首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Redox gel probes containing immobilized particulate manganese compounds (MnO 2 , MnCO 3 , and MnS) were placed on a surveyed grid in the sediment of a wetland receiving coal mine drainage in western Pennsylvania (USA). The stability of these compounds in the wetland was shown to be highly variable both temporally and spatially, indicating that apparent manganese removal based on water quality data did not result in long-term manganese retention in sediments. Contour maps of the gel probe data revealed the importance of local environmental conditions, such as surface water velocity, on geochemical conditions influencing manganese compound stability in sediments, as well as seasonal changes in the ability of the wetland to retain MnO 2 in sediments. Estimates of in situ MnO 2 reduction rates using gel probe data agree with earlier published estimates based on laboratory studies. Although the factors influencing particulate metal stability in sediments are extremely complex and difficult to study, the redox gel probe method is demonstrated to be a cost-effective means of obtaining an areal and depth-related picture of that stability during a particular period of time.  相似文献   

2.
A novel method was used to examine the microbial ecology of iron-rich wetland sediments receiving neutral-pH coal mine drainage. Gel probes inserted into the sediments allowed analysis of the distribution and activity of bacterial sulfate reduction (BSR). A mixed population of sulfate-reducing bacteria enriched from anoxic wetland sediments was immobilized in low temperature-gelling agarose held in grooved rods or probes. The probes were inserted vertically into sediments and were allowed to incubate in situ for 48 h. After their retrieval, the gels were sectioned and analyzed for residual BSR activity and were compared to in situ BSR rates and chemical porewater profiles. The depth distribution of residual BSR activity in the immobilized cell gel probes differed significantly from the BSR measured in situ. Approximately 51% of the total integrated residual sulfate reduction activity measured in the gel probes occurred between 0 and 7 cm of the upper 20 cm of sediment. In contrast, ca. 99% of the integrated in situ BSR occurred between 7- and 20-cm depth, and only 1% of the total integrated rate occurred between 0- and 7-cm depth. Lactate-enriched bacteria immobilized in the gel may have been atypical of the majority of sulfate-reducing bacteria in the sediment. Agarose-immobilized sulfate-reducing bacteria might also be able to proliferate in the otherwise inhospitable zone of iron reduction, where sulfate and labile carbon compounds for which they are usually outcompeted can diffuse freely into the gel matrix. Gel probes containing particulate iron monosulfide (FeS) indicated that FeS remained stable in sediments at depths greater than 2 to 3 cm below the sediment-water interface, consistent with the shallow penetration of oxygen into surface sediments.  相似文献   

3.
A hyaluronic acid-protein complex was embedded into agar gel. This gel complex resembles in some respects the physiological situation in connective tissue, but still permits precise physicochemical measurements to be made. The diffusion coefficient of caffeine into and from such gels has been measured as a function of both agar and hyaluronate concentration. The value for the diffusion coefficient of caffeine was also measured by using a Gouy type diffusiometer. From both types of measurement the value for D (Fick) for caffeine when extrapolated to zero caffeine and agar concentrations agreed at (6.79+/-0.01)x10(-6)cm(2).s(-1) at 25 degrees C. Although agar concentration had only a small effect on caffeine diffusion, hyaluronic acid caused a large decrease in caffeine diffusion co-efficient. The presence of the hyaluronic acid-protein complex within the gel tended to oppose gel syneresis, a concentration of 1.7mg/ml abolishing the effect and higher concentrations reversing it. The possible physiological implications of these results are discussed.  相似文献   

