首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
P Wan  Y Huang  BE Tabashnik  M Huang  K Wu 《PloS one》2012,7(7):e42004
In some previously reported cases, transgenic crops producing insecticidal proteins from Bacillus thuringiensis (Bt) have suppressed insect pests not only in fields planted with such crops, but also regionally on host plants that do not produce Bt toxins. Here we used 16 years of field data to determine if Bt cotton caused this "halo effect" against pink bollworm (Pectinophora gossypiella) in six provinces of the Yangtze River Valley of China. In this region, the percentage of cotton hectares planted with Bt cotton increased from 9% in 2000 to 94% in 2009 and 2010. We found that Bt cotton significantly decreased the population density of pink bollworm on non-Bt cotton, with net decreases of 91% for eggs and 95% for larvae on non-Bt cotton after 11 years of Bt cotton use. Insecticide sprays targeting pink bollworm and cotton bollworm (Helicoverpa armigera) decreased by 69%. Previously reported evidence of the early stages of evolution of pink bollworm resistance to Bt cotton in China has raised concerns that if unchecked, such resistance could eventually diminish or eliminate the benefits of Bt cotton. The results reported here suggest that it might be possible to find a percentage of Bt cotton lower than the current level that causes sufficient regional pest suppression and reduces the risk of resistance.  相似文献   

2.
Evolution of resistance by pests can reduce the benefits of transgenic crops that produce toxins from Bacillus thuringiensis (Bt) for insect control. One of the world's most important cotton pests, pink bollworm (Pectinophora gossypiella), has been targeted for control by transgenic cotton producing Bt toxin Cry1Ac in several countries for more than a decade. In China, the frequency of resistance to Cry1Ac has increased, but control failures have not been reported. In western India, pink bollworm resistance to Cry1Ac has caused widespread control failures of Bt cotton. By contrast, in the state of Arizona in the southwestern United States, monitoring data from bioassays and DNA screening demonstrate sustained susceptibility to Cry1Ac for 16 y. From 1996-2005, the main factors that delayed resistance in Arizona appear to be abundant refuges of non-Bt cotton, recessive inheritance of resistance, fitness costs associated with resistance and incomplete resistance. From 2006-2011, refuge abundance was greatly reduced in Arizona, while mass releases of sterile pink bollworm moths were made to delay resistance as part of a multi-tactic eradication program. Sustained susceptibility of pink bollworm to Bt cotton in Arizona has provided a cornerstone for the pink bollworm eradication program and for integrated pest management in cotton. Reduced insecticide use against pink bollworm and other cotton pests has yielded economic benefits for growers, as well as broad environmental and health benefits. We encourage increased efforts to combine Bt crops with other tactics in integrated pest management programs.  相似文献   

3.
Increased frequency of pink bollworm resistance to Bt toxin Cry1Ac in China   总被引:4,自引:0,他引:4  
Wan P  Huang Y  Wu H  Huang M  Cong S  Tabashnik BE  Wu K 《PloS one》2012,7(1):e29975
Transgenic crops producing insecticidal proteins from Bacillus thuringiensis (Bt) kill some key insect pests, but evolution of resistance by pests can reduce their efficacy. The main approach for delaying pest adaptation to Bt crops uses non-Bt host plants as "refuges" to increase survival of susceptible pests. To delay evolution of pest resistance to transgenic cotton producing Bt toxin Cry1Ac, the United States and some other countries have required refuges of non-Bt cotton, while farmers in China have relied on "natural" refuges of non-Bt host plants other than cotton. The "natural" refuge strategy focuses on cotton bollworm (Helicoverpa armigera), the primary target of Bt cotton in China that attacks many crops, but it does not apply to another major pest, pink bollworm (Pectinophora gossypiella), which feeds almost entirely on cotton in China. Here we report data showing field-evolved resistance to Cry1Ac by pink bollworm in the Yangtze River Valley of China. Laboratory bioassay data from 51 field-derived strains show that the susceptibility to Cry1Ac was significantly lower during 2008 to 2010 than 2005 to 2007. The percentage of field populations yielding one or more survivors at a diagnostic concentration of Cry1Ac increased from 0% in 2005-2007 to 56% in 2008-2010. However, the median survival at the diagnostic concentration was only 1.6% from 2008 to 2010 and failure of Bt cotton to control pink bollworm has not been reported in China. The early detection of resistance reported here may promote proactive countermeasures, such as a switch to transgenic cotton producing toxins distinct from Cry1A toxins, increased planting of non-Bt cotton, and integration of other management tactics together with Bt cotton.  相似文献   

