首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Thermophilic anaerobic digestion offers an attractive alternative for the treatment of medium- and high-strength wastewaters. However, literature reports reveal that thermophilic wastewater treatment systems are often more sensitive to environmental changes than the well-defined high-rate reactors at the mesophilic temperature range. Also, in many cases a poorer effluent quality is experienced while the carry over of suspended solids in the effluent is relatively high. In this paper recent achievements are discussed regarding the process stability of thermophilic anaerobic wastewater treatment systems. Laboratory experiments reveal a relatively low sensitivity to temperature changes if high-rate reactors with immobilized biomass are used. Other results show that if a staged process is applied, thermophilic reactors can be operated for prolonged periods of time under extreme loading conditions (80–100 kg chemical oxygen demand.m-3.day-1), while the concentrations of volatile fatty acids in the effluent remain at a low level.  相似文献   

2.
Synthetic wastewater containing -lactose and gelatin was treated in a thermophilic membrane-coupled bioreactor (MBR). Thermophilic (>45°C) treatment represents a potentially advantageous process for high-temperature as well as high-strength industrial wastewaters susceptible to reactor autoheating. Thermophilic systems, however, generally support a nonflocculating biomass that resists conventional methods of cell separation from the treated wastewater. MBRs were applied to thermophilic treatment systems because bacterial cells can be retained regardless of cell aggregation. Thermophilic aerobic MBRs were successfully operated at high levels of biocatalyst and produced a better effluent quality than analogous thermophilic bioreactors without cell recycle. At a hydraulic residence time (HRT) of 13.1 h, the chemical oxygen demand (COD) of the membrane eluate improved from 760 mg l−1 (without cell recycle) to 160 mg l−1 (with cell recycle). Bacterial community shifts were detected by denaturing gradient gel electrophoresis (DGGE) of polymerase chain reaction (PCR) -amplified 16S rRNA gene fragments — 6 of 13 bands disappeared within 2 days of MBR operation. A concomitant 40–50% reduction in physiological indicators of cell reactivity (RNA:protein; ATP:protein) was also observed. The specific activity of β-galactosidase and aminopeptidase, however, increased by 10–25%, indicating that there is a definite advantage to MBR operation at the highest biomass level possible. Nucleotide sequence analysis of 16S rDNA clones identified phylotypes from the low-G+C Gram-positive division and the β- and γ-subdivisions of Proteobacteria. Journal of Industrial Microbiology & Biotechnology (2001) 26, 203–209. Received 18 March 2000/ Accepted in revised form 26 January 2001  相似文献   

3.
A combined thermophilic-mesophilic wastewater treatment was studied using a laboratory-scale thermophilic activated sludge process (ASP) followed by mesophilic ASP or a thermophilic suspended carrier biofilm process (SCBP) followed by mesophilic ASP, both systems treating diluted molasses (dilution factor 1:500 corresponding GF/A-filtered COD (COD(filt)) of 1900+/-190 mgl(-1)). With hydraulic retention times (HRTs) of 12-18 h the thermophilic ASP and thermophilic SCBP removed 60+/-13% and 62+/-7% of COD(filt), respectively, with HRT of 8 h the removals were 48+/-1% and 69+/-4%. The sludge volume index (SVI) was notably lower in the thermophilic SCBP (measured from suspended sludge) than in the thermophilic ASP. Under the lowest HRT the mesophilic ASP gave better performance (as SVI, COD(filt), and COD(tot) removals) after the thermophilic SCBP than after the thermophilic ASP. Measured sludge yields were low (less than 0.1 kg suspended solids (SS) kg COD(filt removed)(-1)) in all processes. Both thermophilic treatments removed 80-85% of soluble COD (COD(sol)) whereas suspended COD (COD(susp)) and colloidal COD (COD(col)) were increased. Both mesophilic post-treatments removed all COD(col) and most of the COD(susp) from the thermophilic effluents. In conclusion, combined thermophilic-mesophilic treatment appeared to be easily operable and produced high effluent quality.  相似文献   

