首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Galen C 《Oecologia》2005,144(1):80-87
According to the distraction hypothesis, extrafloral nectaries (EFN) evolved under selection to entice ants away from floral nectaries, reducing ant-mediated damage to flowers and/or interference with pollinators. Predator-satiation, through production of nectar in either surplus flowers or EFN, provides an alternative mechanism for reducing the impact of ants as flower visitors. I tested these two hypotheses by experimentally adding EFN to flowering plants of the alpine wildflower, Polemonium viscosum, and by surveying the relationship between ant visitation and nectary number in nature. Plants of P. viscosum lack EFN and experience flower damage by ants of Formica neorufibarbus gelida. Ant behavior was compared on plants with five flowers and three experimental EFN and on controls with equal floral display, but no EFN. Addition of EFN increased flower visitation by ants. The effect of EFN on flower visitation did not depend on proximity of EFN to flowers or attractiveness of EFN to ants. Findings suggest that ants perceived patch quality on a whole plant basis, rather than responding to EFN and flowers as distinct nectar patches. Ant visitation did not keep pace with nectary number in nature. The relationship between ant visitation and nectary number per plant was weak and shallow as predicted under satiation. Ant foraging choices on experimental inflorescences showed that ants bypass flowers avoided by earlier ants, enhancing probability of escape via satiation. Results do not support the idea that EFN evolve to reduce flower visitation by ants, but show instead that nectar in surplus flowers can satiate ants and reduce their negative impacts on flower function and integrity.  相似文献   

2.
The data relating to the nectaries and nectar secretion in invasive Brassicacean taxa are scarce. In the present paper, the nectar production and nectar carbohydrate composition as well as the morphology, anatomy and ultrastructure of the floral nectaries in Bunias orientalis were investigated. Nectary glands were examined using light, fluorescence, scanning electron and transmission electron microscopy. The quantities of nectar produced by flowers and total sugar mass in nectar were relatively low. Total nectar carbohydrate production per 10 flowers averaged 0.3 mg. Nectar contained exclusively glucose (G) and fructose (F) with overall G/F ratio greater than 1. The flowers of B. orientalis have four nectaries placed at the base of the ovary. The nectarium is intermediate between two nectary types: the lateral and median nectary type (lateral and median glands stay separated) and the annular nectary type (both nectaries are united into one). Both pairs of glands represent photosynthetic type and consist of epidermis and glandular tissue. However, they differ in their shape, size, secretory activity, dimensions of epidermal and parenchyma cells, thickness of secretory parenchyma, phloem supply, presence of modified stomata and cuticle ornamentation. The cells of nectaries contain dense cytoplasm, plastids with starch grains and numerous mitochondria. Companion cells of phloem lack cell wall ingrowths. The ultrastructure of secretory cells indicates an eccrine mechanism of secretion. Nectar is exuded throughout modified stomata.  相似文献   

3.
任宗昕  王红 《生物多样性》2007,15(6):652-657
对狭义芭蕉科3个属的代表性种芭蕉(Musa basjoo)、象腿蕉(Ensete glaucum)和地涌金莲(Musella lasiocarpa)的花蜜腺形态进行了比较研究。结果表明它们的蜜腺属于隔膜蜜腺。雌花的蜜腺着生于子房的上部,胚珠的上方;雄花蜜腺占据了整个败育子房的位置。蜜腺结构由许多腔道组成,这些腔道在横切面上呈现出复杂的发散式迷宫状结构。这3种植物花蜜腺的栅栏状表皮细胞、维管束和蜜腺开口方式相似,而从纵切面和横切面上观察其结构存在一些差异。PAS反应显示象腿蕉泌蜜组织中淀粉粒含量高于其他两个种;芭蕉和象腿蕉的蜜腺腔里有许多纤维状物质存在。3种植物的传粉综合征多样化,花序和花的特征(如花序下垂或直立、苞片的颜色、泌蜜量和泌蜜时间等)和传粉样式之间有密切关系。它们的蜜腺结构和传粉者行为之间没有明显的相关性,但是胶质或水质的花蜜对传粉者的取食方式有一定影响。  相似文献   