4.
The ability of the soil fungi Aspergillus niger and Serpula himantioides to tolerate and solubilize manganese oxides, including a fungal-produced manganese oxide and birnessite, was investigated. Aspergillus niger and S.?himantioides were capable of solubilizing all the insoluble oxides when incorporated into solid medium: MnO(2) and Mn(2) O(3) , mycogenic manganese oxide (MnO(x) ) and birnessite [(Na(0.3) Ca(0.1) K(0.1) )(Mn(4+) ,Mn(3+) )(2) O(4) ·1.5H(2) O]. Manganese oxides were of low toxicity and A.?niger and S.?himantioides were able to grow on 0.5% (w/v) of all the test compounds, with accompanying acidification of the media. Precipitation of insoluble manganese and calcium oxalate occurred under colonies growing on agar amended with all the test manganese oxides after growth of A.?niger and S.?himantioides at 25°C. The formation of manganese oxalate trihydrate was detected after growth of S.?himantioides with birnessite which subsequently was transformed to manganese oxalate dihydrate. Our results represent a novel addition to our knowledge of the biogeochemical cycle of manganese, and the roles of fungi in effecting transformations of insoluble metal-containing compounds in the environment.  相似文献   

5.
A 16S rRNA-targeted oligonucleotide probe specific for the iron (Fe3+)- and manganese (Mn4+)-reducing bacterium Shewanella putrefaciens was constructed and tested in both laboratory- and field-based hybridization experiments. The radioactively labeled probe was used to detect S. putrefaciens in field samples collected from the water column and sediments of Oneida Lake in New York and its major southern tributary, Chittenango Creek. S. putrefaciens was quantified by (i) hybridization of the probe to bulk RNA extracted from field samples and normalization of the S. putrefaciens-specific rRNA to total eubacterial rRNA, (ii) a colony-based probe hybridization assay, and (iii) a colony-based biochemical assay which detected the formation of iron sulfide precipitates on triple-sugar iron agar. The results of field applications indicated that the three detection methods were comparable in sensitivity for detecting S. putrefaciens in water column and sediment samples. S. putrefaciens rRNA was detected in the surficial layers of the lake and creek sediments, but the levels of S. putrefaciens rRNA were below the detection limits in the lake and creek water samples. The highest concentrations of S. putrefaciens rRNA, corresponding to approximately 2% of the total eubacterial rRNA, were detected in the surficial sediments of Chittenango Creek and at a midlake site where the Oneida Lake floor is covered by a high concentration of ferromanganese nodules. This finding supports the hypothesis that metal-reducing bacteria such as S. putrefaciens are important components in the overall biogeochemical cycling of iron, manganese and other elements in seasonally anoxic freshwater basins.  相似文献   

6.
A gel electrophoretic method coupled with agar diffusion has been devised for detecting tumor antigens in human colon tissue. Separation of the antigens is achieved on duplicate electrophoretic gels. One gel is used for the location of the antigens by protein staining and the other gel is used for assaying of the antigenicity by agar diffusion against homologous antiserum. Analysis of perchloric acid extracts of colon tumors by this coupled method revealed the presence of carcinoembryonic antigen and two additional glycoprotein antigens. Analysis of KClHCl tumor extracts revealed two new tumor antigens.  相似文献   

7.
Holographic relaxation spectroscopy (HRS) has been used to study transport of benzospiropyran (SP), BSA labeled with azobenzene (BSA-ABITC), and IgG-κ labeled with fluorescein (IgG-FITC) through fibrin gels formed under various conditions. The structures of the gels were controlled by means of the concentrations of fibrinogen, thrombin, and Ca2+ present during assembly of the fibrin. The diffusion coefficient of free dye (SP) was found to be independent of the fibrinogen concentration. The diffusion rate of labeled BSA reflected the assembly conditions of the gel for fibrinogen concentrations above approximately 6 g/L. In particular, the diffusion coefficient was higher in gels formed in the presence of 5 mM Ca2+. The labeled IgG showed photoinduced aggregation, as previously reported, as well as photoinduced attachment to the gel network to produce a permanent diffraction grating. Thus IgG is not a probe in the classical sense, but provides a model for protein diffusion and interactions in gels. These studies indicate that HRS is well suited to the study of molecular transport in fibrin gels.  相似文献   