4.
Wang W  Ma W  Han H  Li H  Yuan M 《Bioresource technology》2011,102(3):2441-2447
Lurgi coal gasification wastewater (LCGW) is a refractory wastewater, whose anaerobic treatment has been a severe problem due to its toxicity and poor biodegradability. Using a mesophilic (35 ± 2 °C) reactor as a control, thermophilic anaerobic digestion (55 ± 2 °C) of LCGW was investigated in a UASB reactor. After 120 days of operation, the removal of COD and total phenols by the thermophilic reactor could reach 50-55% and 50-60% respectively, at an organic loading rate of 2.5 kg COD/(m3 d) and HRT of 24 h; the corresponding efficiencies were both only 20-30% in the mesophilic reactor. After thermophilic digestion, the wastewater concentrations of the aerobic effluent COD could reach below 200 mg/L compared with around 294 mg/L if mesophilic digestion was done and around 375 mg/L if sole aerobic pretreatment was done. The results suggested that thermophilic anaerobic digestion improved significantly both anaerobic and aerobic biodegradation of LCGW.  相似文献   

5.
6.
The influence of ammonia on the anaerobic degradation of peptone by mesophilic and thermophilic populations of biowaste was investigated. For peptone concentrations from 5 g l−1 to 20 g l−1 the mesophilic population revealed a higher rate of deamination than the thermophilic population, e.g. 552 mg l−1 day−1 compared to 320 mg l−1 day−1 at 10 g l−1 peptone. The final degree of deamination of the thermophilic population was, however, higher: 102 compared to 87 mg NH3/g peptone in the mesophilic cultures. If 0.5–6.5 g l−1 ammonia was added to the mesophilic biowaste cultures, deamination of peptone, degradation of its chemical oxygen demand (COD) and formation of biogas were increasingly inhibited, but no hydrogen was formed. The thermophilic biowaste cultures were most active if around 1 g ammonia l−1 was present. Deamination, COD degradation and biogas production decreased at lower and higher ammonia concentrations and hydrogen was formed in addition to methane. Studies of the inhibition by ammonia of peptone deamination, COD degradation and methane formation revealed a K i (50%) for NH3 of 92, 95 and 88 mg l−1 at 37 °C and 251, 274 and 297 mg l−1 at 55 °C respectively. This indicated that the thermophilic flora tolerated significantly more NH3 than the mesophilic flora. In the mesophilic reactor effluent 4.6 × 108 peptone-degrading colony-forming units (cfu)/ml were culturable, whereas in the thermophilic reactor effluent growth of only 5.6 × 107 cfu/ml was observed. Received: 24 April 1998 / Received revision: 26 June 1998 / Accepted: 27 June 1998  相似文献   

7.
Anaerobic pretreated paper process water was characterized interms of readily biodegradable, slowly biodegradable, very slowly biodegradable and inert wastewaterfractions under mesophilic and thermophilic conditions. The anaerobic pretreated paper process water containeda relatively high amount of slowly biodegradable components and few easily biodegradable componentsas indicated by the ratio of short term BOD over the BOD5. Wastewater readily biodegradable COD, determinedas short term BOD, was almost similar when measured under both temperature conditions. Fractions ofslowly biodegradable COD and inert COD of the same wastewater were found to depend on the type of biomassinvolved in the test. Thermophilic aerobic biomass was not able to degrade the wastewater to the sameextent as the mesophilic biomass resulting in higher apparent inert COD levels. Furthermore, wastewater colloidalCOD did not flocculate under thermophilic conditions and was thus not removed from the liquid phase.  相似文献   