4.
对狭义芭蕉科3个属的代表性种芭蕉(Musa basjoo)、象腿蕉(Ensete glaucum)和地涌金莲(Musella lasiocarpa)的花蜜腺形态进行了比较研究。结果表明它们的蜜腺属于隔膜蜜腺。雌花的蜜腺着生于子房的上部, 胚珠的上方; 雄花蜜腺占据了整个败育子房的位置。蜜腺结构由许多腔道组成, 这些腔道在横切面上呈现出复杂的发散式迷宫状结构。这3种植物花蜜腺的栅栏状表皮细胞、维管束和蜜腺开口方式相似, 而从纵切面和横切面上观察其结构存在一些差异。PAS反应显示象腿蕉泌蜜组织中淀粉粒含量高于其他两个种; 芭蕉和象腿蕉的蜜腺腔里有许多纤维状物质存在。3种植物的传粉综合征多样化, 花序和花的特征(如花序下垂或直立、苞片的颜色、泌蜜量和泌蜜时间等)和传粉样式之间有密切关系。它们的蜜腺结构和传粉者行为之间没有明显的相关性, 但是胶质或水质的花蜜对传粉者的取食方式有一定影响。  相似文献   

5.
A long-standing interest in cactus taxonomy has existed since the Linnaean generation, but an appreciation of the reproductive biology of cacti started early in the 1900s. Numerous studies indicate that plant reproductive traits provide valuable systematic information. Despite the extensive reproductive versatility and specializations in breeding systems coupled with the striking floral shapes, the reproductive biology of the Cactaceae has been investigated in approximately 10% of its species. Hence, the systematic value of architectural design and organization of internal floral parts has remained virtually unexplored in the family. This study represents the most extensive survey of flower and nectary morphology in the Cactaceae focusing on tribes Hylocereeae and Rhipsalideae (subfamily Cactoideae). Our objectives were (1) to conduct comparative morphological analyses of flowers and floral nectaries and (2) to compare nectar solute concentration in these two tribes consisting of holo- and semi-epiphytic species. Flower morphology, nectary types, and sugar concentration of nectar have strong taxonomic implications at the tribal, generic and specific levels. Foremost, three types of nectaries were found, namely chamber nectary (with the open and diffuse subtypes), furrow nectary (including the holder nectary subtype), and annular nectary. All Hylocereeae species possess chamber nectaries, in which the nectarial tissue has both trichomes and stomata. The Rhipsalideae are distinguished by two kinds of floral nectaries: furrow and annular, both nectary types with stomata only. The annular nectary type characterizes the genus Rhipsalis. Nectar concentration is another significant taxonomic indicator separating the Hylocereeae and Rhipsalideae and establishing trends linked to nectar sugar concentration and amount of nectar production in relation to flower size. There is an inverse relationship between flower size and amount of nectar production in the smaller Rhipsalideae flowers, in which nectar concentration is more than two-fold higher despite the smaller volume of nectar produced when compared to the large Hylocereeae flowers. Variability of nectary morphology and nectar concentration was also evaluated as potential synapomorphic characters in recent phylogenies of these tribes. In conclusion, our data provide strong evidence of the systematic value of floral nectaries and nectar sugar concentration in the Cactaceae, particularly at different taxonomic levels in the Hylocereeae and Rhipsalideae.  相似文献   

6.
Reabsorption is a phase of nectar dynamics that occurs concurrently with secretion; it has been described in floral nectaries that exude nectar through stomata or unicellular trichomes, but has not yet been recorded in extrafloral glands. Apparently, nectar reabsorption does not occur in multicellular secretory trichomes (MST) due to the presence of lipophilic impregnations – which resemble Casparian strips – in the anticlinal walls of the stalk cells. It has been assumed that these impregnations restrict solute movement within MST to occur unidirectionally and exclusively by the symplast, thereby preventing nectar reflux toward the underlying nectary tissues. We hypothesised that reabsorption is absent in nectaries possessing MST. The fluorochrome lucifer yellow (LYCH) was applied to standing nectar of two floral and extrafloral glands of distantly related species, and then emission spectra from nectary sections were systematically analysed using confocal microscopy. Passive uptake of LYCH via the stalk cells to the nectary tissues occurred in all MST examined. Moreover, we present evidence of nectar reabsorption in extrafloral nectaries, demonstrating that LYCH passed the stalk cells of MST, although it did not reach the deepest nectary tissues. Identical (control) experiments performed with neutral red (NR) demonstrated no uptake of this stain by actively secreting MST, whereas diffusion of NR did occur in plasmolysed MST of floral nectaries at the post‐secretory phase, indicating that nectar reabsorption by MST is governed by stalk cell physiology. Interestingly, non‐secretory trichomes failed to reabsorb nectar. The role of various nectary components is discussed in relation to the control of nectar reabsorption by secretory trichomes.  相似文献   