4.
Transgenic crops producing Bacillus thuringiensis (Bt) toxins kill some major insect pests, but pests can evolve resistance and thereby reduce the effectiveness of such Bt crops. The main approach for slowing pest adaptation to Bt crops uses non-Bt host plants as "refuges" to increase survival of susceptible pests. To delay evolution of pest resistance to cotton producing Bt toxin Cry1Ac, several countries have required refuges of non-Bt cotton, while farmers in China have relied on "natural" refuges of non-Bt host plants other than cotton. This strategy is designed for cotton bollworm (Helicoverpa armigera), which attacks many crops and is the primary target of Bt cotton in China, but it does not apply to pink bollworm (Pectinophora gossypiella), which feeds almost entirely on cotton in China. Here we review evidence of field-evolved resistance to Cry1Ac by cotton bollworm in northern China and by pink bollworm in the Yangtze River Valley of China. For both pests, results of laboratory diet bioassays reveal significantly decreased susceptibility of field populations to Cry1Ac, yet field control failures of Bt cotton have not been reported. The early detection of resistance summarized here may spur countermeasures such as planting Bt cotton that produces two or more distinct toxins, increased planting of non-Bt cotton, and integration of other management tactics together with Bt cotton.  相似文献   

5.
The effects of transgenic Bt cotton on the overwintering generation of the cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae), are unknown. We hypothesized that a Bt cotton diet may adversely affect fitness of this generation and examined fresh weight, lipids, glycogens, low-molecular-weight sugars and SCPs (supercooling points) of pupae, as well as survival of larvae, diapausing pupae and adult emergence in comparison with controls. Field and laboratory experiments showed that larvae fed on Bt cotton had a decreased pupation rate, and fewer entered diapause and emerged as adults compared with larvae fed non-Bt cotton. Furthermore, larvae fed Bt cotton had reduced pupal weight, glycogen content and trehalose levels both in diapausing and in non-diapausing pupae, and only diapausing pupae had an increased SCP compared to controls. The SCPs of diapausing pupae reared on Bt cotton were significantly higher than those reared on non-Bt cotton. The trehalose levels of diapausing pupae reared on Bt cotton were significantly lower than those of larvae reared on non-Bt cotton. Thus, these results suggest that a Bt cotton diet weakens the preparedness of cotton bollworm for overwintering and reduces survival of the overwintering generation, which will in turn reduce the density of the first generation in the following year. Effects of transgenic Bt cotton on the overwintering generation of cotton bollworm appear to have significantly contributed to the suppression of cotton bollworm observed throughout northern China in the past decade.  相似文献   

6.
Genetically engineered crops that produce insecticidal toxins from Bacillus thuringiensis (Bt) are grown widely for pest control. However, insect adaptation can reduce the toxins' efficacy. The predominant strategy for delaying pest resistance to Bt crops requires refuges of non-Bt host plants to provide susceptible insects to mate with resistant insects. Variable farmer compliance is one of the limitations of this approach. Here we report the benefits of an alternative strategy where sterile insects are released to mate with resistant insects and refuges are scarce or absent. Computer simulations show that this approach works in principle against pests with recessive or dominant inheritance of resistance. During a large-scale, four-year field deployment of this strategy in Arizona, resistance of pink bollworm (Pectinophora gossypiella) to Bt cotton did not increase. A multitactic eradication program that included the release of sterile moths reduced pink bollworm abundance by >99%, while eliminating insecticide sprays against this key invasive pest.  相似文献   