8.
Thermophilic anaerobic treatment of sulphur-rich paper mill wastewater (0.8-3.1 gCOD/l, 340–850 mgSO4/l; COD:SO4 3.4-5.3) was studied in three laboratory-scale, upflow anaerobic sludge blanket (UASB) reactors and in bioassays. The reactors were inoculated with non-adapted thermophilic granular sludge. In the bioassays, no inhibition of the inoculum was detected and about 62% COD removal (sulphide stripped) was obtained. About 70 to 80% of the removed COD was methanised. In the reactors, up to 60–74% COD removal (effluent sulphide stripped) was obtained at loading rates up to 10–30 kgCOD/m3d and hydraulic retention times down to 6 to 2 hours. The effluent total sulphide was up to 150–250 mg/l. Sulphide inhibition could not be confirmed from the reactor performances. The results from bioassays suggested that both the inoculum and sludge from the UASB reactor used acetate mainly for methane production, while sulphide was produced from hydrogen or its precursors.  相似文献   

9.
A sequencing batch reactor (SBR) system is demonstrated to biologically remove nitrogen, phosphorus and chemical oxygen demand (COD) to very low levels from abattoir wastewater. Each 6 h cycle contained three anoxic/anaerobic and aerobic sub-cycles with wastewater fed at the beginning of each anoxic/anaerobic period. The step-feed strategy was applied to avoid high-level build-up of nitrate or nitrite during nitrification, and therefore to facilitate the creation of anaerobic conditions required for biological phosphorus removal. A high degree removal of total phosphorus (>98%), total nitrogen (>97%) and total COD (>95%) was consistently and reliably achieved after a 3-month start-up period. The concentrations of total phosphate and inorganic nitrogen in the effluent were consistently lower than 0.2 mg P l−1 and 8 mg N l−1, respectively. Fluorescence in situ hybridization revealed that the sludge was enriched in Accumulibacter spp. (20–40%), a known polyphosphate accumulating organism, whereas the known glycogen accumulating organisms were almost absent. The SBR received two streams of abattoir wastewater, namely the effluent from a full-scale anaerobic pond (75%) and the effluent from a lab-scale high-rate pre-fermentor (25%), both receiving raw abattoir wastewater as feed. The pond effluent contained approximately 250 mg N l−1 total nitrogen and 40 mg P l−1 of total phosphorus, but relatively low levels of soluble COD (around 500 mg l−1). The high-rate lab-scale pre-fermentor, operated at 37°C and with a sludge retention time of 1 day, proved to be a cheap and effective method for providing supplementary volatile fatty acids allowing for high-degree of biological nutrient removal from abattoir wastewater.  相似文献   

10.
Two lab-scale plug flow activated sludge reactors were run in parallel for 4 months at 30 and 55 degrees C. Research focussed on: (1) COD (chemical oxygen demand) removal, (2) effluent turbidity at both temperatures, (3) the origin of effluent colloidal material and (4) the possible role of protozoa on turbidity levels. Total COD removal percentages over the whole experimental period were 66+/-7% at 30 degrees C and 53+/-11% at 55 degrees C. Differences in total COD removal between both systems were due to less removal of soluble and colloidal COD at 55 degrees C compared to the reference system. Thermophilic effluent turbidity was caused by a combination of influent colloidal particles that were not effectively retained in the sludge flocs, and erosion of the thermophilic activated sludge itself, as shown by denaturing gradient gel electrophoresis (DGGE) profiles. DGGE analysis of PCR-amplified 16S rDNA fragments from mesophilic and thermophilic sludge differed, indicating that different microbial communities were present in the two reactor systems. The effects of protozoal grazing on the effluent turbidity of both reactors was negligible and thus could not account for the large turbidity differences observed.  相似文献   

