首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Little is known about the mechanism and regulation of connexin turnover from the plasma membrane. We have used a combination of cell surface biotinylation, immunofluorescence microscopy, and scrape-load dye transfer assays to investigate the effect of the protein synthesis inhibitor cycloheximide on connexin43 and connexin32 after their transport to the plasmalemma. The results obtained demonstrate that cycloheximide inhibits the turnover of connexins from the surface of both gap junction assembly-deficient and -efficient cells. Moreover, cell surface connexin saved from destruction by cycloheximide can assemble into long-lived, functional gap junctional plaques. These findings support the concept that downregulation of connexin degradation from the plasma membrane can serve as a mechanism to enhance gap junction-mediated intercellular communication.  相似文献   

2.
Little is known about the mechanism and regulation of connexin turnover from the plasma membrane. We have used a combination of cell surface biotinylation, immunofluorescence microscopy, and scrape-load dye transfer assays to investigate the effect of the protein synthesis inhibitor cycloheximide on connexin43 and connexin32 after their transport to the plasmalemma. The results obtained demonstrate that cycloheximide inhibits the turnover of connexins from the surface of both gap junction assembly-deficient and -efficient cells. Moreover, cell surface connexin saved from destruction by cycloheximide can assemble into long-lived, functional gap junctional plaques. These findings support the concept that downregulation of connexin degradation from the plasma membrane can serve as a mechanism to enhance gap junction-mediated intercellular communication.  相似文献   

3.
Connexin and gap junction degradation   总被引:6,自引:0,他引:6  
Many of the subunit proteins (connexins) that form gap junctions are rather dynamic, with half-lives of only a few hours. Thus, alterations in connexin turnover and degradation may represent significant mechanisms for the regulation of intercellular communication. We describe a pharmacological approach to determining pathways of connexin degradation. Cell cultures are left untreated or treated with inhibitors of lysosomal or proteasomal proteolysis. Changes in connexin levels, localization, or decay curves (derived from pulse-chase experiments) are assessed by immunoblotting, immunofluorescence, and immunoprecipitation, respectively. Such experiments have provided evidence that connexin43 degradation involves both the lysosome and the proteasome.  相似文献   

4.
Connexins comprise gap junction channels, which create a direct conduit between the cytoplasms of adjacent cells and provide for intercellular communication. Therefore, the level of total cellular connexin protein can have a direct influence on the level of intercellular communication. Control of connexin protein levels can occur through different mechanisms during the connexin life cycle, such as by regulation of connexin gene expression and turnover of existing protein. The degradation of connexins has been extensively studied, revealing proteasomal, endolysosomal and more recently autophagosomal degradation mechanisms that modulate connexin turnover and, subsequently, affect intercellular communication. Here, we review the current knowledge of connexin degradation pathways.  相似文献   

5.
Gap junction proteins, connexins, are dynamic polytopic membrane proteins that exhibit unprecedented short half-lives of only a few hours. Consequently, it is well accepted that in addition to channel gating, gap junctional intercellular communication is regulated by connexin biosynthesis, transport and assembly as well as the formation and removal of gap junctions from the cell surface. At least nine members of the 20-member connexin family are known to be phosphorylated en route or during their assembly into gap junctions. For some connexins, notably Cx43, evidence exists that phosphorylation may trigger its internalization and degradation. In recent years it has become apparent that the mechanisms underlying the regulation of connexin turnover are quite complex with the identification of many connexin binding molecules, a multiplicity of protein kinases that phosphorylate connexins and the involvement of both lysosomal and proteasomal pathways in degrading connexins. This paper will review the evidence that connexin phosphorylation regulates, stimulates or triggers gap junction disassembly, internalization and degradation.  相似文献   

6.
Gap junction proteins, connexins, are dynamic polytopic membrane proteins that exhibit unprecedented short half-lives of only a few hours. Consequently, it is well accepted that in addition to channel gating, gap junctional intercellular communication is regulated by connexin biosynthesis, transport and assembly as well as the formation and removal of gap junctions from the cell surface. At least nine members of the 20-member connexin family are known to be phosphorylated en route or during their assembly into gap junctions. For some connexins, notably Cx43, evidence exists that phosphorylation may trigger its internalization and degradation. In recent years it has become apparent that the mechanisms underlying the regulation of connexin turnover are quite complex with the identification of many connexin binding molecules, a multiplicity of protein kinases that phosphorylate connexins and the involvement of both lysosomal and proteasomal pathways in degrading connexins. This paper will review the evidence that connexin phosphorylation regulates, stimulates or triggers gap junction disassembly, internalization and degradation.  相似文献   

