首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 465 毫秒
1.
2.
Chromatin composition differs across the genome, with distinct compositions characterizing regions associated with different properties and functions. Whereas many histone modifications show local enrichment over genes or regulatory elements, marking can also span large genomic intervals defining broad chromatin domains. Here we highlight structural and functional features of chromatin domains marked by histone modifications, with a particular emphasis on the potential roles of H3K27 methylation domains in the organization and regulation of genome activity in metazoans.  相似文献   

3.
Modifications to DNA and histone tails represent key epigenetic marks involved in establishing and maintaining cell identity and can be dysregulated in human diseases, including cancer. Two such modifications, tri-methylation of lysine-27 on histone H3 (H3K27me3) mediated by the Polycomb complex and hydroxymethylation of cytosines on DNA, have recently been shown to be dynamically regulated during differentiation. Here, we show that global levels of 5-hydroxymethylcytosine (5hmC) and H3K27me3 are highly correlated across a variety of somatic tissues. In multiple hierarchically organized tissues, both marks showed almost identical cell-by-cell distribution patterns that exhibited a tight association with differentiation. In particular, tissue stem cell compartments were characterized by low levels of both marks, whereas differentiated cell compartments exhibited high levels of 5hmC and H3K27me3. This pattern of correlation between the two marks could be recapitulated in an in vitro model system of induced differentiation in prostate epithelial cells. While the correlation between 5hmC and H3K27me3 levels is also maintained in human cancers, the degree of correlation is reduced. These findings suggest a previously unappreciated link between 5hmC and H3K27me3 regulation that should be explored in future mechanistic studies.  相似文献   

4.
组蛋白甲基化是一种重要的表观遗传学修饰,在基因表达调节方面发挥着重要的作用.组蛋白H3赖氨酸27三甲基化(H3K27me3)是一种抑制性组蛋白标记,可被去甲基化酶UTX和JMJD3催化而移去甲基.UTX和JMJD3通过激活HOX基因而参与细胞分化和多能细胞抑制过程.在多种肿瘤中检测到UTX和JMJD3突变或表达下降,同时多种基因启动子区H3K27me3含量增多.UTX和JMJD3均被看作肿瘤抑制基因,其中UTX调节了RB依赖的细胞命运控制,而JMJD3通过激活INK4b-ARF-INK4a位点而参与了癌基因诱导的衰老.组蛋白H3K27去甲基化酶与肿瘤发生的研究使我们对癌症发展过程有了更好的理解,同时也为癌症诊断和治疗提供了新靶点.  相似文献   

5.
6.
7.
8.
组蛋白变体在基因表达等基本细胞过程中发挥重要调节功能。人类有5种H3变体,分别为H3.1、 H3.2、H3.3、着丝粒特异性CENP-A和睾丸特异性H3t。人H3.3有H3F3A和H3F3B两个基因编码。采用DNA全基因组测序的方法在儿童高级别胶质瘤如恶性胶质瘤(GBM)和弥漫性内在脑桥胶质瘤(DIPG)鉴定出高频的H3F3A突变。超过70%DIPG和30%GBM携带H3.3 K27M氨基酸错义突变(27位赖氨酸被甲硫氨酸代替)。H3.3 K27M通过与组蛋白H3K27甲基转移酶EZH2亚基相互作用而抑制多梳抑制复合物2(PRC2)活性并全面减少H3K27me3含量。因此H3.3 K27M突变重塑了表观修饰状态和基因表达模式,从而驱动肿瘤发生。K27M突变可作为分子标志物以更好区分儿童胶质瘤亚型,还可作为特异、敏感的预后标志物。通过抑制组蛋白去甲基化酶如JMJD3活性而增加H3K27甲基化可作为K27M突变胶质瘤治疗的有效策略。本文综述了组蛋白变体H3.3 K27M在胶质瘤中的突变模式、分子机制和临床应用。  相似文献   

9.

Background

DNA methylation is an epigenetic modification that changes with age in human tissues, although the mechanisms and specificity of this process are still poorly understood. We compared CpG methylation changes with age across 283 human blood, brain, kidney, and skeletal muscle samples using methylation arrays to identify tissue-specific age effects.