8.
Whole blood hematocrit was determined by an approach which depends on the diffusion of an inert probe, to which red blood cells are impermeable, from a small agarose gel into a stirred, much larger blood sample. Blood cells influence the diffusion rate of the probe by, on the average, physically blocking a fraction of the gel surface. The blocking effect increases with the hematocrit. Cyanocobalamin (B-12) was found to be a suitable probe because it did not penetrate, bind to, or lyse blood cells and was not bound by plasma solutes. The loss of B-12 from gels in contact with blood was monitored by determination of the absorbance change at 540 nm of gels which had been quickly rinsed. The visible spectrum of B-12 in agarose gels was identical to the spectrum in water. Beer's Law was obeyed in 1-mm thick agarose gels over a concentration range of 0.1-0.8 mM. Based on the results from 48 blood samples covering the hematocrit range 25-69, a least-squares line was generated with a slope, -3.46 X 10(-3) delta A/hematocrit unit, a Y intercept of 0.295, and a correlation coefficient of 0.971. The precision of the technique was +/- 9.7%. The assay was insensitive to mean corpuscular volume and sample volume as long as the latter was 50-fold larger than the gel volume. The diffusion coefficient for B-12 in 1% agarose gels was found to be 1.4 +/- 0.2 X 10(-6) cm2 sec-1.  相似文献   

9.
Vertical profiles of total dissolved arsenic, manganese and iron, pH, Eh and rates of sulfate reduction were determined in a freshly-collected box core from a 335m depth station in the Laurentian Trough. The relationships observed between the profiles were further examined in the laboratory by measuring these same parameters with time in surficial sediment slurries as the Eh decreased in response to biological activity or chemical alteration.Both field and laboratory observations have shown that arsenic is released predominantly as As(III) into reducing sediment porewaters. This occurs after the dissolution of manganese oxides and at the same time as the dissolution of iron oxyhydroxides and the onset of sulfate reduction. Laboratory experiments indicated that sulfate reduction and the production of sulfide ions are not solely responsible for the release of arsenic to the porewaters, although this process is necessary to create and maintain a highly reducing environment conducive to rapid iron dissolution.The diagenesis of arsenic in Laurentain Trough sediments involves the simultaneous release of arsenic and iron at a subsurface depth, followed by its removal from porewaters by precipitation and adsorption reactions after migration by diffusion along concentration gradients. A qualitative model is presented to describe the behavior of arsenic in coastal marine sediments.Present address: Department of Geological Sciences, McGill University, 3450 UniversityStreet, Montreal, Quebec H3A 2A7, Canada  相似文献   

10.
The present studies were undertaken to evaluate the in vitro gel stability of the hydrogels alginate and agarose. Gel strength (of alginate and agarose) and protein diffusion (of alginate only) were shown to correlate with gel stability and to be useful techniques to monitor gel stability over time. The gel strengths of alginate and agarose were followed for a 90-day period using gel strength as a measure of gel stability. The gel strength of agarose diminished in the presence of cells because the cells likely interfered with the hydrogen bond formation required for agarose gelation. In the presence of cells, the gel strength of agarose decreased by an average of 25% from time 0 to 60 days, thereafter maintaining that value to 90 days. The gel strength of calcium- or barium-crosslinked alginate decreased over 90 days, with an equilibrium gel strength being achieved after 30 days. The presence of cells did not further decrease alginate gel strength. The gel strengths of calcium- and barium-crosslinked alginates were similar at 60 days-350 +/- 20 g and 300 +/- 60 g, respectively-indicating equivalence in their stability. The stability of calcium-crosslinked sodium alginate gels over a 60-day time period was monitored by diffusion of proteins ranging in molecular weight from 14.5 to 155 kD. From these diffusion measurements, the average pore size of the calcium-crosslinked alginate gels was estimated, using a semi-empirical model, to increase from approximately 176 to 289 A over a period of 60 days. (c) 1996 John Wiley & Sons, Inc.  相似文献   