7.
Intercellular communication may be modulated by the rather rapid turnover and degradation of gap junction proteins, since many connexins have half-lives of 1–3 h. While several morphological studies have suggested that gap junction degradation occurs after endocytosis, our recent biochemical studies have demonstrated involvement of the ubiquitin–proteasome pathway in proteolysis of the connexin43 polypeptide. The present study was designed to reconcile these observations by examining the degradation of connexin43-containing gap junctions in rat heart-derived BWEM cells. After treatment of BWEM cells with Brefeldin A to prevent transport of newly synthesized connexin43 polypeptides to the plasma membrane, quantitative confocal microscopy showed the disappearance of immunoreactive connexin43 from the cell surface with a half-life of 1 h. This loss of connexin43 immunoreactivity was inhibited by cotreatment with proteasomal inhibitors (ALLN, MG132, or lactacystin) or lysosomal inhibitors (leupeptin or E-64). Similar results were seen when connexin43 export was blocked with monensin. After treatment of BWEM cells with either proteasomal or lysosomal inhibitors alone, immunoblots showed accumulation of connexin43 in both whole cell lysates and in a 1% Triton X-100-insoluble fraction. Immunofluorescence studies showed that connexin43 accumulated at the cell surface in lactacystin-treated cells, but in vesicles in BWEM cells treated with lysosomal inhibitors. These results implicate both the proteasome and the lysosome in the degradation of connexin43-containing gap junctions.  相似文献   

8.
The protein constituents of gap junctions, connexins, have a rapid basal rate of degradation even after transport to the cell surface. We have used cell surface biotinylation to label gap junction-unassembled plasma membrane pools of connexin43 (Cx43) and show that their degradation is inhibited by mild hyperthermia, oxidative stress, and proteasome inhibitors. Cytosolic stress does not perturb endocytosis of biotinylated Cx43, but instead it seems to interfere with its targeting and/or transport to the lysosome, possibly by increasing the level of unfolded protein in the cytosol. This allows more Cx43 molecules to recycle to the cell surface, where they are assembled into long-lived, functional gap junctions in otherwise gap junction assembly-inefficient cells. Cytosolic stress also slowed degradation of biotinylated Cx43 in gap junction assembly-efficient normal rat kidney fibroblasts, and reduced the rate at which gap junctions disappeared from cell interfaces under conditions that blocked transport of nascent connexin molecules to the plasma membrane. These data demonstrate that degradation from the cell surface can be down-regulated by physiologically relevant forms of stress. For connexins, this may serve to enhance or preserve gap junction-mediated intercellular communication even under conditions in which protein synthesis and/or intracellular transport are compromised.  相似文献   

9.
Intercellular communication via gap junctions plays a critical role in numerous cellular processes, including the control of cell growth and differentiation, maintenance of tissue homeostasis and embryonic development. Gap junctions are aggregates of intercellular channels that enable adjacent cells in solid tissues to directly exchange ions and small molecules. These channels are formed by a family of integral membrane proteins called connexins, of which the best studied is connexin43. Connexins have a high turnover rate in most tissue types, and degradation of connexins is considered to be a tightly regulated process. Post-translational modification of connexins by ubiquitin is emerging as an important event in the regulation of connexin degradation. Ubiquitination is involved in endoplasmic reticulum-associated degradation of connexins as well as in trafficking of connexins to lysosomes. At both the endoplasmic reticulum and the plasma membrane, ubiquitination of connexins is strongly affected by changes in the extracellular environment. There is increasing evidence that the regulation of connexin ubiquitination might be an important mechanism for rapidly modifying the level of functional gap junctions at the plasma membrane, under both normal and pathological conditions. This review discusses the current knowledge about the regulation of intercellular communication via gap junctions by ubiquitination of connexins.  相似文献   