7.
Floral nectaries have contributed to the systematics of different taxonomic groups. Since those of the neotropical genera included in subfamily Salacioideae—Cheiloclinium Miers, Peritassa Miers, Salacia L. and Tontelea Aubl.—have different forms and positions, we explored their anatomy to delimit more precisely the genera of subfamily Salacioideae. Buds and open flowers of six species were treated following the usual techniques in plant anatomy. The obtained data were helpful in characterizing the floral nectary anatomy of the studied species. Furthermore, some features such as form, position and surface of nectaries; form of their epidermal cells; presence and distribution of stomata; occurrence of idioblasts containing druses in the nectariferous parenchyma; and absence of nectary vascularization can contribute to the taxonomy and phylogeny of the Salacioideae studied. In most of the studied species the nectar is probably released by both the stomata and the nectary epidermal surface. In Cheiloclinium cognatum, the structure acknowledged as nectary is actually a vestigial tissue and the functions of attracting and rewarding pollinators has phylogenetically migrated to the stigmatic region. The druses and phenolic substances observed in the nectariferous parenchyma probably help defend flowers against herbivore attacks. The minute size of the nectaries of Salacioideae may explain the absence of vascularization. The floral nectaries of Salacia elliptica are epithelial while those of the other species are mesenchymal.  相似文献   

8.
Nectar biodiversity: a short review   总被引:9,自引:0,他引:9  
 Nectaries differ in many aspects but a common feature is some kind of advantage for the plant conferred by foraging of consumers which may defend the plant from predators in the case of extrafloral nectaries, or be agents of pollination in the case of floral nectaries. This minireview is concerned mainly with floral nectaries and examines the following characteristics: position in flower; nectary structure; origin of carbohydrates, aminoacids and proteins; manner of exposure of nectar; site of nectar presentation; volume and production of nectar in time; sexual expression of flower and nectary morphology; nectar composition and floral sexual expression; variability of nectar composition; fate of nectar; energy cost of nectar production. The species of certain large families, such as Brassicaceae, Lamiaceae and Asteraceae, resemble each other in nectary organisation; other families, such as Cucurbitaceae and Ranunculaceae, have various types of organisation. A scheme is presented to illustrate factors influencing nectary and nectar biodiversity. Received July 23, 2002; accepted September 18, 2002 Published online: June 2, 2003  相似文献   

9.
荇菜花蜜腺的发育研究   总被引:1,自引:0,他引:1  
荇菜花蜜腺的发育过程可分为:起源期、生长期、分泌期以及泌蜜停止期等4个时期。荇菜的5枚花蜜腺均起源于子房基部的表皮及表皮内的2-4层细胞。这些细胞经反分化后分别成为蜜腺的原分泌表皮及原泌蜜组织,两部分细胞径不断地分裂分化,最冬成为成熟蜜腺。在蜜腺发育过程中,蜜腺的分泌表皮及蜜腺组织内的内质网、质体、线粒体、液泡等细胞器结构均发生了有规律的变化,内质网在蜜腺分泌期最为发达,且产生大量的分泌小泡。质体  相似文献   

10.
垂柳雌花蜜腺一枚,位于于房与花序轴之间,多呈扁平广卵形,由分泌表皮、泌蜜组织和维管束组成。雄花蜜腺呈基部相连的两枚突起,一枚位于花丝与花序轴之间,基部宽扁,上部棒状;另一枚位于花丝与苞片之间,棒状,仅由分泌表皮和泌蜜组织组成。雌、雄花蜜腺均起源于花托表面2—3层细胞。在蜜腺发育过程中,雌、雄花蜜腺泌蜜组织细胞的液泡发生规律性变化.雌花蜜腺为淀粉型蜜腺,而雄花蜜腺为非淀粉型蜜腺。雌、雄花蜜腺的原宜汁分别由蜜腺维管束韧应部或花丝维管束韧皮部提供,其蜜计最后均由分泌表皮细胞和变态气孔排出。  相似文献   