7.
Transgenic crops producing toxins from the bacterium Bacillus thuringiensis (Bt) kill insect pests and can reduce reliance on insecticide sprays. Although Bt cotton (Gossypium hirsutum L.) and Bt corn (Zea mays L.) covered 26 million ha worldwide in 2005, their success could be cut short by evolution of pest resistance. Monitoring the early phases of pest resistance to Bt crops is crucial, but it has been extremely difficult because bioassays usually cannot detect heterozygotes harboring one allele for resistance. We report here monitoring of resistance to Bt cotton with DNA-based screening, which detects single resistance alleles in heterozygotes. We used polymerase chain reaction primers that specifically amplify three mutant alleles of a cadherin gene linked with resistance to Bt cotton in pink bollworm, Pectinophora gossypiella (Saunders), a major pest. We screened DNA of 5,571 insects derived from 59 cotton fields in Arizona, California, and Texas during 2001-2005. No resistance alleles were detected despite a decade of exposure to Bt cotton. In conjunction with data from bioassays and field efficacy tests, the results reported here contradict predictions of rapid pest resistance to Bt crops.  相似文献   

8.
9.
Genetically engineered cotton and corn plants producing insecticidal Bacillus thuringiensis (Bt) toxins kill some key insect pests. Yet, evolution of resistance by pests threatens long-term insect control by these transgenic Bt crops. We compared the genetic basis of resistance to Bt toxin Cry1Ac in two independently derived, laboratory-selected strains of a major cotton pest, the pink bollworm (Pectinophora gossypiella [Saunders]). The Arizona pooled resistant strain (AZP-R) was started with pink bollworm from 10 field populations and selected with Cry1Ac in diet. The Bt4R resistant strain was started with a long-term susceptible laboratory strain and selected first with Bt cotton bolls and later with Cry1Ac in diet. Previous work showed that AZP-R had three recessive mutations (r1, r2, and r3) in the pink bollworm cadherin gene (PgCad1) linked with resistance to Cry1Ac and Bt cotton producing Cry1Ac. Here we report that inheritance of resistance to a diagnostic concentration of Cry1Ac was recessive in Bt4R. In interstrain complementation tests for allelism, F(1) progeny from crosses between AZP-R and Bt4R were resistant to Cry1Ac, indicating a shared resistance locus in the two strains. Molecular analysis of the Bt4R cadherin gene identified a novel 15-bp deletion (r4) predicted to cause the loss of five amino acids upstream of the Cry1Ac-binding region of the cadherin protein. Four recessive mutations in PgCad1 are now implicated in resistance in five different strains, showing that mutations in cadherin are the primary mechanism of resistance to Cry1Ac in laboratory-selected strains of pink bollworm from Arizona.  相似文献   

10.
Cultural control methods have been central in the southwestern United States for reducing pink bollworm, Pectinophora gossypiella (Saunders), damage to cotton. Nevertheless, it is not clear at present how such methods could be integrated within the novel pest management framework allowed by introduction of cotton producing a toxin from Bacillus thuringiensis (Bt) for pink bollworm control. Using statewide pheromone trapping and climatic data in conjunction with deterministic simulation models, we investigated whether manipulation of cotton planting date and use of other cultural control methods could represent valuable tactics for control of the pink bollworm in Arizona. Accumulation of heat units from one January accurately predicted the rate of pink bollworm emergence from diapause in 15 cotton-producing regions. Significant variation in rate of emergence from diapause was present among regions, with earlier emergence at higher altitudes. Most adults emerge from diapause too early to reproduce successfully on cotton, a phenomenon known as suicidal emergence. A method for prediction of the fraction of suicidal emergence resulting from adoption of a given cotton planting date is presented. Results from simulation models suggest that manipulation of planting date and implementation of other control cultural methods reduce the rate of application of insecticides and delay the evolution of resistance to Bt cotton in the pink bollworm.  相似文献   