11.
Aerobic sludge granules are compact, strong microbial aggregates that have excellent settling ability and capability to efficiently treat high-strength and toxic wastewaters. Aerobic granules disintegrate under high organic loading rates (OLR). This study cultivated aerobic granules using acetate as the sole carbon and energy source in three identical sequencing batch reactors operated under OLR of 9–21.3 kg chemical oxygen demand (COD) m−3 day−1. The cultivated granules removed 94–96% of fed COD at OLR up to 9–19.5 kg COD m−3 day−1, and disintegrated at OLR of 21.3 kg COD m−3 day−1. Most tested isolates did not grow in the medium at >3,000 mg COD l−1; additionally, these strains lost capability for auto-aggregation and protein or polysaccharide productivity. This critical COD regime correlates strongly with the OLR range in which granules started disintegrating. Reduced protein quantity secreted by isolates was associated with the noted poor granule integrity under high OLR. This work identified a potential cause of biological nature for aerobic granules breakdown.  相似文献   

12.
Many beer breweries use high-rate anaerobic digestion (AD) systems to treat their soluble high-strength wastewater. Biogas from these AD systems is used to offset nonrenewable energy utilization in the brewery. With increasing nonrenewable energy costs, interest has mounted to also digest secondary residuals from the high-rate digester effluent, which consists of yeast cells, bacteria, methanogens, and small (hemi)cellulosic particles. Mesophilic (37 °C) and thermophilic (55 °C) lab-scale, low-rate continuously-stirred anaerobic digestion (CSAD) bioreactors were operated for 258 days by feeding secondary residuals at a volatile solids (VS) concentration of ∼40 g l−1. At a hydraulic retention time (HRT) of 15 days and a VS loading rate of 2.7 g VS l−1 day−1, the mesophilic bioreactor showed an average specific volumetric biogas production rate of 0.88 l CH4 l−1 day−1 and an effluent VS concentration of 22.2 g VS l−1 (43.0% VS removal efficiency) while the thermophilic bioreactor displayed similar performances. The overall methane yield for both systems was 0.21 l CH4 g−1 VS fed and 0.47–0.48 l CH4 g−1 VS removed. A primary limitation of thermophilic digestion of this protein-rich waste is the inhibition of methanogens due to higher nondissociated (free) ammonia (NH3) concentrations under similar total ammonium (NH4 +) concentrations at equilibrium. Since thermophilic AD did not result in advantageous methane production rates or yields, mesophilic AD was, therefore, superior in treating secondary residuals from high-rate AD effluent. An additional digester to convert secondary residuals to methane may increase the total biogas generation at the brewery by 8% compared to just conventional high-rate digestion of brewery wastewater alone. JIMB-2008: BioEnergy—Special issue.  相似文献   

13.
The development of granular sludge in thermophilic (55 degrees C) upflow anaerobic sludge blanket reactors was investigated. Acetate and a mixture of acetate and butyrate were used as substrates, serving as models for acidified waste-waters. Granular sludge with either Methanothrix or Methanosarcina as the predominant acetate utilizing methanogen was cultivated by allowing the loading rate to increase whenever the acetate concentration in the effluent dropped below 200 and 700 mg COD/L, respectively. The highest methane generation rates, up to 162 kg CH(4)-COD/m(3) day, or 2.53 mole CH(4)/L day, were achieved at hydraulic retention times down to 21 min, with granules consisting of Methanothrix. The formation of Methanothrix granules did not depend on the type of seed material, nor on the addition of inert support particles. The growth of granules proceeded rapidly with adapted seed material, even when the reactors were inoculated with low concentrations. With mesophilic seed materials growth of granules took much longer. Thermophilic Methanothrix granules strongly resemble mesophilic granules of the "filamentous" type. Some factors governing the thermophilic granulation process are discussed.  相似文献   

14.
Thermophilic biological pre-treatment enables enhanced anaerobic digestion for treatment of wastewater sludges but, at present, there is limited understanding of the hydrolytic–acidogenic microbial composition and its contribution to this process. In this study, the process was assessed by comparing the microbiology of thermophilic (50–65 °C) and mesophilic (35 °C) pre-treatment reactors treating primary sludge.  相似文献   