11.
Magnetic resonance imaging (MRI) has already been successively used to investigate polysaccharide matrices. In particular, MRI at microscopic resolution (MR microscopy) is now one of the most powerful techniques for studying the physical properties of natural hydrogels. To contribute to a better understanding of the correlation between chemical and physical properties of agar gels, we report here the measurement of the water magnetic parameters for agar gels extracted from different species of Gelidium: T1 and T2 relaxation times, magnetisation transfer (Ms /M0) and diffusion (D) were measured to evaluate their use for studying the gel characteristics. MR microscopic images were acquired at 7.05 Tesla using various pulse sequences. The results obtained confirmed the possibility to use quantitative MRI for the characterisation of physical parameters correlated with the type of agar chemical structure. In particular, T2 data obtained for gels at different concentrations indicate that this magnetic parameter is very sensitive to the agar concentration and hence particularly useful for the gel strength determination. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
Rheological and thermal properties of agar sol and gel in presence of various cationic, anionic and non-ionic surfactants are reported. The agar used was from the red seaweed Gelidiella acerosa. The gel strength, viscosity, rigidity (G'), gelling temperature and melting temperature were observed to decrease in presence of non-ionic surfactants whereas these were enhanced in presence of ionic surfactants. TGA studies showed that 1.5% agar gels containing non-ionic surfactants lose water at a lower temperature than the control agar gel whereas gels containing ionic surfactants hold on to water more tenaciously. DSC studies, on the other hand, show that the gel to sol transition occurs at lower temperatures in presence of non-ionic surfactants and at higher temperature in presence of ionic surfactants when compared with the control gel. The non-ionic surfactants, Triton X-100 and Brij 35, enabled relatively concentrated agar extractive to be filtered readily, as a result of which water usage in the process could be reduced by 50%. The surfactant was subsequently removed through freeze-thaw operations to restore the gelling capacity of the agar. The finding that 0.3-0.4% (w/v) sodium lauryl sulfate (SLS) lowers the sol-gel transition temperature from 41 to 36 degrees C without adversely affecting gel strength is another useful outcome of the study that may enable better formulations of bacteriological agar to be prepared.  相似文献   

13.
Microbial communities in coastal subsurface sediments are scarcely investigated and have escaped attention so far. But since they are likely to play an important role in biogeochemical cycles, knowledge of their composition and ecological adaptations is important. Microbial communities in tidal sediments were investigated along the geochemical gradients from the surface down to a depth of 5.5 m. Most-probable-number (MPN) series were prepared with a variety of different carbon substrates, each at a low concentration, in combination with different electron acceptors such as iron and manganese oxides. These achieved remarkably high cultivation efficiencies (up to 23% of the total cell counts) along the upper 200 cm. In the deeper sediment layers, MPN counts dropped significantly. Parallel to the liquid enrichment cultures in the MPN series, gradient cultures with embedded sediment subcores were prepared as an additional enrichment approach. In total, 112 pure cultures were isolated; they could be grouped into 53 different operational taxonomic units (OTU). The isolates belonged to the Proteobacteria, "Bacteroidetes," "Fusobacteria," Actinobacteria, and "Firmicutes." Each cultivation approach yielded a specific set of isolates that in general were restricted to this single isolation procedure. Analysis of the enrichment cultures by PCR and denaturing gradient gel electrophoresis revealed an even higher diversity in the primary enrichments that was only partially reflected by the culture collection. The majority of the isolates grew well under anoxic conditions, by fermentation, or by anaerobic respiration with nitrate, sulfate, ferrihydrite, or manganese oxides as electron acceptors.  相似文献   