11.
Cotton is one of the most economically important crops in China, while insect pest damage is the major restriction factor for cotton production. The strategy of integrated pest management (IPM), in which biological control plays an important role, has been widely applied. Nearly 500 species of natural enemies have been reported in cotton systems in China, but few species have been examined closely. Seventy-six species, belonging to 53 genera, of major arthropod predators and parasitoids of lepidoptera pests, and 46 species, belonging to 29 genera, of natural enemies of sucking pests have been described. In addition, microsporidia, fungi, bacteria and viruses are also important natural enemies of cotton pests. Trichogramma spp., Microplitis mediator, Amblyseius cucumeris, Bacillus thuringiensis and Helicoverpa armigera nuclear polyhedrosis virus (HaNPV) have been mass reared or commercially produced and used in China. IPM strategies for cotton pests comprising of cultural, biological, physical and chemical controls have been developed and implemented in the Yellow River Region (YRR), Changjiang River Region (CRR) and Northwestern Region (NR) of China over the past several decades. In recent years, Bt cotton has been widely planted for selectively combating cotton bollworm, H. armigera, pink bollworm, Pectinophora gossypiella, and other lepidopteran pest species. As a result of reduced insecticide sprays, increased abundance of natural enemies in Bt cotton fields efficiently prevents outbreaks of other pests such as cotton aphids. In contrast, populations of mirid plant bugs have increased dramatically due to a reduction in the number of foliar insecticide applications for control of the bollworms in Bt cotton, and now pose a key problem in cotton production. In response to this new pest issue in cotton production, control strategies including biological control measures are being developed in China.  相似文献   

12.
We examined the patterns of male pink bollworm (PBW), Pectinophora gossypiella (Saunders), moth catches in gossyplure-baited traps over a 15-year period from 1989 to 2003 in the Imperial Valley, California, USA. Monitoring was conducted during periods when different pink bollworm areawide control strategies were being used. Numbers of male pink bollworm moths caught in gossyplure-baited traps progressively decreased each year from 1990 to 1994 during short-season cotton production. High numbers of male moths caught in traps from 1995 to 1997 may have been related to moth migrations from the large cotton acreages grown in the Mexicali Valley bordering the Imperial Valley. Transgenic Bollgard (Bt) cotton was planted in 3% of the cotton area in 1996 and thereafter in 80%- 94% of the cotton area from 1997 to 2003. Pink bollworm moth trap catches were significantly lower from 1998 to 2003 than catches in 1995 to 1997, except for 1999. The trapping results suggested that Bt cotton had significant input on reduction of pink bollworm populations, confirming results of other investigators and providing additional documentation on the benefits of the Bt cotton culture.  相似文献   

13.
The evolution of resistance by pests can reduce the efficacy of transgenic crops that produce insecticidal toxins from Bacillus thuringiensis (Bt). However, fitness costs may act to delay pest resistance to Bt toxins. Meta-analysis of results from four previous studies revealed that the entomopathogenic nematode Steinernema riobrave (Rhabditida: Steinernematidae) imposed a 20% fitness cost for larvae of pink bollworm, Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae), that were homozygous for resistance to Bt toxin Cry1Ac, but no significant fitness cost was detected for heterozygotes. We conducted greenhouse and laboratory selection experiments to determine whether S. riobrave would delay the evolution of pink bollworm resistance to Cry1Ac. We mimicked the high dose/refuge scenario in the greenhouse with Bt cotton (Gossypium hirsutum L.) plants and refuges of non-Bt cotton plants, and in the laboratory with diet containing Cry1Ac and refuges of untreated diet. In both experiments, half of the replicates were exposed to S. riobrave and half were not. In the greenhouse, S. riobrave did not delay resistance. In the laboratory, S. riobrave delayed resistance after two generations but not after four generations. Simulation modeling showed that an initial resistance allele frequency > 0.015 and population bottlenecks can diminish or eliminate the resistance-delaying effects of fitness costs. We hypothesize that these factors may have reduced the resistance-delaying effects of S. riobrave in the selection experiments. The experimental and modeling results suggest that entomopathogenic nematodes could slow the evolution of pest resistance to Bt crops, but only under some conditions.  相似文献   