11.
《Flora》2014,209(5-6):233-243
Orchidaceae is one of the largest angiosperm families. Although extensively studied, reports of anatomy of secretory structures of orchids are relatively scarce. Rodriguezia venusta is an epiphytic orchid occurring in Brazil and Peru that has floral and extrafloral nectaries. This study describes the structure and the histochemistry of these secretory structures. Floral and extrafloral nectary samples were obtained from R. venusta plants that were collected in a gallery forest in the State of Bahia, Brazil, and grown in a greenhouse. Theses samples were fixed and processed according to routine procedures in plant anatomy and histochemistry or for scanning electron microscopy. The extrafloral nectaries occur on the edge and sub-edge of young leaves and at the basal portion of bracts that subtend the floral buds. They are structurally very similar, being formed by a nectary parenchyma and a simple epidermis with stomata (“non-structured nectaries”). The floral nectary is inserted at the floral receptacle fused with the labellum base, between this structure and the two inferior connate sepals. This nectary consists of an epidermis with numerous specific nectar secreting trichomes, a subnectary and a nectary parenchyma abundantly supplied by vascular terminations. Its structure is complex and distinct from other floral nectaries described for Orchidaceae.  相似文献   

12.
Nectar is the most common floral pollinator reward. In dichogamous species, floral nectar production rates can differ between sexual phases. We studied the structure of nectaries located on the stylopodium and nectar production in protandrous umbellifer Angelica sylvestris. Our study species produced nectar in both floral sexual phases. Nectar sugar concentration was low (on average 22 ± 11 %, mean ± SD) and the nectar hexose rich and composed of sucrose, glucose, fructose and a small amount of amino acids, including β-alanine, a non-protein amino acid. Although nectar composition and sugar concentration varied little between floral sexual phases, nectar production showed a threefold reduction during the stigma receptive period. This is in contrast to other studies of Apiaceae that have reported female-biased nectar production, but in the direction predicted by plant sexual selection theory, suggesting that in pollen-unlimited species, floral rewards mainly enhance male reproductive success. The structure of the nectary was similar at the two sexual stages investigated, and composed of a secretory epidermis and several layers of nectariferous and subsecretory parenchyma. The nectary cells were small, had large nuclei, numerous small vacuoles and dense, intensely staining cytoplasm with abundant endoplasmic reticulum, mitochondria and secretory vesicles. They contained abundant resin-like material that may potentially act as defence against microbes. Starch was rarely observed in the nectary cells, occurring predominantly at the female stage and mainly in guard and parenchyma cells in close proximity to stomata, and in subsecretory parenchyma. The main route of nectar release in A. sylvestris seems to be via modified stomata.  相似文献   

13.
In dichogamous plants, nectar characteristics (i.e. nectar amount and its composition) can differ between sexual phases. In the present study, we investigated the structural organization of the floral nectary, nectar production and carbohydrate composition in the protandrous Chamaenerion angustifolium (L.) Scop. (Onagraceae). The receptacular nectary consisted of an epidermis with numerous nectarostomata, several layers of photosynthetic secretory parenchyma, and subsecretory parenchyma. Nectariferous tissue was not directly vascularized and starch grains were rarely observed in the secretory cells, occurring exclusively in the guard cells of modified stomata. The nectar was released via nectarostomata. The floral nectar was hexose rich (32.8/39.1/28.1% glucose/fructose/sucrose) and the total concentration was constant throughout the anthesis (47% on average). However, contrasting patterns in nectar amount and carbohydrate composition between the floral sexual phases were observed. On average, female‐phased flowers produced 1.4‐fold more nectar than male‐phased flowers, and although the nectar was sucrose rich during the male phase, it was hexose rich during the female phase, suggesting sucrose hydrolysis.  相似文献   

14.
Nectaries occur widely in Convolvulaceae. These structures remain little studied despite their possible importance in plant–animal interactions. In this paper, we sought to describe the structure and ultrastructure of the receptacular nectaries (RNs) of Ipomoea cairica, together with the dynamics of nectar secretion. Samples of floral buds, flowers at anthesis and immature fruits were collected, fixed and processed using routine methods for light, scanning and transmission electron microscopy. Circadian starch dynamics were determined through starch measurements on nectary sections. The secretion samples were subjected to thin layer chromatography. RNs of I. cairica were cryptic, having patches of nectar‐secreting trichomes, subglandular parenchyma cells and thick‐walled cells delimiting the nectary aperture. The glandular trichomes were peltate type and had typical ultrastructural features related to nectar secretion. The nectar is composed of sucrose, fructose and glucose. Nectar secretion was observed in young floral buds and continued as the flower developed, lasting until the fruit matured. The starch content of the subglandular tissue showed circadian variation, increasing during the day and decreasing at night. The plastids were distinct in different portions of the nectary. The continuous day–night secretory pattern of the RNs of I. cairica is associated with pre‐nectar source circadian changes in which the starch acts as a buffer, ensuring uninterrupted nectar secretion. This circadian variation may be present in other extrafloral nectaries and be responsible for full daytime secretion. We conclude that sampling time is relevant in ultrastructural studies of dynamic extranuptial nectaries that undergo various changes throughout the day.  相似文献   