10.
11.
Dislocation and degradation from the ER are regulated by cytosolic stress   总被引:9,自引:0,他引:9  
Akey step in ER-associated degradation (ERAD) is dislocation of the substrate protein from the ER into the cytosol to gain access to the proteasome. Very little is known about how this process is regulated, especially in the case of polytopic proteins. Using pulse-chase analysis combined with subcellular fractionation, we show that connexins, the four transmembrane structural components of gap junctions, can be chased in an intact form from the ER membrane into the cytosol of proteasome inhibitor-treated cells. Dislocation of endogenously expressed connexin from the ER was reduced 50-80% when the cytosolic heat shock response was induced by mild oxidative or thermal stress, but not by treatments that instead upregulate the ER unfolded protein response. Cytosolic but not ER stresses slowed the normally rapid degradation of connexins, and led to a striking increase in gap junction formation and function in otherwise assembly-inefficient cell types. These treatments also inhibited the dislocation and turnover of a connexin-unrelated ERAD substrate, unassembled major histocompatibility complex class I heavy chain. Our findings demonstrate that dislocation is negatively regulated by physiologically relevant, nonlethal stress. They also reveal a previously unrecognized relationship between cytosolic stress and intercellular communication.  相似文献   

12.
Pathways and control of connexin oligomerization   总被引:6,自引:0,他引:6  
Connexins form gap junction channels that link neighboring cells into an intercellular communication network. Many cells that express multiple connexins produce heteromeric channels containing at least two connexins, which provides a means to fine tune gap junctional communication. Formation of channels by multiple connexins is controlled at two levels: by inherent structural compatibilities that enable connexins to hetero-oligomerize and by cellular mechanisms that restrict the formation of heteromers by otherwise compatible connexins. Here, I discuss roles for secretory compartments beyond the endoplasmic reticulum in connexin oligomerization and evidence that suggests that membrane microdomains help regulate connexin trafficking and assembly.  相似文献   

13.
Connexins are the transmembrane proteins that form gap junctions between adjacent cells. The function of the diverse connexin molecules is related to their tissue-specific expression and highly dynamic turnover. Although multiple connexins have been previously reported to compensate for each other's functions, little is known about how connexins influence their own expression or intracellular regulation. Of the three vertebrate lens connexins, two connexins, connexin43 (Cx43) and connexin46 (Cx46), show reciprocal expression and subsequent function in the lens and in lens cell culture. In this study, we investigate the reciprocal relationship between the expression of Cx43 and Cx46. Forced depletion of Cx43, by tumor-promoting phorbol ester 12-O-tetradecanoylphorbol-13-acetate, is associated with an up-regulation of Cx46 at both the protein and message level in human lens epithelial cells. An siRNA-mediated down-regulation of Cx43 results in an increase in the level of Cx46 protein, suggesting endogenous Cx43 is involved in the regulation of endogenous Cx46 turnover. Overexpression of Cx46, in turn, induces the depletion of Cx43 in rabbit lens epithelial cells. Cx46-induced Cx43 degradation is likely mediated by the ubiquitin-proteasome pathway, as (i) treatment with proteasome inhibitors restores the Cx43 protein level and (ii) there is an increase in Cx43 ubiquitin conjugation in Cx46-overexpressing cells. We also present data that shows that the C-terminal intracellular tail domain of Cx46 is essential to induce degradation of Cx43. Therefore, our study shows that Cx43 and Cx46 have novel functions in regulating each other's expression and turnover in a reciprocal manner in addition to their conventional roles as gap junction proteins in lens cells.  相似文献   

14.
Gap junctions are specialized plasma membrane domains enriched in connexin proteins that form channels between adjacent cells. Gap junctions are highly dynamic, and modulation of the connexin turnover rate is considered to play an important role in the regulation of gap junctional intercellular communication. In the present study, we show that the tumor-promoting phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA) induces ubiquitination of connexin-43 (Cx43) in IAR20 rat liver epithelial cells. The accelerated ubiquitination of Cx43 in response to TPA occurred concomitantly with Cx43 hyperphosphorylation and inhibition of cell-cell communication via gap junctions. The TPA-induced ubiquitination of Cx43 was mediated via protein kinase C and partly involved the mitogen-activated protein kinase pathway. Following ubiquitination, Cx43 was internalized and degraded. The loss of Cx43 protein was counteracted by ammonium chloride, indicating that acidification of internalized Cx43 gap junctions is a prerequisite for its degradation. Furthermore, the Cx43 degradation was partly counteracted by leupeptin, an inhibitor of cathepsin B, H, and L. Cx43 internalization and subsequent degradation were blocked by inhibitors of the proteasome. Evidence is provided that Cx43 is modified by multiple monoubiquitins rather than a polyubiquitin chain in response to TPA. Moreover, the TPA-induced ubiquitination of Cx43 was blocked by proteasomal inhibitors. Taken together, the data indicate that Cx43 ubiquitination is a highly regulated process. Moreover, the results suggest that the proteasome might play an indirect role in Cx43 degradation by affecting the level of monoubiquitin conjugation and trafficking of Cx43 to endosomal compartments.  相似文献   

