首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In songbirds the forebrain nuclei HVC (high vocal center) and RA (robust nucleus of the archistriatum) are larger in individuals or species that produce larger song repertoires, but the extent to which the size of these nuclei reflects a need for either producing or perceiving large repertoires is unknown. We, therefore, tested the hypothesis that species differences in the size of song nuclei reflect a commitment of “brain space” to the perceptual processing of conspecific song. The two species of marsh wren (Cistothorus palustris western and eastern) provide a good test case. Western males produce larger song repertoires, and have larger HVC and RA than do eastern males. Female marsh wrens do not sing, and if they use their song nuclei to assess conspecific male song repertoires, then we predicted that measurable cellular and nuclear parameters of HVC and RA would be greater in western than eastern female wrens. For males we confirmed that the volumes of HVC and RA, and cellular parameters of HVC, are greater in western than in eastern birds. These nuclei were also considerably larger in males than in conspecific females. Western and eastern female wrens, however, did not differ in any measured parameters of HVC or RA. Females of these wren species thus do not provide any direct evidence of anatomical specializations of song nuclei for the perceptual processing of conspecific male song. 1994 John Wiley & Sons, Inc.  相似文献   

2.
[3H]Testosterone (T) was injected into male and female canaries (Serinus canarius), a species in which females are able to sing but do so more rarely and more simply than males. Autoradiographic analysis revealed that males and females have equal proportions of cells labeled by T or its metabolites in four song control nuclei: the high vocal center (HVC), the lateral portion of the magnocellular nucleus of the anterior neostriatum (IMAN), the robust nucleus of the archistriatum (RA), and the hypoglossal motor nucleus (nXII). Labeled cells were also observed in both sexes in the medial portion of MAN, and in hypothalamic nuclei. In both sexes, labeled cells in HVC, IMAN, RA, and nXII were larger than unlabeled cells. There were no sex differences in the size of either labeled or unlabeled cells in these song nuclei. The density of labeled cells per unit volume of tissue did not differ between the sexes in any song nucleus analyzed. However, because males have larger HVC and RA than females, males have a greater total number of hormone-sensitive cells in these regions than do females. Comparison of these results with measures of hormone accumulation in zebra finches and tropical duetting wrens suggests that the complexity of song that a bird can produce is correlated with the total number of hormone-sensitive cells in song nuclei.  相似文献   

3.
[3H]Testosterone (T) was injected into male and female canaries (Serinus canarius), a species in which females are able to sing but do so more rarely and more simply than males. Autoradiographic analysis revealed that males and females have equal proportions of cells labeled by T or its metabolites in four song control nuclei: the high vocal center (HVC), the lateral portion of the magnocellular nucleus of the anterior neostriatum (IMAN), the robust nucleus of the archistriatum (RA), and the hypoglossal motor nucleus (nXII). Labeled cells were also observed in both sexes in the medial portion of MAN, and in hypothalamic nuclei. In both sexes, labeled cells in HVC, IMAN, RA, and nXII were larger than unlabeled cells. There were no sex differences in the size of either labeled or unlabeled cells in these song nuclei. The density of labeled cells per unit volume of tissue did not differ between the sexes in any song nucleus analyzed. However, because males have larger HVC and RA than females, males have a greater total number of hormone-sensitive cells in these regions than do females. Comparison of these results with measures of hormone accumulation in zebra finches and tropical duetting wrens suggests that the complexity of song that a bird can produce is correlated with the total number of hormone-sensitive cells in song nuclei. © 1992 John Wiley & Sons, Inc.  相似文献   

4.
Large morphological sex differences in the vertebrate brain were initially identified in song control nuclei of oscines. Besides gross differences between volumes of nuclei in males and females, sex differences also concern the size and dendritic arborization of neurons and various neurochemical markers, such as the calcium-binding protein parvalbumin (PV). Perineuronal nets (PNN) of the extracellular matrix are aggregates of different compounds, mainly chondroitin sulfate proteoglycans, that surround subsets of neurons, often expressing PV. PNN develop in zebra finches song control nuclei around the end of the sensitive period for song learning and tutor deprivation, known to delay the end of the song learning sensitive period, decreases the numbers of PNN in HVC. We demonstrate here the existence in zebra finches of a major sex difference (males > females) affecting the number of PNN (especially those surrounding PV-positive cells) in HVC and to a smaller extent the robust nucleus of the arcopallium, RA, the two main nuclei controlling song production. These differences were not present in Area X and LMAN, the lateral magnocellular nucleus of the anterior nidopallium. A dense expression of material immunoreactive for chondroitin sulfate was also detected in several nuclei of the auditory and visual pathways. This material was often organized in perineuronal rings but quantification of these PNN did not reveal any sex difference with the exception that the percentage of PNN surrounding PV-ir cells in the dorsal lateral mesencephalic nucleus, MLd, was larger in females than in males, a sex difference in the opposite direction compared to what is seen in HVC and RA. These data confirm and extend previous studies demonstrating the sex difference affecting PNN in HVC-RA by showing that this sex difference is anatomically specific and does not concern visual or auditory pathways.  相似文献   