Results

We found age-associated CpGs (ageCGs) that are both tissue-specific and common across tissues. Tissue-specific ageCGs are frequently located outside CpG islands with decreased methylation, and common ageCGs show the opposite trend. AgeCGs are significantly associated with poorly expressed genes, but those with decreasing methylation are linked with higher tissue-specific expression levels compared with increasing methylation. Therefore, tissue-specific gene expression may protect against common age-dependent methylation. Distinguished from other tissues, skeletal muscle ageCGs are more associated with expression, enriched near genes related to myofiber contraction, and closer to muscle-specific CTCF binding sites. Kidney-specific ageCGs are more increasingly methylated compared to other tissues as measured by affiliation with kidney-specific expressed genes. Underlying chromatin features also mark common and tissue-specific age effects reflective of poised and active chromatin states, respectively. In contrast with decreasingly methylated ageCGs, increasingly methylated ageCGs are also generally further from CTCF binding sites and enriched within lamina associated domains.

Conclusions

Our data identified common and tissue-specific DNA methylation changes with age that are reflective of CpG landscape and suggests both common and unique alterations within human tissues. Our findings also indicate that a simple epigenetic drift model is insufficient to explain all age-related changes in DNA methylation.  相似文献   

10.
11.
12.
PI3K/AKT信号通路调控Myogenin和MCK基因的表达   总被引:1,自引:0,他引:1  
李晶  张云生  李宁  胡晓湘  石国庆  刘守仁  柳楠 《遗传》2013,35(5):637-642
骨骼肌分化过程受多个信号通路调控, PI3K/AKT信号通路是其中最重要的信号转导通路之一。PI3K/AKT信号通路可以调控骨骼肌分化, 但在染色质水平上的调控机制还不是很清楚。文章以小鼠成肌细胞(C2C12)为研究材料, 采用免疫印迹、染色质免疫共沉淀(Chromatin immunoprecipitation, ChIP)、定量PCR (Q-PCR)的方法研究PI3K/AKT信号通路调控Myogenin和MCK基因的表达。研究发现, C2C12细胞分化过程中添加PI3K/AKT信号通路激活剂处理24 h, Myogenin和MCK蛋白表达水平显著升高, 组蛋白H3K27me3去甲基化酶UTX的表达也升高, H3K27me3在Myogenin基因启动子区和MCK基因启动子及增强子区的富集与对照组相比显著降低。用PI3K/AKT信号通路抑制剂处理, 结果相反。因此, PI3K/AKT信号通路可能通过调控组蛋白去甲基化酶UTX的表达活性改变靶基因的H3K27me3的富集进而调控骨骼肌分化。  相似文献   

13.
14.
《Epigenetics》2013,8(9):976-981
During fertilization, two of the most differentiated cells in the mammalian organism, a sperm and oocyte, are combined to form a pluripotent embryo. Dynamic changes in chromatin structure allow the transition of the chromatin on these specialized cells into an embryonic configuration capable of generating every cell type. Initially, this reprogramming activity is supported by oocyte-derived factors accumulated during oogenesis as proteins and mRNAs; however, the underlying molecular mechanisms that govern it remain poorly characterized. Trimethylation of histone H3 at lysine 27 (H3K27me3) is a repressive epigenetic mark that changes dynamically during pre-implantation development in mice, bovine and pig embryos. Here we present data and hypotheses related to the potential mechanisms behind H3K27me3 remodeling during early development. We postulate that the repressive H3K27me3 mark is globally erased from the parental genomes in order to remove the gametic epigenetic program and to establish a pluripotent embryonic epigenome. We discuss information gathered in mice, pigs, and bovine, with the intent of providing a comparative analysis of the reprogramming of this epigenetic mark during early mammalian development.  相似文献   

