首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The Glut4 glucose transporter undergoes complex insulin-regulated subcellular trafficking in adipocytes. Much effort has been expended in an attempt to identify targeting motifs within Glut4 that direct its subcellular trafficking, but an amino acid motif responsible for the targeting of the transporter to insulin-responsive intracellular compartments in the basal state or that is directly responsible for its insulin-stimulated redistribution to the plasma membrane has not yet been delineated. In this study we define amino acid residues within the C-terminal cytoplasmic tail of Glut4 that are essential for its insulin-stimulated translocation to the plasma membrane. The residues were identified based on sequence similarity (LXXLXPDEXD) between cytoplasmic domains of Glut4 and the insulin-responsive aminopeptidase (IRAP). Alteration of this putative targeting motif (IRM, insulin-responsive motif) resulted in the targeting of the bulk of the mutant Glut4 molecules to dispersed membrane vesicles that lacked detectable levels of wild-type Glut4 in either the basal or insulin-stimulated states and completely abolished the insulin-stimulated translocation of the mutant Glut4 to the plasma membrane in 3T3L1 adipocytes. The bulk of the dispersed membrane vesicles containing the IRM mutant did not contain detectable levels of any subcellular marker tested. A fraction of the total IRM mutant was also detected in a wild-type Glut4/Syntaxin 6-containing perinuclear compartment. Interestingly, mutation of the IRM sequence did not appreciably alter the subcellular trafficking of IRAP. We conclude that residues within the IRM are critical for the targeting of Glut4, but not of IRAP, to insulin-responsive intracellular membrane compartments in 3T3-L1 adipocytes.  相似文献   

2.
The GLUT4 glucose transporter appears to be targeted to a unique insulin-sensitive intracellular membrane compartment in fat and muscle cells. Insulin stimulates glucose transport in these cell types by mediating the partial redistribution of GLUT4 from this intracellular compartment to the plasma membrane. The structural basis for the unique targeting behavior of GLUT4 was investigated in the insulin-sensitive L6 myoblast cell line. Analysis of immunogold-labeled cells of independent clonal lines by electron microscopy indicated that 51-53% of GLUT1 was present in the plasma membrane in the basal state. Insulin did not significantly affect this distribution. In contrast, only 4.2- 6.1% of GLUT4 was present in the plasma membrane of basal L6 cells and insulin increased this percentage by 3.7-6.1-fold. Under basal conditions and after insulin treatment, GLUT4 was detected in tubulovesicular structures, often clustered near Golgi stacks, and in endosome-like vesicles. Analysis of 25 chimeric transporters consisting of reciprocal domains of GLUT1 and GLUT4 by confocal immunofluorescence microscopy indicated that only the final 25 amino acids of the COOH- terminal cytoplasmic tail of GLUT4 were both necessary and sufficient for the targeting pattern observed for GLUT4. A dileucine motif present in the COOH-terminal tail of GLUT4 was found to be necessary, but not sufficient, for intracellular targeting. Contrary to previous studies, the NH2 terminus of GLUT4 did not affect the subcellular distribution of chimeras. Analysis of a chimera containing the COOH-terminal tail of GLUT4 by immunogold electron microscopy indicated that its subcellular distribution in basal cells was very similar to that of wild-type GLUT4 and that its content in the plasma membrane increased 6.8-10.5-fold in the presence of insulin. Furthermore, only the chimera containing the COOH terminus of GLUT4 enhanced insulin responsive 2-deoxyglucose uptake. GLUT1 and two other chimeras lacking the COOH terminus of GLUT4 were studied by immunogold electron microscopy and did not demonstrate insulin-mediated changes in subcellular distribution. The NH2-terminal cytoplasmic tail of GLUT4 did not confer intracellular sequestration and did not cause altered subcellular distribution in the presence of insulin. Intracellular targeting of one chimera to non-insulin- sensitive compartments was also observed. We conclude that the COOH terminus of GLUT4 is both necessary and sufficient to confer insulin- sensitive subcellular targeting of chimeric glucose transporters in L6 myoblasts.  相似文献   