5.
In male songbirds the song control pathway in the forebrain is responsible for song production and learning. In most species, females do not sing and have smaller nuclei in the song control pathway. Although the function of the pathway in females is assumed to be associated with the perception of male song, there is little direct evidence to support this view. In this study on female canaries, we investigate the role of two key nuclei in the song control pathway (HVC and lMAN) in relation to playback of male song. Male canaries produce elaborate songs that function to attract and stimulate females. The songs are constructed from smaller units called syllables, and special syllables with a more complex structure (sexy syllables) are known to induce females to perform copulation solicitation displays (CSD) as an invitation to mate. By using computer-edited experimental songs, we first show that females discriminate between songs by producing significantly more CSD to those containing sexy syllables. We then sectioned the brains and used in situ hybridization to reveal song nuclei containing androgen receptors. We report positive correlations between the size of HVC and both total CSD response and the amount of discrimination between sexy and nonsexy songs. We found no such relationships between these measures and the size of lMAN. These results provide some evidence to support the view that, in female canaries HVC is involved in female perception and discrimination of male song. The results also have implications for the evolution of complex male songs by sexual selection and female choice.  相似文献   

6.
In songbirds, there is considerable interest in relationships between song structure and the size of the song control system in the forebrain. In male canaries, earlier studies have reported that repertoire size increased with age, and positive correlations were obtained between repertoire size and the volume of song control nuclei such as high vocal center (HVC). Here we investigate whether age has an effect upon both the song structure and the morphology of two song control nuclei [HVC and robustus archistriatalis (RA)] that are important in song production. We recorded songs from an aviary population of 1- and 2-year-old male domesticated canaries. We found that repertoire size, number of sexually attractive (sexy) syllables, and size of song nuclei did not differ between 1- and 2-year-old males. Neither did we find significant correlations between syllable repertoire size and the size of the song control nuclei. However, HVC size was positively correlated with the proportion of sexy syllables in the repertoires of 2-year-old males. Some older males may enhance vocal performance by modifying the control of syllables rather than by increasing repertoire size or neural space.  相似文献   

7.
Bengalese finches, Lonchura striata, are extremely sexually dimorphic in their singing behavior; males sing complex songs, whereas females do not sing at all. This study describes the developmental differentiation of the brain song system in Bengalese finches. Nissl staining was used to measure the volumes of four telencephalic song nuclei: Area X, HVC, the robust nucleus of the arcopallium (RA), and the lateral portion of the magnocellular nucleus of the anterior nidopallium (LMAN). In juveniles (circa 35 days old), Area X and the HVC were well developed in males, while they were absent or not discernable in females. The RA was much larger in males but barely discernable in females. In males, the volumes of Area X and the RA increased further into adulthood, but that of the HVC remained unchanged. The LMAN volume was greater in juveniles than in adults, and there was no difference in the LMAN volume between the sexes. The overall tendency was similar to that described in zebra finches, except for the volume of the RA, where the degree of sexual dimorphism is larger and the timing of differentiation occurs earlier in Bengalese finches. Motor learning of the song continues until day 90 in zebra finches, but up to day 120 in Bengalese finches. Earlier neural differentiation and a longer learning period in Bengalese finches compared with zebra finches may be related to the more elaborate song structures of Bengalese finches.  相似文献   

8.
Female sedge warblers select males that have more complex songs as mates. This study tests two predictions concerning HVc, a telencephalic nucleus that is essential for song learning and production: first, that males with more complex songs will have a larger HVc, and second that males who pair successfully will have a larger HVc than unpaired males. Data on song composition and pairing status were collected from wild sedge warblers breeding in Hungary. We found significant positive correlations between three song attributes (repertoire size, song complexity, and song length) and the size of HVc. Males that paired successfully also had more complex songs (repertoire size and song complexity, though not song length) than males that did not. However, we find no direct evidence that males who paired successfully had a larger HVc than unpaired males. These findings are discussed in relation to the possible functions of HVc and also to current views on sexual selection and the evolution of the song control pathway.  相似文献   