14.
15.
Abstract A multidisciplinary field study investigating the fate and transport of petroleum hydrocarbons commonly associated with jet-fuel contamination is currently underway at Columbus Air Force Base (AFB), Mississippi. Sixty sediment cores from 12 boreholes were recovered from the study aquifer. The goal of this initial sampling was to characterize the potential microbial activity using 14C-labeled substrates, as well as the presence, abundance, and distribution of specific hydrocarbon degrading genotypes using DNA:DNA hybridization. Enumeration of total microbial abundance using a 16S rDNA universal oligonucleotide probe was compared to traditional enumeration methods. Total culturable populations determined by spread plate analysis ranged from a low of 10(4) to more than 10(6) organisms per gram sediment. Microbial abundance estimated by DNA hybridization studies with 16S rDNA genes ranged from 10(7) to 10(8) organisms per gram sediment. Molecular analysis of aquifer samples using DNA probes targeting genes encoding the degradative enzymes alkane hydroxylase (alkB), catechol 2,3-dioxygenase (nahH), naphthalene dioxygenase (nahA), toluene dioxygenase (todC1C2), toluene monooxygenase (tomA), and xylene monooxygenase (xylA), as well as two probes measuring methanogenic microorganisms, codh (carbon monoxide dehydrogenase) and mcr (methyl coenzyme reductase), revealed that each target gene sequence was present in nearly all 60 samples. The presence of organisms demonstrating the phenotype to degrade BTEX and naphthalene was further supported using mineralization assays with 14C-labeled benzene, toluene, naphthalene, and phenanthrene. Minimal activity occurred during the first 24 hours. After a period of 5-7 days, greater than 40% of the target compounds were mineralized in aquifer sediments.  相似文献   

16.
Fluorescently labeled microtubule-associated proteins or poly-L-lysine (13,000 MW) were prepared by reaction with fluorescein isothiocyanate. The labeled compounds were used as probes of the assembly of calf brain tubulin using fluorescence photobleaching recovery techniques which allow measurement of the diffusion coefficient and percentage mobility of the fluorescent probe. When unfractionated tubulin (defined as material containing tubulin and microtubule-associated proteins) was polymerized at room temperature or 37 degrees C, either probe could be incorporated into microtubules, since the observed diffusion coefficient (approximately 1.7 X 10(-8) cm2/s) was much slower than that for either probe free in solution. The microtubules formed in the presence of labeled microtubule-associated proteins were free to diffuse while those formed in the presence of labeled polylysine were partially immobilized. Thus the fluorescence photobleaching recovery technique can be used to measure crosslinking of microtubules as well as assembly or interactions with other structures. When unfractionated tubulin was incubated with labeled polylysine in the presence of Ca2+ at room temperature, the observed diffusion coefficient (approximately 5.1 X 10(-8) cm2/s) probably represents the formation of rings of tubulin. The effect of mild and vigorous shearing, of cholchicine, and of different Mg2+ concentrations on the properties of the system were examined.  相似文献   

17.
Sediment columns from an oligotrophic lake were percolatedwith artificial porewater in two 46-day experiments toexamine the effects of Littorella uniflora and benthicmicroalgae on retention of phosphorus (P) by either iron(Fe) or manganese (Mn). Cumulative retention of P, Fe, andMn was 2–5 times higher in sediment with L. uniflora thanin sediment with microalgae, because of higher P uptake andmore efficient Fe and Mn oxidation by L. uniflora than bymicroalgae. Thus 34% and 21%of added P was retained in L. uniflora inhabited sediments asmetal-oxide bound P compared to 11% and2% in microalgae inhabited sediments, inexperiments supplied with Fe and Mn, respectively. Theatomic ratio of Fe/P precipitation was about 1 and forMn/P precipitation it was about 5. These ratios indicateprecipitation of Fe(III)-phosphate (strengite) and metastableMn(IV)-compounds containing phosphate and hydroxide ions invariable amounts. In addition to metal-oxide P precipitation,increased P retention in the vegetated sediment was also causedby the presence of humic acid compounds, which accountedfor about 26% of total retained P.  相似文献   