15.
Epigenetic dysfunction is a known contributor in carcinogenesis, and is emerging as a mechanism involved in toxicant-induced malignant transformation for environmental carcinogens such as arsenicals or cadmium. In addition to aberrant DNA methylation of single genes, another manifestation of epigenetic dysfunction in cancer is agglomerative DNA methylation, which can participate in long-range epigenetic silencing that targets many neighboring genes and has been shown to occur in several types of clinical cancers. Using in vitro model systems of toxicant-induced malignant transformation, we found hundreds of aberrant DNA methylation events that emerge during malignant transformation, some of which occur in an agglomerative fashion. In an arsenite-transformed prostate epithelial cell line, the protocadherin (PCDH), HOXC and HOXD gene family clusters are targeted for agglomerative DNA methylation. The agglomerative DNA methylation changes induced by arsenicals appear to be common and clinically relevant events, since they occur in other human cancer cell lines and models of malignant transformation, as well as clinical cancer specimens. Aberrant DNA methylation in general occurred more often within histone H3 lysine-27 trimethylation stem cell domains. We found a striking association between enrichment of histone H3 lysine-9 trimethylation stem cell domains and toxicant-induced agglomerative DNA methylation, suggesting these epigenetic modifications may become aberrantly linked during malignant transformation. In summary, we found an association between toxicant-induced malignant transformation and agglomerative DNA methylation, which lends further support to the hypothesis that epigenetic dysfunction plays an important role in toxicant-induced malignant transformation.  相似文献   

16.
《Epigenetics》2013,8(11):1238-1248
Epigenetic dysfunction is a known contributor in carcinogenesis, and is emerging as a mechanism involved in toxicant-induced malignant transformation for environmental carcinogens such as arsenicals or cadmium. In addition to aberrant DNA methylation of single genes, another manifestation of epigenetic dysfunction in cancer is agglomerative DNA methylation, which can participate in long-range epigenetic silencing that targets many neighboring genes and has been shown to occur in several types of clinical cancers. Using in vitro model systems of toxicant-induced malignant transformation, we found hundreds of aberrant DNA methylation events that emerge during malignant transformation, some of which occur in an agglomerative fashion. In an arsenite-transformed prostate epithelial cell line, the protocadherin (PCDH), HOXC and HOXD gene family clusters are targeted for agglomerative DNA methylation. The agglomerative DNA methylation changes induced by arsenicals appear to be common and clinically relevant events, since they occur in other human cancer cell lines and models of malignant transformation, as well as clinical cancer specimens. Aberrant DNA methylation in general occurred more often within histone H3 lysine-27 trimethylation stem cell domains. We found a striking association between enrichment of histone H3 lysine-9 trimethylation stem cell domains and toxicant-induced agglomerative DNA methylation, suggesting these epigenetic modifications may become aberrantly linked during malignant transformation. In summary, we found an association between toxicant-induced malignant transformation and agglomerative DNA methylation, which lends further support to the hypothesis that epigenetic dysfunction plays an important role in toxicant-induced malignant transformation.  相似文献   

17.
18.
19.
Membranous nephropathy (MN), a type of glomerular nephritis, is the most common cause of nephrotic syndrome in human adults. Changes in gene expression as a result of epigenetic dysregulation through long noncoding RNAs (lncRNAs) are increasingly being recognized as important factors in disease. Using an experimental MN mouse model, we identify the first dysregulated lncRNAs, Xist and NEAT1, whose levels are significantly upregulated in both tubular epithelial and glomerular cells. MN is also often characterized by glomerular podocyte injury. Treatment of a mouse podocyte cell line with lipopolysaccharides to induce injury resulted in the stable elevation of Xist, but not NEAT1 levels. In mice, the observed changes in Xist levels are specific: Xist can be effectively detected in urine, with a strong correlation to disease severity, but not serum in MN samples. We find that regulation of Xist may be controlled by post-translational modifications. H3K27me3 levels are significantly downregulated in mouse MN kidney, where chromatin immunoprecipitation experiments also showed decreased H3K27me3 at Xist promoter regions. Finally, we show that our findings in mice can be extended to human clinical samples. Urinary Xist is significantly elevated in urine samples from patients with different types of glomerular nephritis, including MN, compared to normal counterparts. Together, our results suggest that a reduction of H3K27me3 at Xist promoter regions leads to elevated levels of urinary Xist, which may be used as a biomarker to detect MN.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号