9.
Using in situ hybridization to detect the expression of the retinoic acid synthesizing enzyme (retinaldehyde dehydrogenase: zRalDH) mRNA, we mapped the distribution of its expression in adult zebra finch brain. In the neural song circuit, strong expression was found in high vocal center (HVC), para-HVC, and at a very low level in the robust nucleus of the arcopallium (RA). The expression in HVC and RA was found in both males and females. Outside of the song system, major areas of expression were in medial nidopallium (N), hyperpallium apicale (HA), mesopallium ventrale (MV), taenial amygdala (TnA), cerebellar Purkinje cells, and nucleus isthmo-opticus (IO). In nestlings, we found zRalDH mRNA expression in HVC and RA as early as posthatch day 4 or 5 (P4-5), although the expression varied among individuals. Thus, retinoic acid synthesis in HVC and RA could participate in song system formation and development. However, we found no sex difference in volume or intensity of zRalDH and androgen receptor (AR) expression in HVC and RA at P11 prior to the development of significant size dimorphisms in these nuclei. The size of HVC in females at P11 defined by zRalDH expression was greater than that in adult females, suggesting that HVC might experience net cell loss between P11 and adulthood.  相似文献   

10.
11.
Previous work in songbirds has delimited a neural system responsible for song production and control. Earlier studies have suggested that functional capacity in the song system may be related to the mass of the system in an animal's brain, and that adult plasticity in this neural system may be related to adult capacity for behavioral modification. We now test these hypotheses in adult red-winged blackbirds (Agelaius phoeniceus), a species in which song is produced primarily by males, new song types are added to the male's repertoire in adulthood, and there are substantial differences among males in song complexity. We find that the song system in males is much larger than in females. Song system nuclei become smaller in both sexes as the animals experience shorter days. We do not find any association between repertoire size and size of any of the song system structures examined. Thus, although sex differences in song may be related to differences between sexes in the mass of song system structures, individual differences in song do not appear to be directly related to mass within males. Seasonal change in song system structures in male redwings is consistent with there being a relation between adult plasticity in anatomy and in behavior; the large seasonal change in these structures in females suggests large seasonal changes in the function of these nuclei.  相似文献   

12.
Brain nuclei that control song are larger in male canaries, which sing, than in females, which sing rarely or not at all. Treatment of adult female canaries with testosterone (T) induces song production and causes song-control nuclei to grow, approaching the volumes observed in males. For example, the higher vocal center (HVC) of adult females approximately doubles in size by 1 month following the onset of T treatment. Male HVC projects to a second telencephalic nucleus, RA (the robust nucleus of the archistriatum), which projects in turn to the vocal motor neurons. Whether HVC makes a similar connection in female canaries is not known, although HVC and RA are not functionally connected in female zebra finches, a species in which testosterone does not induce neural or behavioral changes in the adult song system. This experiment investigated whether HVC makes an efferent projection to RA in normal adult female canaries, or if T is necessary to induce the growth of this connection. In addition, we examined whether T-induced changes in adult female canary brain are reversible. Adult female canaries received systemic T implants that were removed after 4 weeks; these birds were killed 4 weeks after T removal (Testosterone-Removal, T-R). Separate groups of control birds received either (a) T implants for 4 weeks which were not removed (Testosterone-Control, T-C) or (b) empty implants (Untreated Control, øO-C). Crystals of the fluorescent tracer DiI were placed in the song-control nucleus HVC in order to anterogradely label both efferent targets of HVC, RA and Area X. Projections from HVC to RA and Area X were present in all treatment groups including untreated controls, and did not appear to differ either qualitatively or quantitatively. Thus, formation of efferent connections from HVC may be prerequisite to hormone-induced expression of song behavior in adult songbirds. The volumes of RA and Area X were measured using the distribution of anterograde label as well as their appearance in Nissl-stained tissue. RA was larger in T-treated control birds than in untreated controls. Experimental birds in which T was given and then removed (T-R) had RA volumes closer in size to untreated controls (ø-C). Because the volume of RA in T-treated controls (T-C) was larger than that of birds that did not receive T (ø-C), we conclude that the volume of RA increased in both T-C and T-R birds but regressed upon removal of T in T-R birds. Surprisingly, the volume of Area X did not increase in T-treated birds. Birds in this study were maintained on short days, suggesting that T-induced growth of Area X reported previously may have resulted from an interaction between T and another seasonal or photoperiodic factor induced by exposure to long daylengths. © 1993 John Wiley & Sons, Inc.  相似文献   