15.
A full-scale jet biogas internal loop anaerobic fluidized bed (JBILAFB) reactor, which requires low energy input and allows enhanced mass transfer, was constructed for the treatment of food processing wastewater. This reactor has an active volume of 798 m3 and can treat 33.3 m3 wastewater per hour. After pre-treating the raw wastewater by settling, oil separating and coagulation-air floating processes, the reactor was operated with a relatively shorter start-up time (55 days). Samples for the influent and effluent of the JBILAFB reactor were taken and analyzed daily for the whole process including both the start-up and stable running periods. When the volumetric COD loading fluctuated in the range of 1.6–5.6 kg COD m−3 day−1, the COD removal efficiency, the volatile fatty acid(VFA)/alkalinity ratio, the maximum biogas production and the content of CH4 in total biogas of the reactor were found to be 80.1 ± 5%, 0.2–0.5, 348.5 mday−1 and 94.5 ± 2.5%, respectively. Furthermore, the scanning electron microscope (SEM) results showed that anaerobic granular sludge and microorganism particles with biofilm coexisted in the reactor, and that the bacteria mainly in bacilli and cocci were observed as predominant species. All the data demonstrated that the enhanced mass transfer for gas, liquid and solid phases was achieved, and that the formation of microorganism granules and the removal of inhibitors increased the stability of the system.  相似文献   

16.
Starvation is not a prerequisite for the formation of aerobic granules   总被引:1,自引:0,他引:1  
Activated sludge with sludge volume index (SVI)30 of 77 ml g−1 and SVI30 of 433 ml g−1 was inoculated to start up reactors R1 and R2, respectively. In both R1 and R2, cycle time of 1 h and the influent chemical oxygen demand (COD) concentrations of 1,000 mg l−1 were employed. Initial settling time of 2 min resulted in the loss of a substantial amount of biomass as wash-out and high effluent COD concentrations within the first week of operation. This implied that there was no starvation phase in each cycle of R1 and R2 during the first week of operation. However, aerobic granules with a size above 400 μm formed by day 7. Thus, it was concluded that starvation was not a prerequisite for the formation of aerobic granules. When cycle time was 1 h, the instability of aerobic granules was observed. When cycle time was prolonged to 1.5 h and granular sludge of 200 ml was used to start up reactor R3, the reactor R3 reached steady state within 1 week. SVI, size, and the morphology of granular sludge in R3 remained stable during the 47-day operation, which indicated that prolonged starvation time had positive effects on the stability of aerobic granules.  相似文献   

17.
Thermophilic anaerobic digestion of high strength wastewaters   总被引:2,自引:0,他引:2  
Investigations on the thermophilic anaerobic treatment of high-strength wastewaters (14-65 kg COD/m(3)) are presented. Vinasse, the wastewater of alcohol distilleries, was used as an example of such wastewaters. Semicontinuously fed digestion experiments at high retention times revealed that the effluent quality of digestion at 55 degrees C is comparable with that at 30 degrees C at similar loading rates. The amount of methane formed per kilogram of vinasse drops almost linearly with increasing vinasse concentrations. This can be attributed to increasing concentrations of inhibitory compounds, resulting in increasing volatile fatty acid (VFA) concentrations in the effluent. The treatment of vinasse was also investigated using upflow anaerobic sludge blanket (UASB) reactors. Thermophilic granular sludge, cultivated on sucrose, was used as seed material. The sludge required a 4-month adaptation period, during which the size of the sludge granules decreased significantly. However, the settling characteristics remained satisfactory. After adaptation, high loading and methane generation rates could be accommodated at satisfactory treatment efficiencies, namely, 86.4 kg COD/m(3) day and 26 m(3) CH(4)(STP)/m(3) day, respectively. As in the semicontinuously fed digesters, the effluent VFA concentrations were virtually independent of the loading rates applied, indicating that the toxicity of the vinasse is more important than the loading rate in determining the efficiency of the conversion of vinasse to methane.  相似文献   