15.
Premise of the study: While mahogany (Swietenia macrophylla) is one of the most important forest species in the Amazon region, little is known about its reproductive biology. Knowledge about the nectary structure and dynamics of nectar production of this species represent a key step toward understanding its relationship with pollinators. • Methods: Mahogany tree floral buds and flowers in anthesis were collected, fixed, and processed for study by light and transmission and scanning electron microscopy. The chemical composition of nectar and the nectary pigments was also studied. • Key results: Both staminate and pistillate flowers have nectaries, which contain a papillose epidermis and stomata. The nectariferous tissue is parenchymatous, with the cell cytoplasm primarily containing mitochondria and plastids. Secretory activity initiates at the beginning of anthesis, which occurs at nightfall. Flowers undergoing anthesis become structurally modified, with starch grains in the plastids disappearing. The number of plastoglobuli in the plastids also increases when nectaries change color from pale yellow to intense red. Pistillate and staminate flowers produce meager nectar rewards. • Conclusions: Changes in plastoglobuli number seem to be related to an increase in carotenes and color changes during anthesis. Carotenes can be linked to the protection of the plant against oxidative stress, which results from secretory activities. Nectary color has a limited role as a pollinator attractant. Floral rewards comprise small nectar droplets in both flower types, in addition to a few pollen grains in staminate flowers. These meager rewards are probably adapted to attract small generalist insects.  相似文献   

16.
Summary The floral nectary ofPisum sativum L. is situated on the receptacle at the base of the gynoecium. The gland receives phloem alone which departed the vascular bundles supplying the staminal column. Throughout the nectary, only the companion cells of the phloem exhibited wall ingrowths typical of transfer cells. Modified stomata on the nectary surface served as exits for nectar, but stomatal pores developed well before the commencement of secretion. Furthermore, stomatal pores on the nectary usually closed by occlusion, not by guard-cell movements. Pore occlusion was detected most frequently in post-secretory and secretory glands, and less commonly in pre-secretory nectaries. A quantitative stereological study revealed few changes in nectary fine structure between buds, flowers secreting nectar, and post-secretory flowers. Dissolution of abundant starch grains in plastids of subepidermal secretory cells when secretion commenced suggests that starch is a precursor of nectar carbohydrate production. Throughout nectary development, mitochondria were consistently the most plentiful organelle in both epidermal and subepidermal cells, and in addition to the relative paucity of dictyosomes, endoplasmic reticulum, and their associated vesicles, the evidence suggests that floral nectar secretion inP. sativum is an energy-requiring (eccrine) process, rather that granulocrine.Abbreviations ER endoplasmic reticulum - GA glutaraldehyde - SEM scanning electron microscopy  相似文献   

17.
BACKGROUND AND AIMS: Considering that few studies on nectary anatomy and ultrastructure are available for chiropterophilous flowers and the importance of Hymenaea stigonocarpa in natural 'cerrado' communities, the present study sought to analyse the structure and cellular modifications that take place within its nectaries during the different stages of floral development, with special emphasis on plastid dynamics. METHODS: For the structural and ultrastructural studies the nectary was processed as per usual techniques and studied under light, scanning and transmission electron microscopy. Histochemical tests were employed to identify the main metabolites on nectary tissue and secretion samples. KEY RESULTS: The floral nectary consists of the inner epidermis of the hypanthium and vascularized parenchyma. Some evidence indicates that the nectar release occurs via the stomata. The high populations of mitochondria, and their juxtaposition with amyloplasts, seem to be related to energy needs for starch hydrolysis. Among the alterations observed during the secretory phase, the reduction in the plastid stromatic density and starch grain size are highlighted. When the secretory stage begins, the plastid envelope disappears and a new membrane is formed, enclosing this region and giving rise to new vacuoles. After the secretory stage, cellular structures named 'extrastomatic bodies' were observed and seem to be related to the nectar resorption. CONCLUSIONS: Starch hydrolysis contributes to nectar formation, in addition to the photosynthates derived directly from the phloem. In these nectaries, the secretion is an energy-requiring process. During the secretion stage, some plastids show starch grain hydrolysis and membrane rupture, and it was observed that the region previously occupied by this organelle continued to be reasonably well defined, and gave rise to new vacuoles. The extrastomatic bodies appear to be related to the resorption of uncollected nectar.  相似文献   

