultures as compared to glucose-limited cultures, and the difference between the A- and B-type, could not be explained by a different energy-status of the cells.Abbreviations CCCP carbonylcyanide-p-trichloromethoxyphenylhydrazone - DW dry weight of biomass - F Faraday's constant, 96.6 J/(mV × mol) - Fo chemostat outflow-rate (ml/h) - FCCP carbonylcyanide-p-trifluoromethoxyphenylhydrazone - G'p phosphorylation potential, the Gibbs energy change for ATP-synthesis from ADP and Pi - G'0p standard Gibbs energy change at specified conditions - H+/ATP number of protons translocated through - ATP synthase in synthesis of one ATP - H+/O protons translocated during transfer of 2 electrons from substrate to oxygen - specific growth rate (1/h) - H+ transmembrane electrochemical proton potential, J/mol - Mb molar weight (147.6 g/mol) of bacteria with general cell formula C6.0H10.8O3.0N1.2 - pHout,in extracellular, intracellular pH - Pi (intracellular) inorganic phosphate - p proton motive force, mV - pH transmembrane pH-difference - transmembrane electrical potential, mV - P/O number of ADP phosphorylated to ATP upon reduction of one O2– to H2O by two electrons transferred through the electron transfer chain - P/O (H+/O) × (H+/ATP)–1 - P/OF, P/ON P/O with the two electrons donated by resp. (NADH + H+) and FADH - q specific rate of consumption or production (mol/g DW × h) - rel +,rel stringent, relaxed genotype - R universal gas constant, 8.36 J/(mol × degree) - T absolute temperature - TPMP+ triphenylmethylphosphonium ion - TPP+ tetraphenyl phosphonium ion - Y growth yield, g DW/mol - Z conversion constant=61.8 mV for 310 K (37 °C) - ZpH transmembrane proton potential or chemical potential, mV  相似文献   

12.
The chlorophyll a-binding protein CP47 directs excitation energy to the reaction center of photosystem II (PSII) during oxygenic photosynthesis and has additional structural and functional roles associated with the PSII water-oxidizing complex. Oligonucleotide-directed mutagenesis was employed to study loop C of CP47 (approximately Trp-162 to Gly-197) which faces the thylakoid lumen. Five short amino acid deletion strains, (S169–P171), (Y172–G176), (G176–P180), (E184–A188) and (F190–N194), were created that span this domain. The deletion between Gly-176 and Pro-180, located around the middle of loop C, produced an obligate photoheterotroph that could not assemble functional PSII centers. The deletions in mutants (S169–P171) and (Y172–G176) reduced PSII levels to 20% of the control and thus impaired photoautotrophic growth. In contrast, mutants (E184-A188) and (F190–N194) were photoautotrophic even though the number of photosystems was decreased by 50%. All PSII complexes assembled in the deletion strains had an increased susceptibility to photoinactivation and deletion of Glu-184 to Ala-188 prevented photoautotrophic growth under chloride-limiting conditions. Furthermore, the removal of the extrinsic PSII-O, PSII-U and PSII-V proteins from mutants (E184–A188) and (F190–N194) reduced the rates of oxygen evolution and, in the strains lacking either the PSII-O or PSII-V proteins, also increased the photoautotrophic doubling times. These effects were greater in mutant (E184–A188) than in mutant (F190–N194) and the order of importance for the removal of the extrinsic proteins was found to be PSII-V PSII-O > PSII-U.  相似文献   

13.
At low Ca2+ concentrations the pore of the inner mitochondrial membrane can open in substates with lower permeability (Hunter, D. R., and Haworth, R. A. (1979) Arch. Biochem. Biophys., 195, 468-477). Recently, we showed that Ca2+ loading of mitochondria augments the cyclosporin A-dependent decrease in transmembrane potential () across the inner mitochondrial membrane caused by 10 M myristic acid but does not affect the stimulation of respiration by this fatty acid. We have proposed that in our experiments the pore opened in a substate with lower permeability rather than in the classic state (Bodrova, M. E., et al. (2000) IUBMB Life, 50, 189-194). Here we show that under conditions lowering the probability of classic pore opening in Ca2+-loaded mitochondria myristic acid induces the cyclosporin A-sensitive decrease and mitochondrial swelling more effectively than uncoupler SF6847 does, though their protonophoric activities are equal. In the absence of Pi and presence of succinate and rotenone (with or without glutamate) cyclosporin A either reversed or only stopped decrease induced by 5 M myristic acid and 5 M Ca2+. In the last case nigericin, when added after cyclosporin A, reversed the decrease, and the following addition of EGTA produced only a weak (if any) increase. In Pi-containing medium (in the presence of glutamate and malate) cyclosporin A reversed the decrease. These data show that the cyclosporin A-sensitive decrease in by low concentrations of fatty acids and Ca2+ cannot be explained by specific uncoupling effect of fatty acid. We propose that: 1) low concentrations of Ca2+ and fatty acid induce the pore opening in a substate with a selective cation permeability, and the cyclosporin A-sensitive decrease results from a conversion of to pH gradient due to the electrogenic cation transport in mitochondria; 2) the ADP/ATP-antiporter is involved in this process; 3) higher efficiency of fatty acid compared to SF6847 in the Ca2+-dependent pore opening seems to be due to its interaction with the nucleotide-binding site of the ADP/ATP-antiporter and higher affinity of fatty acids to cations.  相似文献   