18.
The microbial communities established in mesophilic and thermophilic expanded granular sludge bed reactors operated with sulfate as the electron acceptor were analyzed using 16S rRNA targeted molecular methods, including denaturing gradient gel electrophoresis, cloning, and phylogenetic analysis. Bacterial and archaeal communities were examined over 450 days of operation treating ethanol (thermophilic reactor) or ethanol and later a simulated semiconductor manufacturing wastewater containing citrate, isopropanol, and polyethylene glycol 300 (mesophilic reactor), with and without the addition of copper(II). Analysis, of PCR-amplified 16S rRNA gene fragments using denaturing gradient gel electrophoresis revealed a defined shift in microbial diversity in both reactors following a change in substrate composition (mesophilic reactor) and in temperature of operation from 30°C to 55°C (thermophilic reactor). The addition of copper(II) to the influent of both reactors did not noticeably affect the composition of the bacterial or archaeal communities, which is in agreement with the very low soluble copper concentrations (3–310 μg l−1) present in the reactor contents as a consequence of extensive precipitation of copper with biogenic sulfides. Furthermore, clone library analysis confirmed the phylogenetic diversity of sulfate-reducing consortia in mesophilic and thermophilic sulfidogenic reactors operated with simple substrates.  相似文献   

19.
Kinetic comparisons of mesophilic and thermophilic aerobic biomass   总被引:1,自引:0,他引:1  
Kinetic parameters describing growth and decay of mesophilic (30°C) and thermophilic (55°C) aerobic biomass were determined in continuous and batch experiments by using oxygen uptake rate measurements. Biomass was cultivated on a single soluble substrate (acetate) in a mineral medium. The intrinsic maximum growth rate (μ max) at 55°C was 0.71±0.09 h−1, which is 1.5 times higher than the μ max at 30°C (0.48±0.11 h−1). The biomass decay rates increased from 0.004 h−1 at 30°C to 0.017 h−1 at 55°C. Monod constants were very low for both types of biomass: 9±2 mg chemical oxygen demand (COD) l−1at 30°C and 3±2 mg COD l−1at 55°C. Theoretical biomass yields were similar at 30 and 55°C: 0.5 g biomass COD (g acetate COD)−1. The observed biomass yields decreased under both temperature conditions as a function of the cell residence time. Under thermophilic conditions, this effect was more pronounced due to the higher decay rates, resulting in lower biomass production at 55°C compared to 30°C. Electronic Publication  相似文献   

20.
Sludge Reduction with a Novel Combined Worm-reactor   总被引:5,自引:1,他引:4  
In China, as a result of economic, environmental and regulation factors, excess sludge treatment and disposal represents a rising challenge for small and mid-scale municipal wastewater treatment plants (WWTPs). Although the presence of worms in aerobic wastewater treatment may lead to substantial sludge reduction, the practical application is still uncontrollable because of unstable worm growth. To overcome unstable worm growth in activated sludge process, a combined worm-reactor, consisting of sections for both free-swimming and sessile worms, was developed to enhance worm growth. This plug flow type of worm-reactor has the sessile worm growing section filled with plastic carriers, and recirculation of sludge from the section for sludge settling was carried out in order to avoid worm washing out. Sludge reduction of treating the discharged excess sludge using this worm-reactor was investigated during 53 days. In the start-up phase the combined worm-reactor was inoculated with Tubificidae. Tubificidae mainly occurred in the carriers and on the bottom of the worm-reactor, however, neither Aeolosoma nor Nais was found in the worm-reactor. Results clearly showed that the average sludge reduction was 48%, and the COD removal was low, about 8%. High NH4+ -N or NO2 -N concentrations or their combination may limit the growth of Tubificidae. Few PO 43−-P release into the effluent was observed in the worm-reactor. However, results obtained from this study cannot unequivocally be attributed to the presence of worms because it did not include a control system, and thus much more work will be needed in this concept in the further research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号