3.
Cope DL  Lee S  Melvin DR  Gould GW 《FEBS letters》2000,481(3):261-265
The insulin-responsive glucose transporter, Glut4, exhibits a unique subcellular distribution such that in the absence of insulin >95% of the protein is stored within intracellular membranes. In response to insulin, Glut4 exhibits a large mobilisation to the plasma membrane. Studies of the amino acid motifs which regulate the unique trafficking of Glut4 have identified several key residues within the soluble cytoplasmic N- and C-terminal domains of Glut4. Of particular note is a Leu-498Leu-499 motif within the C-terminal domain that has been proposed to regulate both internalisation from the plasma membrane and sorting to an insulin-sensitive compartment. In this study, we have examined the role of the adjacent amino acids (Glu-491, Gln-492 and Glu-493) by their sequential replacement with Ala. Our results are consistent with the notion that Glu-491 and Glu-493 play an important role in the sub-endosomal trafficking of Glut4, as substitution of these residues with Ala results in increased levels of these proteins at the cell surface, reduced insulin-stimulated translocation and increased susceptibility to endosomal ablation. These residues, together with other identified sequences within the C-terminus of Glut4, are likely to be crucial targeting elements that regulate Glut4 subcellular distribution.  相似文献   

4.
The regulated delivery of Glut4-containing vesicles to the plasma membrane is a specialised example of regulated membrane trafficking. Present models favour the transporter trafficking through two inter-related endosomal cycles. The first is the proto-typical endosomal system. This is a fast trafficking event that, in the absence of insulin, serves to internalise Glut4 from the plasma membrane. Once in this pathway, Glut4 is further sorted into a slowly recycling pathway that operates between recycling endosomes, the trans Golgi network, and a population of vesicles often referred to as Glut4-storage vesicles. Little is known about the molecules that regulate these distinct sorting steps. Here, we have studied the role of Stx16 in Glut4 trafficking. Using two independent strategies, we show that Stx16 plays a crucial role in Glut4 traffic in 3T3-L1 adipocytes. Over-expression of a mutant form of Stx16 devoid of a transmembrane anchor was found to significantly slow the reversal of insulin-stimulated glucose transport. Depletion of Stx16 using antisense approaches profoundly reduced insulin-stimulated glucose transport but was without effect on cell surface transferrin receptor levels, and also reduced the extent of Glut4 translocation to the plasma membrane in response to insulin. These data support a model in which Stx16 is crucial in the sorting of Glut4 from the fast cycling to the slow cycling intracellular trafficking pathways in adipocytes.  相似文献   

5.
Insulin increases the rate of glucose transport into fat and muscle cells by stimulating the translocation of intracellular Glut 4-containing vesicles to the plasma membrane. This results in a marked increase in the amount of the facilitative glucose transporter Glut 4 at the cell surface, allowing for an enhanced glucose uptake. This process requires a continuous cycling through the early endosomes, a Glut 4 specific storage compartment and the plasma membrane. The main effect of insulin is to increase the rate of Glut 4 trafficking from its specific storage compartment to the plasma membrane. The whole phenomenon involves signal transduction from the insulin receptor, vesicle trafficking (sorting and fusion processes) and actin cytoskeleton modifications, which are all supposed to require small GTPases. This review describes the potential role of the various members of the Ras, Rad, Rho, Arf and Rab families in the traffic of the Glut 4-containing vesicles.  相似文献   

6.
Insulin increases the rate of glucose transport into fat and muscle cells by stimulating the translocation of intracellular Glut 4-containing vesicles to the plasma membrane. This results in a marked increase in the amount of the facilitative glucose transporter Glut 4 at the cell surface, allowing for an enhanced glucose uptake. This process requires a continuous cycling through the early endosomes, a Glut 4 specific storage compartment and the plasma membrane. The main effect of insulin is to increase the rate of Glut 4 trafficking from its specific storage compartment to the plasma membrane. The whole phenomenon involves signal transduction from the insulin receptor, vesicle trafficking (sorting and fusion processes) and actin cytoskeleton modifications, which are all supposed to require small GTPases. This review describes the potential role of the various members of the Ras, Rad, Rho, Arf and Rab families in the traffic of the Glut 4-containing vesicles.  相似文献   