18.
Alginates are polysaccharides consisting of beta-D-mannuronate and alpha-L-guluronate units. In the presence of bivalent cations like calcium the guluronate blocks form physically cross-linked gels. The gelation properties of alginates play an important role in the stability of extracellular polymer substances and in the food industry. When stock solutions of Ca2+ ions and alginate are mixed, the gelation starts before the Ca2+ ions are evenly distributed, which leads to non-uniform gels. In this contribution, Ca alginate gels were prepared by in situ gelation using glucono-delta-lactone and CaCO3. In this way, uniform gels could be prepared directly in the measuring cell. Below a critical concentration, highly viscous solutions were obtained, which were below the critical point of gel formation. In these solutions at low rotational speeds a Schlieren peak arose, which became smaller and steeper with increasing time until a new meniscus could be detected. This behaviour is in contrast to the peak broadening due to diffusion after a synthetic boundary was formed. Evaluation of the data leads to negative diffusion coefficients. It has been shown by others that the mutual diffusion coefficient must be negative in the spinodal region. This phenomena is known as uphill diffusion and leads to phase separation of a binary system. The formation of the gel phase in this case is therefore discussed as uphill diffusion.  相似文献   

19.
The lateral mobility of pyrenyl phospholipid probes in dimyristoylphosphatidylcholine (DMPC) vesicles was determined from the dependence of the pyrene monomeric and excimeric fluorescence yields on the molar probe ratio. The analysis of the experimental data makes use of the milling crowd model for two-dimensional diffusivity and the computer simulated random walks of probes in an array of lipids. The fluorescence yields for 1-palmitoyl-2-(1'-pyrenedecanoyl)phosphatidylcholine (py10PC) in DMPC bilayers are well fitted by the model both below and above the fluid-gel phase transition temperature (Tc) and permit the evaluation of the probe diffusion rate (f), which is the frequency with which probes take random steps of length L, the host membrane lipid-lipid spacing. The lateral diffusion coefficient is then obtained from the relationship D = fL2/4. In passing through the fluid-gel phase transition of DMPC (Tc = 24 degrees C), the lateral mobility of py10PC determined in this way decrease only moderately, while D measured by fluorescence photobleaching recovery (FPR) experiments is lowered by two or more orders of magnitude in gel phase. This difference in gel phase diffusivities is discussed and considered to be related either to (a) the diffusion length in FPR experiments being about a micrometer or over 100 times greater than that of excimeric probes (approximately 1 nm), or (b) to nonrandomicity in the distribution of the pyrenyl probes in gel phase DMPC. At 35 degrees C, in fluid DMPC vesicles, the diffusion rate is f = 1.8 x 10(8) s-1, corresponding to D = 29 microns2 s-1, which is about three times larger than the value obtained in FPR experiments. The activation energy for lateral diffusion in fluid DMPC was determined to be 8.0 kcal/mol.  相似文献   

20.
Stabilization of immobilized D-amino-acid oxidase was achieved as follows. Yeast Trigonopsis variabilis producing D-amino-acid oxidase was used to deaminate cephalosporin C to glutaryl-7-aminocephalosporanic acid. Permeabilized cells were co-immobilized with manganese dioxide by entrapment in (poly)acrylamide gel so that hydrogen peroxide, liberated in the reaction, could be partially deactivated and both the enzyme and the substrate could be stabilized. Activity of entrapped cells was determined by HPLC and enzyme flow microcalorimetry. The process was evaluated in terms of activity, immobilization yield, storage stability and oxo-product formation by immobilized preparations. The storage stability of immobilized biocatalysts with MnO2 was nearly doubled and production of 2-oxoadipyl-7-aminocephalosporanic acid was 2-3-fold higher than by entrapped cells without MnO2. Glutaryl-7-aminocephalosporanic acid can be easily obtained from the resulting oxo-product by a non-enzymic reaction via externally added hydrogen peroxide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号