14.
The impact of structured strip row refugia (varying from 10% to 50%) in the Bt cotton crops JKCH1947Bt (producing one toxin, Cry1Ac) and MRC7017BGII (producing two toxins, Cry1Ac and Cry2Ab) on the pest complex and cotton yield was studied. During the cropping season (June 2008 to November 2008), sucking pest incidence was negligible. However, the incidences of spotted bollworm, Earias vittella, and the leafroller, Sylepta derogata, were high on the non-Bt cotton. The total cotton seed yield of the Bt crop plus the refuge decreased proportionately with respect to the increase in proportion of non-Bt cotton. Total cotton production decreased significantly when 40% non-Bt cotton was planted as refuge. These studies showed that a refuge of up to 30% non-Bt cotton in JKCH1947Bt and up to 20% non-Bt cotton in MRC7017Bt did not affect total seed cotton yield compared to 100% Bt cotton.  相似文献   

15.
Refuges of non-Bacillus thuringiensis (Bt) cotton, Gossypium hirsutum L., are used to delay Bt resistance in pink bollworm, Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae), a pest that eats cotton seeds. Contamination of refuges by Bt transgenes could reduce the efficacy of this strategy. Previously, three types of contamination were identified in refuges: 1) homozygous Bt cotton plants, with 100% of their seeds producing the Bt toxin Cry1Ac; 2) hemizygous Bt plants with 70-80% of their seeds producing Cry1Ac; and 3) non-Bt plants that outcrossed with Bt plants, resulting in bolls with Cry1Ac in 12-17% of their seeds. Here, we used laboratory bioassays to examine the effects of Bt contamination on feeding behavior and survival of pink bollworm that were resistant (rr), susceptible (ss), or heterozygous for resistance (rs) to Cry1Ac. In choice tests, rr and rs larvae did not differ from ss in preference for non-Bt versus Bt seeds. Survival of rr and rs also did not differ from ss on artificial outcrossed bolls (a mixture of 20% Bt and 80% non-Bt cotton seeds). On artificial hemizygous Bt bolls (70% Bt seeds) and homozygous Bt bolls (100% Bt seeds), rr had higher survival than ss, although rs and ss did not differ. In a simulation model, levels of refuge contamination observed in the field had negligible effects on resistance evolution in pink bollworm. However, in hypothetical simulations where contamination conferred a selective advantage to rs over ss individuals in refuges, resistance evolution was accelerated.  相似文献   

16.
Fitness costs associated with insect resistance to transgenic crops producing toxins from Bacillus thuringiensis (Bt) reduce the fitness on non-Bt refuge plants of resistant individuals relative to susceptible individuals. Because costs may vary among host plants, choosing refuge cultivars that increase the dominance or magnitude of costs could help to delay resistance. Specifically, cultivars with high concentrations of toxic phytochemicals could magnify costs. To test this hypothesis, we compared life history traits of three independent sets of pink bollworm, Pectinophora gossypiella (Saunders), populations on two cotton cultivars that differed in antibiosis against this cotton pest. Each set had an unselected susceptible population, a resistant population derived by selection from the susceptible population, and the F1 progeny of the susceptible and resistant populations. Confirming previous findings with pink bollworm feeding on cotton, costs primarily affected survival and were recessive on both cultivars. The magnitude of the survival cost did not differ between cultivars. Although the experimental results did not reveal differences between cultivars in the magnitude or dominance of costs, modeling results suggest that differences between cultivars in pink bollworm survival could affect resistance evolution. Thus, knowledge of the interaction between host plants and fitness costs associated with resistance to Bt crops could be helpful in guiding the choice of refuge cultivars.  相似文献   

17.
湖北棉区转Bt基因棉对棉铃虫的控制作用   总被引:8,自引:2,他引:6  
2000-2001年通过田间系统调查,表明转Bt基因棉(品种为GK19)在湖北江汉平原棉区对棉铃虫抗性稳定。试验设3个处理:转Bt基因棉化防田(使用化学农药控制害虫)、转Bt基因棉自控田(依靠天敌控制害虫)及常规棉对照田(利用综合防治措施控制害虫)。从棉铃虫的第2代到第5代整个发生期内,即使在不进行化学防治的情况下,棉铃虫在Bt棉田的发生量也保持在极低的水平(最高百株虫量为12头)。室内饲养结果表明,转Bt基因棉对棉铃虫的生长发育(幼虫体重、蛹重)有较为明显的影响,使6龄幼虫体重减少25.6%,蛹重减少18.2%。棉铃虫幼虫取食转Bt基因棉组织后,发育迟缓,相对于常规棉喂养的整个发育历期延长17 d,使棉铃虫在田间的危害减少至少一个世代。另外,接虫试验表明,棉铃虫幼虫在常规棉上的取食时间是转Bt基因棉株上的6.1倍,极大地减轻了棉铃虫的危害程度。  相似文献   