7.
Although Glut4 traffic is routinely described as translocation from an "intracellular storage pool" to the plasma membrane, it has been long realized that Glut4 travels through at least two functionally distinct intracellular membrane compartments on the way to and from the cell surface. Biochemical separation and systematic studies of the individual Glut4-containing compartments have been limited by the lack of appropriate reagents. We have prepared a monoclonal antibody against a novel component protein of Glut4 vesicles and have identified this protein as cellugyrin, a ubiquitously expressed homologue of a major synaptic vesicle protein, synaptogyrin. By means of sucrose gradient centrifugation, immunoadsorption, and confocal microscopy, we have shown that virtually all cellugyrin is co-localized with Glut4 in the same vesicles. However, unlike Glut4, cellugyrin is not re-distributed to the plasma membrane in response to insulin stimulation, and at least 40-50% of the total population of Glut4 vesicles do not contain this protein. We suggest that cellugyrin represents a specific marker of a functionally distinct population of Glut4 vesicles that permanently maintains its intracellular localization and is not recruited to the plasma membrane by insulin.  相似文献   

8.
Insulin stimulates glucose uptake by promoting translocation of the Glut4 glucose transporter from intracellular storage compartments to the plasma membrane. In the absence of insulin, Glut4 is retained intracellularly; the mechanism underlying this process remains uncertain. Using the TC10-interacting protein CIP4 as bait in a yeast two-hybrid screen, we cloned a RasGAP and VPS9 domain-containing protein, Gapex-5/RME-6. The VPS9 domain is a guanine nucleotide exchange factor for Rab31, a Rab5 subfamily GTPase implicated in trans-Golgi network (TGN)-to-endosome trafficking. Overexpression of Rab31 blocks insulin-stimulated Glut4 translocation, whereas knockdown of Rab31 potentiates insulin-stimulated Glut4 translocation and glucose uptake. Gapex-5 is predominantly cytosolic in untreated cells; its overexpression promotes intracellular retention of Glut4 in adipocytes. Insulin recruits the CIP4/Gapex-5 complex to the plasma membrane, thus reducing Rab31 activity and permitting Glut4 vesicles to translocate to the cell surface, where Glut4 docks and fuses to transport glucose into the cell.  相似文献   

9.
Rat adipocytes were biotinylated with cell-impermeable reagents, sulfo-N-hydroxysuccinimide-biotin and sulfo-N-hydroxysuccinimide-S-S-biotin in the absence and presence of insulin. Biotinylated and nonbiotinylated populations of the insulin-like growth factor-II/mannose 6-phosphate receptor, the transferrin receptor, and insulin-responsive aminopeptidase were separated by adsorption to streptavidin-agarose to determine the percentage of the biotinylated protein molecules versus their total amount in different subcellular compartments. Results indicate that adipose cells possess at least two distinct cell surface recycling pathways for insulin-like growth factor-II/mannose 6-phosphate receptor (MPR) and transferrin receptor (TfR): one which is mediated by glucose transporter isoform 4(Glut4)-vesicles and another that bypasses this compartment. Under basal conditions, the first pathway is not active, and cell surface recycling of TfR and, to a lesser extent, MPR proceeds via the second pathway. Insulin dramatically stimulates recycling through the first pathway and has little effect on the second. Within the Glut4-containing compartment, insulin has profoundly different effects on intracellular trafficking of insulin-responsive aminopeptidase on one hand and MPR and TfR on the other. After insulin administration, insulin-responsive aminopeptidase is redistributed from Glut4-containing vesicles to the plasma membrane and stays there for at least 30 min with minimal detectable internalization and recycling, whereas MPR and TfR rapidly shuttle between Glut4 vesicles and the plasma membrane in such a way that after 30 min of insulin treatment, virtually every receptor molecule in this compartment completes at least one trafficking cycle to the cell surface. Thus, different recycling proteins, which compose Glut4-containing vesicles, are internalized into this compartment at their own distinctive rates.  相似文献   