14.
The organic-matter carbon isotope discrimination () of lichens with a wide range of photobiont and/or cyanobiont associations was used to determine the presence or absence of a carbon-concentrating mechanism (CCM). Two groups were identified within the lichens with green algal photobionts. One group was characterised by low, more C4-like values ( < 15), the other by higher, more C3-like values ( > 18). Tri-partite lichens (lichens with a green alga as the primary photobiont and cyanobacteria within internal or external cephalodia) occurred in both groups. All lichens with cyanobacterial photobionts had low values ( < 15). The activity of the CCM, organic-matter values, on-line values and gas-exchange characteristics correlated with the presence of a pyrenoid in the algal chloroplast. Consistent with previous findings, lichens with Trebouxia as the primary photobiont possessed an active CCM while those containing Coccomyxa did not. Organic values for lichens with Stichococcus as the photobiont varied between 11 and 28. The lichen genera Endocarpon and Dermatocarpon (Stichococcus + pyrenoid) had C4-like organic values ( = 11 to 16.5) whereas the genus Chaenotheca (Stichococcus — pyrenoid) was characterised by high C3-like values ( = 22 to 28), unless it associated with Trebouxia ( = 16). Gas-exchange measurements demonstrated that Dermatocarpon had an affinity for CO2 comparable to those species which possessed the CCM, with K0.5 = 200–215 1 · 1–1, compensation point () = 45–48 l · l–1, compared with K0.5 = 195 1 · 1–1, = 441 · 1–1 for Trebouxioid lichens. Furthermore, lichens with Stichococcus as their photobiont released a small pool (24.2 ± 1.9 to 34.2 ± 2.5 nmol · mg–1 Chl) of inorganic carbon similar to that released by Trebouxioid lichens [CCM present, dissolved inorganic carbon (DIC) pool size = 51.0 ± 2.8 nmol · mg–1 Chl]. Lichens with Trentepohlia as photobiont did not possess an active CCM, with high C3-like organic values ( = 18 to 23). In particular, Roccella phycopsis had very high on-line values ( = 30 to 33), a low affinity for CO2 (K0.5 = 400 1 · 1–1, = 120 1 · –1) and a negligible DIC pool. These responses were comparable to those from lichens with Coccomyxa as the primary photobiont with Nostoc in cephalodia (organic = 17 to 25, on-line = 16 to 21, k0.5 = 388 1 · 1–1, = 85 1 · 1–1, DIC pool size = 8.5 ± 2.4 nmol · mg–1 Chl). The relative importance of refixation of respiratory CO2 and variations in source isotope signature were considered to account for any variation between on-line and organic . Organic was also measured for species of Anthocerotae and Hepaticae which contain pyrenoids and/or Nostoc enclosed within the thallus. The results of this screening showed that the pyrenoid is correlated with low, more C4-like organic values ( = 7 to 12 for members of the Anthocerotae with a pyrenoid compared with = 17 to 28 for the Hepaticae with and without Nostoc in vesicles) and confirms that the pyrenoid plays a fundamental role in the functioning of the CCM in microalgal photobionts and some bryophytes.Abbreviations and Symbols CCM carbon-concentrating mechanism - DIC dissolved inorganic carbon (CO2 + HCO 3 - + CO 3 2- ) - DW dry weight - K0.5 external concentration of CO2 at which half-maximal rates of CO2 assimilation are reached - photobiont photosynthetic organism present in the lichen - Rubisco ribulose-1,5-bisphosphate carboxylase-oxygenase - carbon isotope discrimination (%) - 13C carbon isotope ratio (%) This research was funded by Natural Environment Research Council grant no. GR3/8313. The authors would also like to thank Dr. B. Coppins, Royal Botanic Gardens Edinburgh and Prof. A. Roy Perry, National Museum of Wales, for access to herbarium collections, Dr. T. Booth for confocal microscopy work and Dr. A.J. Richards, University of Newcastle upon Tyne and Dr. O.L. Gilbert, University of Sheffield for identifying bryophytes and lichens respectively. E.S. would particularly like to thank Dr. M. Broadmeadow, The Forestry Authority, Farnham, Surrey, and Cristina Máguas, Universidade de Lisboa, for their advice and expertise at the beginning of the project.  相似文献   

15.
We investigated the flash-induced electrochromic absorbance change, A 515, of isolated intact chloroplasts in continuous monochromatic background light of different intensities and wavelengths. From the variation of the amplitude of A 515 in background illumination the steady-state turnover time of electron transport was found to be around 100 msec and the slowest process could be assigned to a photosystem 1 driven cycle. The change of pH induced by nigericin, ATP, or ADP did not modify substantially the turnover time.In contrast to earlier observations the slow rise (10 msec) of A 515 in untreated chloroplasts persists also at high-intensity background illumination exciting both photosystems. The proportion of the slow rise of A 515 in nigericin-treated chloroplasts increases in the presence of background light. This result on the slow rise is discussed in terms of two different models existing in the literature.  相似文献   