18.
Helicoverpa zea (Boddie), the bollworm or corn earworm, is the most important lepidopteran pest of Bt cotton in the United States. Corn is the preferred host, but the insect feeds on most flowering crops and wild host plants. As a cotton pest, bollworm has been closely linked to the insecticide-resistance prone Heliothis virescens (F.), tobacco budworm. Immature stages of the two species are difficult to separate in field environments. Tobacco budworm is very susceptible to most Bt toxins, and Bt cotton is considered to be "high dose." Bollworm is less susceptible to Bt toxins, and Bt cotton is not "high dose" for this pest. Bt cotton is routinely sprayed with traditional insecticides for bollworm control. Assays of bollworm field populations for susceptibility to Bt toxins expressed in Bt cotton have produced variable results since pre-deployment of Bt cottons in 1988 and 1992. Analyses of assay response trends have been used by others to suggest that field resistance has evolved to Bt toxins in bollworm, but disagreement exists on definitions of field resistance and confidence of variable assay results to project changes in susceptibility of field populations. Given historical variability in bollworm response to Bt toxins, erratic field control requiring supplemental insecticides since early field testing of Bt cottons, and dramatic increases in corn acreage in cotton growing areas of the Southern US, continued vigilance and concern for resistance evolution are warranted.  相似文献   

19.
转Bt基因抗虫棉田棉铃虫消长规律及危害特点   总被引:2,自引:0,他引:2  
通过对转 Bt基因抗虫棉田棉铃虫的系统调查研究表明 :(1)转 Bt基因抗虫棉对棉铃虫蛾、卵无抗性表现 ,田间落卵量与常规棉田无明显差异 ,相反 ,二代棉铃虫百株累计卵量倒比常规棉处理区增加了 2 16~ 2 74粒 ,增长幅度为 30 %~ 38% ;(2 )转 Bt基因抗虫棉对二代棉铃虫幼虫的抗性及控制作用较强 ,基本不用进行药剂防治 ,但对三代棉虫幼虫的抗性控制效果明显下降 ,田间 3龄以上幼虫平均达2 0~ 4 0头 /百株 ,多者达 6 0头以上 ,仍需进行必要的药剂防治 ;(3)棉铃虫在转 Bt基因抗虫棉株上的危害特点与常规棉株有明显的差异 ,表现在幼虫和危害症状均较隐蔽 ,不易被发现。  相似文献   

20.
Fitness costs of resistance to Bacillus thuringiensis (Bt) crops occur in the absence of Bt toxins, when individuals with resistance alleles are less fit than individuals without resistance alleles. As costs of Bt resistance are common, refuges of non-Bt host plants can delay resistance not only by providing susceptible individuals to mate with resistant individuals, but also by selecting against resistance. Because costs typically vary across host plants, refuges with host plants that magnify costs or make them less recessive could enhance resistance management. Limited understanding of the physiological mechanisms causing fitness costs, however, hampers attempts to increase costs. In several major cotton pests including pink bollworm (Pectinophora gossypiella), resistance to Cry1Ac cotton is associated with mutations altering cadherin proteins that bind this toxin in susceptible larvae. Here we report that the concentration of gossypol, a cotton defensive chemical, was higher in pink bollworm larvae with cadherin resistance alleles than in larvae lacking such alleles. Adding gossypol to the larval diet decreased larval weight and survival, and increased the fitness cost affecting larval growth, but not survival. Across cadherin genotypes, the cost affecting larval growth increased as the gossypol concentration of larvae increased. These results suggest that increased accumulation of plant defensive chemicals may contribute to fitness costs associated with resistance to Bt toxins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号