10.
Insulin stimulates translocation of the glucose transporter isoform 4 (Glut4) from an intracellular storage compartment to the plasma membrane in fat and skeletal muscle cells. At present, the nature of the Glut4 storage compartment is unclear. According to one model, this compartment represents a population of preformed small vesicles that fuse with the plasma membrane in response to insulin stimulation. Alternatively, Glut4 may be retained in large donor membranes, and insulin stimulates the formation of transport vesicles that deliver Glut4 to the cell surface. Finally, insulin can induce plasma membrane fusion of the preformed vesicles and, also, stimulate the formation of new vesicles. In extracts of fat and skeletal muscle cells, Glut4 is predominantly found in small insulin-sensitive 60-70 S membrane vesicles that may or may not artificially derive from large donor membranes during cell homogenization. Here, we use a cell-free reconstitution assay to demonstrate that small Glut4-containing vesicles are formed from large rapidly sedimenting donor membranes in a cytosol-, ATP-, time-, and temperature-dependent fashion and, therefore, do not represent an artifact of homogenization. Thus, small insulin-responsive vesicles represent the major form of Glut4 storage in the living adipose cell. Fusion of these vesicles with the plasma membrane may be largely responsible for the primary effect of insulin on glucose transport in fat tissue. In addition, our results suggest that insulin may also stimulate the formation of Glut4 vesicles and accelerate Glut4 recycling to the plasma membrane.  相似文献   

11.
Translocation of Glut4 to the plasma membrane of fat and skeletal muscle cells is mediated by specialized insulin‐responsive vesicles (IRVs), whose protein composition consists primarily of glucose transporter isoform 4 (Glut4), insulin‐responsive amino peptidase (IRAP), sortilin, lipoprotein receptor‐related protein 1 (LRP1) and v‐SNAREs. How can these proteins find each other in the cell and form functional vesicles after endocytosis from the plasma membrane? We are proposing a model according to which the IRV component proteins are internalized into sorting endosomes and are delivered to the IRV donor compartment(s), recycling endosomes and/or the trans‐Golgi network (TGN), by cellugyrin‐positive transport vesicles. The cytoplasmic tails of Glut4, IRAP, LRP1 and sortilin play an important targeting role in this process. Once these proteins arrive in the donor compartment, they interact with each other via their lumenal domains. This facilitates clustering of the IRV proteins into an oligomeric complex, which can then be distributed from the donor membranes to the IRV as a single entity with the help of adaptors, such as Golgi‐localized, gamma‐adaptin ear‐containing, ARF‐binding (GGA).   相似文献   

12.
Insulin stimulates glucose transport in muscle and adipose tissue by producing translocation of the glucose transporter Glut4. The exocyst, an evolutionarily conserved vesicle tethering complex, is crucial for targeting Glut4 to the plasma membrane. Here we report that insulin regulates this process via the G protein RalA, which is present in Glut4 vesicles and interacts with the exocyst in adipocytes. Insulin stimulates the activity of RalA in a PI 3-kinase-dependent manner. Disruption of RalA function by dominant-negative mutants or siRNA-mediated knockdown attenuates insulin-stimulated glucose transport. RalA also interacts with Myo1c, a molecular motor implicated in Glut4 trafficking. This interaction is modulated by Calmodulin, which functions as the light chain for Myo1c during insulin-stimulated glucose uptake. Thus, RalA serves two functions in insulin action: as a cargo receptor for the Myo1c motor, and as a signal for the unification of the exocyst to target Glut4 vesicles to the plasma membrane.  相似文献   

13.
Employing subcellular membrane fractionation methods it has been shown that insulin induces a 2-fold increase in the Glut 4 protein content in the plasma membrane of skeletal muscle from rats. Data based upon this technique are, however, impeded by poor plasma membrane recovery and cross-contamination with intracellular membrane vesicles. The present study was undertaken to compare the subcellular fractionation technique with the technique using [3H]ATB-BMPA exofacial photolabelling and immunoprecipitation of Glut 4 on soleus muscles from 3-week-old Wistar rats. Maximal insulin stimulation resulted in a 6-fold increase in 3-O-methylglucose uptake, and studies based on the subcellular fractionation method showed a 2-fold increase in Glut 4 content in the plasma membrane, whereas the exofacial photolabelling demonstrated a 6- to 7-fold rise in cell surface associated Glut 4 protein. Glucose transport activity was positively correlated with cell surface Glut 4 content as estimated by exofacial labelling. In conclusion: (1) the increase in glucose uptake in muscle after insulin exposure is caused by an augmented concentration of Glut 4 protein on the cell surface membrane, (2) at maximal insulin stimulation (20 mU/ml) approximately 40% of the muscle cell content of Glut 4 is at the cell surface, and (3) the exofacial labelling technique is more sensitive than the subcellular fractionation technique in measuring the amount of glucose transporters on muscle cell surface.  相似文献   