16.
Bees were trained to react to differences both in the size and in the degree of greyness of discs. To measure the differential sensitivity on these parameters, differences in size and shade of grey (-intervals) were established such as lead to a specific choice reaction (Fig. 3). The -intervals may be described for both parameters by Weber's rule (Fig. 4). The main result is the following relationship between the differential sensitivity and the equivalence curve as defined by cross modality matching. The bee treats two discs, which differ from a reference disc in diameter or in degree of greyness, as equivalent when both differ from the reference disc by an equal number of -intervals (Fig. 6). The choice reactions between the reference disc and the discs of the equivalent pair are the same for these parameters. This does not hold for another parameter (Fig. 7A and B). Problems of infering from the -intervals to the differential sensitivity are then discussed.  相似文献   

17.
Summary Determinations of current-voltage relationships are widely employed in the characterization of epithelial sodium transport. In order to determine the protocol dependence of transport parameters in the toad urinary bladder, studies were carried out in the presence and absence of amiloride, an inhibitor of active sodium transport. With symmetric positive and negative perturbations of the transepithelial electrical potential difference (0±100 mV) for 30 sec, the amiloride-sensitive current-voltage (i a -) relationship was near linear over the range –75+100 mV, indicating constancy of the conductance a and the apparent electromotive force E Na, lumped parameters of the standard electrical equivalent circuit model of the active transport system. With a reverse protocol (±1000 mV) or 15 min perturbations thei a - relationships were highly nonlinear. Nonlinearity reflected voltage dependence of parameters: perturbations that increased active transport decreased E Na and increased a, as evaluated from 10 sec perturbations of ; slowing of active transport produced the converse changes. These effects are usefully analyzed in both quasi-steady states and true steady states by means of a detailed equivalent circuit incorporating the significant ionic currents across each plasma membrane. Precise understanding of the significance of a and E Na will require characterization of the partial ionic conductances on perturbation of .  相似文献   

18.
Brevibacterium flavum 22LD-P cells were shown to maintain a transmembrane pH gradient (pH) from 0.6 to 1.8–2 units and a transmembrane electric potential difference () from 0 to 200 mV depending on the pH and ionic composition of the incubation medium, grwoth substrate and concentration of cells. decreased from 120–140 mV to 0 when medium pH was lowered from neutral to 5.0–5.5 and increased to 180–200 mV when medium pH was raised to 8–9 in cells utilizing acetate or endogenous substrate. Cells growing on sucrose, kept around 100–120 mV at neutral as well as acidic medium pH. Intracellular pH in the acetate utilizing or endogenously respiring cells was maintained with the range of 8.9 to 5.5 at medium pH ranging from 9.1 to 4.0, respectively. Sucrose grown cells were able to maintain a more stable intracellular pH. Endogenously respiring cells in potassium phosphate buffer at high biomass concentrations maintained larger pH and relatively smaller , than the same cells in diluted suspensions. Cells in sodium phosphate buffer possessed larger and almost no pH, but was still dependent on biomass concentration.The lack of intracellular pH homeostasis and the collapse of at acid medium pH are discussed in the context of cell membrane proton permeability.  相似文献   

19.
Carbon isotope discrimination () has been suggested as a selection criterion to improve transpiration efficiency (W) in bread wheat (Triticum aestivum L.). Cultivars Chinese Spring with low A (high W) and Yecora Rojo with high (low W) were crossed to develop F1, F2, BC1, and BC2 populations for genetic analysis of and other agronomic characters under well-watered (wet) and water-stressed (dry) field conditions. Significant variation was observed among the generations for only under the wet environment. Generation x irrigation interactions were not significant for . Generation means analysis indicated that additive gene action is of primary importance in the expression of under nonstress conditions. Dominance gene action was also detected for , and the direction of dominance was toward higher values of . The broad-sense and the narrow-sense heritabilities for were 61 % and 57% under the wet conditions, but were 48% and 12% under the draughted conditions, respectively. The narrow-sense heritabilities for grain yield, above-ground dry matter, and harvest index were 36%, 39%, and 60% under the wet conditions and 21%, 44%, and 20% under dry conditions, respectively. The significant additive genetic variation and moderate estimate of the narrow-sense heritability observed for indicated that selection under wet environments should be effective in changing in spring bread wheat.  相似文献   

20.
A model of membrane potential-dependent distribution of oxonol VI to estimate the electrical potential difference across Schizosaccharomyces pombe plasma membrane vesicles (PMV) has been developed. was generated by the H+-ATPase reconstituted in the PMV. The model treatment was necessary since the usual calibration of the dye fluorescence changes by diffusion potentials (K+ + valinomycin) failed. The model allows for fitting of fluorescence changes at different vesicle and dye concentrations, yielding in ATP-energized PMV of 80 mV. The described model treatment to estimate may be applicable for other reconstituted membrane systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号