13.
White-throated sparrows are unusual among songbirds in that they occur in two color morphs, white-striped and tan-striped, determined by a chromosomal inversion and maintained by negative assortative mating. These differ in several reproductive behaviors, including amount of singing: white-striped males sing frequently, tan-striped females never sing, and tan-striped males and white-striped females sing an intermediate amount. The present study measures the volumes of several nuclei in the avian song system and relates these to color morph and to sex. We find that robustus archistristalis and the tracheosyringeal part of the hypoglossal nucleus, nuclei closely involved in song production, are larger in white-striped than in tan-striped birds. We also find morph differences for nuclei in the rostal division of the song system, nuclei believed to be less directly involved in song production. We find sex differences throughout the song system as has been reported in other songbirds. Relationships between structure and function in the song system are discussed. © 1995 John Wiley & Sons, Inc.  相似文献   

14.
Complex birdsong is a classic example of a sexually selected ornamental trait. In many species, females prefer males with large song repertoires, possibly because repertoire size is limited by the size of song control nuclei which reflect developmental success. We investigated whether song repertoire size was indicative of brain area and male quality in song sparrows (Melospiza melodia) by determining if repertoire size was related to the volume of song control nucleus HVC, as well as several morphological, immunological and genetic indices of quality. We found that males with large repertoires had larger HVCs and were in better body condition. They also had lower heterophil to lymphocyte ratios, indicating less physiological stress and a robust immune system as measured by the number of lymphocytes per red blood cell. Song repertoire size also tended to increase with neutral-locus genetic diversity, as assessed by mean d2, but was not related to internal relatedness. Our results suggest several mechanisms that might explain the finding of a recent study that song sparrows with large song repertoires have higher lifetime fitness.  相似文献   

15.
Like many other songbird species, male zebra finches learn their song from a tutor early in life. Song learning in birds has strong parallels with speech acquisition in human infants at both the behavioral and neural levels. Forebrain nuclei in the 'song system' are important for the sensorimotor acquisition and production of song, while caudomedial pallial brain regions outside the song system are thought to contain the neural substrate of tutor song memory. Here, we exposed three groups of adult zebra finch males to either tutor song, to their own song, or to novel conspecific song. Expression of the immediate early gene protein product Zenk was measured in the song system nuclei HVC, robust nucleus of the arcopallium (RA) and Area X. There were no significant differences in overall Zenk expression between the three groups. However, Zenk expression in the HVC was significantly positively correlated with the strength of song learning only in the group that was exposed to the bird's own song, not in the other two groups. These results suggest that the song system nucleus HVC may contain a neural representation of a memory of the bird's own song. Such a representation may be formed during juvenile song learning and guide the bird's vocal output.  相似文献   

16.
Songbirds have a specialized steroid-sensitive network of brain nuclei, the song system, for controlling song. Most nuclei of the song system express androgen receptors, and the sensory-motor integration nucleus High Vocal Center (HVC) alone also expresses estrogen receptors. Apart from expressing estrogen receptors in the vocal control system, songbirds are unique among birds because they have high concentrations of the estrogen-synthesizing enzyme aromatase in the neostriatum surrounding HVC. However, the role of estrogen in controlling the development of the song structure has been scarcely investigated. In this work, we show that blocking the production of estrogen during testosterone-induced song motor development in adult female canaries alters the song pattern compared to control females treated with testosterone only. These effects were correlated with inhibition of the expression of estrogen-sensitive genes, such as brain-derived nerve growth factor, in HVC. The expression of the ATP-synthase gene, an indicator of cell activity, in HVC, and the size of HVC, were not affected by the treatment. Our results provide the first example of estrogen-sensitive mechanisms controlling the structural features of adult birdsong.  相似文献   