14.
A role for Rab4 in the translocation of the glucose transporter Glut4 induced by insulin has been recently proposed. To study more directly the role of this small GTPase, freshly isolated adipocytes were transiently transfected with the cDNAs of both an epitope-tagged Glut4-myc and Rab4, a system which allows direct measurement of the concentration of Glut4 molecules at the cell surface. When cells were cotransfected with Glut4-myc and Rab4, the concentration of Glut4-myc at the cell surface decreased in parallel with the increased expression of Rab4, suggesting that Rab4 participates in the intracellular retention of Glut4. In parallel, the amount of Rab4 associated with the Glut4-containing vesicles increased. When Rab4 was moderately overexpressed, the number of Glut4-myc molecules recruited to the cell surface in response to insulin was similar to that observed in mock-transfected cells, and thus the insulin efficiency was increased. When Rab4 was expressed at a higher level, the amount of Glut4-myc present at the cell surface in response to insulin decreased. Since the overexpressed protein was predominantly cytosolic, this suggests that the cytosolic Rab4 might complex some factor(s) necessary for insulin action. This hypothesis was strengthened by the fact that Rab4 deltaCT, a Rab4 mutant lacking the geranylgeranylation sites, inhibited insulin-induced recruitement of Glut4-myc to the cell surface, even when moderately overexpressed. Rab3D was without effect on Glut4-myc subcellular distribution in basal or insulin-stimulated conditions. While two mutated proteins unable to bind GTP did not decrease the number of Glut4-myc molecules in basal or insulin-stimulated conditions at the plasma membrane, the behavior of a mutated Rab4 protein without GTPase activity was similar to that of the wild-type Rab4 protein, indicating that GTP binding but not its hydrolysis was required for the observed effects. Altogether, our results suggest that Rab4, but not Rab3D, participates in the molecular mechanism involved in the subcellular distribution of the Glut4 molecules both in basal and in insulin-stimulated conditions in adipocytes.  相似文献   

15.
Insulin stimulates glucose uptake in fat and muscle by mobilizing Glut4 glucose transporters from intracellular membrane storage sites to the plasma membrane. This process requires the trafficking of Glut4-containing vesicles toward the cell periphery, docking at exocytic sites, and plasma membrane fusion. We show here that phospholipase D (PLD) production of the lipid phosphatidic acid (PA) is a key event in the fusion process. PLD1 is found on Glut4-containing vesicles, is activated by insulin signaling, and traffics with Glut4 to exocytic sites. Increasing PLD1 activity facilitates glucose uptake, whereas decreasing PLD1 activity is inhibitory. Diminished PA production does not substantially hinder trafficking of the vesicles or their docking at the plasma membrane, but it does impede fusion-mediated extracellular exposure of the transporter. The fusion block caused by RNA interference-mediated PLD1 deficiency is rescued by exogenous provision of a lipid that promotes fusion pore formation and expansion, suggesting that the step regulated by PA is late in the process of vesicle fusion.  相似文献   

16.
Glucose transporter isoform 4 (GLUT4), is the sole glucose transporter responsible for the effect of insulin on postprandial blood glucose clearance. However, the nature of the insulin sensitivity of GLUT4 remains unknown. In this study, we replaced the first luminal loop of cellugyrin, a 4-transmembrane protein that does not respond to insulin, with that of GLUT4. The chimera protein is targeted to the intracellular insulin-responsive vesicles and is translocated to the plasma membrane upon insulin stimulation. The faithful targeting of the chimera depends on the expression of the sorting receptor sortilin, which interacts with the unique amino acid residues in the first luminal loop of GLUT4. Thus the first luminal loop may confer insulin responsiveness to the GLUT4 molecule.  相似文献   