18.
长药景天花蜜腺的发育解剖学研究   总被引:3,自引:0,他引:3  
长药景天花蜜腺5枚,呈侧向扁平的舌形或弯月形,分别位于5株离生心皮的外侧,两者的基部相连,属于子房蜜腺。蜜腺由分泌表皮、产蜜组织和仅含韧皮部的维管束组成。长药景天花蜜腺起源于心皮外侧基部的表层结构。产蜜组织在发育过程中,细胞中的液泡体积及淀粉粒呈现有规律的消长变化。泌蜜后期,蜜腺组织从上往下液泡化,具明显的方向性。根据其结构及多糖变化分析,来自韧皮部的原蜜汁以淀粉粒形式贮存于产蜜组织中,泌蜜期水解  相似文献   

19.

Floral secretory structures have been reported for Gentianaceae; however, morphoanatomical studies of these glands are rare. We described the development and secretory activity of the colleters and nectaries throughout the floral development of Chelonanthus viridiflorus. We collected flower buds, flowers at anthesis, and fruits to be investigated using light and scanning electron microscopy. We performed histochemical tests on the secretion of colleters and used glycophyte to confirm the presence of glucose in nectar. Colleters are located on the ventral surface of sepals and nectaries occur in four regions: (i) the dorsal and (ii) ventral surfaces of sepals; (iii) apex of petals; and (iv) base of ovary. The colleters have a short peduncle and a secretory portion with homogeneous cells. They are active in flower buds and secrete polysaccharides and proteins. In flowers at anthesis, they begin to senescence presenting protoplast retraction, cell collapse, and lignification; these characteristics are intensified in fruit. The nectaries of sepals and petals have two to five cells surrounding a central cell through which the secretion is released. Nectaries are numerous, forming a nectariferous area on the dorsal surface of sepals, like that observed on petals, and can form isolated units on the ventral surface of sepals. They are active from flower buds to fruits. A region with secretory activity was identified at the base of the ovary. The secretion of colleters acts in the protection of developing organs, while nectaries are related to defenses against herbivores and the supply of nectar to potential robbers or pollinators.

  相似文献   

20.
The nectary structure and chemical nectar composition of 15 species belonging to 12 genera ofBignoniaceae are analyzed. All taxa bear a conspicuous nuptial nectary surrounding the ovary base. The secretory tissue is mostly supplied by phloem branches. The stomata are located in the middle and upper part of the nectary epidermis with an homogeneous distribution. The nuptial nectary is proportionally large in relation to the ovary (15–30%), disregarding the nectary volume. Most species have extranuptial nectaries in both inner and outer surfaces of the calyx. Both kinds of nectaries lack a vascular tissue that straightly supplies them. Nuptial nectar concentration (wt/wt) ranges from 19 to 68%. Sugars and amino acids are found in all species. Half of the species have hexose predominant nectars, the remaining sucrose predominant. Phenols are detected in only three species, whereas reducing acids exclusively inTecoma stans. Alkaloids and lipids were never detected. Extranuptial nectar chemical composition is analyzed in two species:Dolichandra cynanchoides andPodranea ricasoliana. Bees constitute the main flower visitors of the species studied whereas hummingbirds were seen visiting three species. A correlation analysis is performed with the data obtained. There are a few significant correlations which indicate a parallel increase of three parameters: the longer the flower length, the more voluminous the nectary and the higher stomata number, independently of the floral biotype. Phenograms are obtained using 24 floral characters including nectary and nectar data. The clusters obtained do not reflect taxonomic relationships but are useful in the understanding of animal-plant interactions when the flower biotype is considered.This paper is based on a chapter of a doctoral thesis presented at the University of Córdoba (Argentina).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号