17.
Songbirds show dramatic neural plasticity as adults, including large-scale anatomical changes in discrete brain regions ("song control nuclei") controlling the production of singing behavior. The volumes of several song control nuclei are much larger in the breeding season than in the nonbreeding season, and these seasonal neural changes are regulated by plasma testosterone (T) levels. In many cases, the effects of T on the central nervous system are mediated by neural conversion to estradiol (E(2)) by the enzyme aromatase. The forebrain of male songbirds expresses very high levels of aromatase, in some cases adjacent to song control nuclei. We examined the effects of aromatase inhibition and estrogen treatment on song nuclei size using wild male songbirds in both the breeding and nonbreeding seasons. In breeding males, aromatase inhibition caused the volume of a telencephalic song control nucleus (HVC) to decrease, and this effect was partially rescued by concurrent estrogen replacement. In nonbreeding males, estradiol treatment caused HVC to grow to maximal spring size within 2 weeks. Overall, these data suggest that aromatization of T is an important mediator of song control system plasticity, and that estradiol has neurotrophic effects in adult male songbirds. This study demonstrates that estrogen can affect adult neural plasticity on a gross anatomical scale and is the first examination of estrogen effects on the brain of a wild animal.  相似文献   

18.
This study tested the hypothesis that the relative proportion of neurons that are hormone sensitive in avian song control nuclei is related to the basic motor ability to sing, whereas the absolute number of such neurons is related to the complexity of song behavior. Either [3H]testosterone (T) or estradiol (E2) was injected into male and female rufous and white wrens (Thryothorus rufalbus), a tropical species in which females sing duets with males but have smaller song repertoires than males. Autoradiographic analysis indicated that there were no sex differences in the proportions of T or E2 target cells in two song nuclei: the high vocal center (HVC) and the lateral portion of the magnocellular nucleus of the anterior neostriatum (IMAN). The density of labeled cells per unit volume of tissue did not differ between the sexes in either song nucleus. Males have larger song nuclei, however, which is consistent with their more complex song behavior, and therefore have a greater total number of hormone-sensitive neurons in these regions than do females. Comparison of these results with measures of hormone accumulation in zebra finches, canaries, and bay wrens supports the hypothesis presented. © 1996 John Wiley & Sons, Inc.  相似文献   

19.
It is well established that auditory forebrain regions of oscine birds are essential for the encoding of species‐typical songs and are, therefore, vital for recognition of song during sociosexual interactions. Regions such as the caudal medial nidopallium (NCM) and the caudal medial mesopallium (CMM) are involved in perceptual processing of song and the formation of auditory memories. There is an additional telencephalic nucleus, however, that has also been implicated in species recognition. This nucleus is HVC, a prominent nucleus that sits at the apex of the song system, and is well known for its critical role in song learning and song production in male songbirds. Here, we explore the functional relationship between auditory forebrain regions (i.e., NCM and CMM) and HVC in female canaries (Serinus canaria). We lesion HVC and examine immediate early gene responses to conspecific song presentation within CMM and NCM to explore whether HVC can modulate auditory responses within these forebrain regions. Our results reveal robust deficits in ZENK‐ir in CMM and NCM of HVC‐lesioned females when compared with control‐ and sham‐lesioned females, indicating that functional connections exists between HVC and NCM/CMM. Although these connected regions have been implicated in song learning and production in males, they likely serve distinct functions in female songbirds that face the task of song recognition rather than song production. Identifying functional connections between HVC and auditory regions involved in song perception is an essential step toward developing a comprehensive understanding of the neural basis of song recognition. © 2012 Wiley Periodicals, Inc. Develop Neurobiol, 2013  相似文献   

20.
The song‐control system in the brain of songbirds is important for the production and acquisition of song and exhibits both remarkable seasonal plasticity and some of the largest neural sex differences observed in vertebrates. We measured sex and seasonal differences in two nuclei of the song‐control system of brood‐parasitic brown‐headed cowbirds (Molothrus ater) and closely‐related non‐parasitic red‐winged blackbirds (Agelaius phoeniceus). These species differ in both the development and function of song. Brown‐headed cowbirds have a larger sex difference in song than red‐winged blackbirds. Female cowbirds never sing, whereas female blackbirds do though much less than males. In cowbirds, song primarily functions in mate choice and males modify their song as they approach sexual maturity and interact with females. In red‐winged blackbirds, song is used primarily in territorial defence and is crystalized earlier in life. We found that the HVC was more likely to be discernable in breeding female blackbirds than in breeding female cowbirds. Compared to males, females had a smaller HVC and a smaller robust nucleus of the arcopallium (RA). However, females had higher doublecortin immunoreactivity (DCX+) in HVC, a measure of neurogenesis. Consistent with sex differences in song, the sex difference in RA volume was greater in cowbirds than in blackbirds. Males of both species had a smaller HVC with higher DCX+ in post‐breeding condition than in breeding condition when song is more plastic. Sex and seasonal differences in the song‐control system were closely related to variation in song in these two icterid songbirds. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1226–1240, 2016  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号