17.
Insulin treatment of fat cells results in the translocation of the insulin-responsive glucose transporter type 4, GLUT4, from intracellular compartments to the plasma membrane. However, the precise nature of these intracellular GLUT4-carrying compartments is debated. To resolve the nature of these compartments, we have performed an extensive morphological analysis of GLUT4-containing compartments, using a novel immunocytochemical technique enabling high labeling efficiency and 3-D resolution of cytoplasmic rims isolated from rat epididymal adipocytes. In basal cells, GLUT4 was localized to three morphologically distinct intracellular structures: small vesicles, tubules, and vacuoles. In response to insulin the increase of GLUT4 at the cell surface was compensated by a decrease in small vesicles, whereas the amount in tubules and vacuoles was unchanged. Under basal conditions, many small GLUT4 positive vesicles also contained IRAP (88%) and the v-SNARE, VAMP2 (57%) but not markers of sorting endosomes (EEA1), late endosomes, or lysosomes (lgp120). A largely distinct population of GLUT4 vesicles (56%) contained the cation-dependent mannose 6-phosphate receptor (CD-MPR), a marker protein that shuttles between endosomes and the trans-Golgi network (TGN). In response to insulin, GLUT4 was recruited both from VAMP2 and CD-MPR positive vesicles. However, while the concentration of GLUT4 in the remaining VAMP2-positive vesicles was unchanged, the concentration of GLUT4 in CD-MPR-positive vesicles decreased. Taken together, we provide morphological evidence indicating that, in response to insulin, GLUT4 is recruited to the plasma membrane by fusion of preexisting VAMP2-carrying vesicles as well as by sorting from the dynamic endosomal-TGN system.  相似文献   

18.
Field stimulation of isolated adult ventricular cardiomyocytes was used to study the effect of contractile activity on 3-O-methylglucose transport and the subcellular distribution of Glut4. Cells contracting at a frequency of 1 Hz for 30 min exhibited unaltered basal and insulin-stimulated rates of glucose transport when compared to resting cells. However, at 5 Hz 3-O-methylglucose transport increased to 224% of control after 5 min. Under these conditions insulin was unable to produce a significant additional stimulation of glucose transport. Immunoblotting with an anti-Glut4 polyclonal antibody showed that both insulin and contraction (5 Hz) increased the amount of Glut4 in a plasma membrane fraction by about 8-fold with a parallel decrease in an intracellular membrane fraction by 60-65%. These data suggest the existence of an identical insulin- and contraction-recruitable Glut4 transporter pool in cardiomyocytes.  相似文献   

19.
Small glucose transporter 4 (Glut4)-containing vesicles represent the major insulin-responsive compartment in fat and skeletal muscle cells. The molecular mechanism of their biogenesis is not yet elucidated. Here, we studied the role of the newly discovered family of monomeric adaptor proteins, GGA (Golgi-localized, gamma-ear-containing, Arf-binding proteins), in the formation of small Glut4 vesicles and acquisition of insulin responsiveness in 3T3-L1 adipocytes. In these cells, all three GGA isoforms are expressed throughout the differentiation process. In particular, GGA2 is primarily present in trans-Golgi network and endosomes where it demonstrates a significant colocalization with the recycling pool of Glut4. Using the techniques of immunoadsorption as well as glutathione-S-transferase pull-down assay we found that Glut4 vesicles (but not Glut4 per se) interact with GGA via the Vps-27, Hrs, and STAM (VHS) domain. Moreover, a dominant negative GGA mutant inhibits formation of Glut4 vesicles in vitro. To study a possible role of GGA in Glut4 traffic in the living cell, we stably expressed a dominant negative GGA mutant in 3T3-L1 adipocytes. Formation of small insulin-responsive Glut4-containing vesicles and insulin-stimulated glucose uptake in these cells were markedly impaired. Thus, GGA adaptors participate in the formation of the insulin-responsive vesicular compartment from the intracellular donor membranes both in vivo and in vitro.  相似文献   

20.
Insulin resistance is commonly associated with obesity in rodents. Using mice made obese with goldthioglucose (GTG-obese mice), we have shown that insulin resistance results from defects at the level of the receptor and from intracellular alterations in insulin signalling pathway, without major alteration in the number of the Glut 4 glucose transporter. Activation of phosphatidylinositol 3-kinase (PI 3-kinase) was found to be profoundly affected in response to insulin. This defect appears very early in the development of obesity, together with a marked decrease in IRS 1 tyrosine phosphorylation. In order to better understand the abnormalities in glucose transport in insulin resistance, we have studied the pathway leading from the insulin receptor kinase stimulation to the translocation of the Glut 4 containing vesicles. This stimulation involves the activation of PI 3-kinase, which in turns activates protein kinase B. We have then focussed at the mechanism of vesicle exocytosis, and more specifically at the role of the small GTPase Rab4 in this process. We have shown that Rab4 participates, first in the intracellular retention of the Glut 4 containing vesicles, second in the insulin signalling pathway leading to glucose transporter translocation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号