15.
Connexins,gap junctional intercellular communication and kinases   总被引:11,自引:0,他引:11  
A number of kinases and signal transduction pathways are known to affect gap junctional intercellular communication and/or phosphorylation of connexins. Most of the information is available for protein kinase A, protein kinase C, mitogen-activated protein kinase, and the tyrosine kinase Src. Much less is known for protein kinase G, Ca(2+)-calmodulin dependent protein kinase, and casein kinase. However, the present lack of knowledge is not necessarily synonymous with lack of importance in the regulation of intercellular communication and phosphorylation of connexins. Kinases and the phosphorylation of connexins may be involved in the regulation of gap junctional intercellular communication at all levels ranging from the expression of connexin genes to the degradation of the gap junction channels. The exact role of the phosphorylation depends both on the kinase and the connexin involved, as well as the cellular context.  相似文献   

16.
Regulation of gap junctions by phosphorylation of connexins   总被引:21,自引:0,他引:21  
Gap junctions are a unique type of intercellular junction found in most animal cell types. Gap junctions permit the intercellular passage of small molecules and have been implicated in diverse biological processes, such as development, cellular metabolism, and cellular growth control. In vertebrates, gap junctions are composed of proteins from the "connexin" gene family. The majority of connexins are modified posttranslationally by phosphorylation, primarily on serine amino acids; however, phosphotyrosine has also been detected in connexin from cells coexpressing nonreceptor tyrosine protein kinases. Connexins are targeted by numerous protein kinases, of which some have been identified: protein kinase C, mitogen-activated protein kinase, and the v-Src tyrosine protein kinase. Phosphorylation has been implicated in the regulation of a broad variety of connexin processes, such as the trafficking, assembly/disassembly, degradation, as well as the gating of gap junction channels. This review examines the consequences of connexin phosphorylation for the regulation of gap junctional communication.  相似文献   

17.
He LQ  Cai F  Liu Y  Liu MJ  Tan ZP  Pan Q  Fang FY  Liang de S  Wu LQ  Long ZG  Dai HP  Xia K  Xia JH  Zhang ZH 《Cell research》2005,15(6):455-464
INTRODUCTION Gap junctions consisting of connexins, are able tomediate cell-cell communication via direct exchange ofintercellular small molecules (< 1 kD). Generally, gap junc-tions are formed by homomeric or heteromeric hemi-channels that are assembled …  相似文献   

18.
Protein phosphorylation has been proposed to control the degree of intercellular gap junctional communication at several steps, from gene expression to protein degradation. In vertebrates, gap junctions are composed of proteins from the "connexin" (Cx) gene family, and the majority of connexins are post-translationally modified by phosphorylation. Alterations in the phosphorylation status of proteins, resulting from the dynamic interplay of protein kinases and protein phosphatases, are thought to be involved in a broad variety of connexin processes (such as the trafficking, assembly/disassembly and degradation, as well as the gating of gap junction channels), but the underlying mechanisms remain poorly understood. Although protein kinases have an established role in this process (see Cruciani and Mikalsen, this issue), less is known about the involvement of protein phosphatases. The present review examines the role played by protein dephosphorylation catalysers in the regulation of gap junctional communication.  相似文献   

19.
Gap junctions, composed of proteins from the connexin family, allow for intercellular communication between cells and are important in development and maintenance of cell homeostasis. Phosphorylation has been implicated in the regulation of gap junctional communication at several stages of the cell cycle and the connexin “lifecycle”, such as trafficking, assembly/disassembly, degradation, as well as in the gating of “hemi” channels or intact gap junction channels. This review focuses on how phosphorylation can regulate the early stages of the connexin life cycle through assembly of functional gap junctional channels. The availability of sequences from the human genome databases has indicated that the number of connexins in the gene family is approximately 20, but we know mostly about how connexin43 (Cx43) is regulated. Recent technologies and investigations of interacting proteins have shown that activation of several kinases including protein kinase A, protein kinase C (PKC), p34cdc2/cyclin B kinase, casein kinase 1 (CK1), mitogen-activated protein kinase (MAPK) and pp60src kinase can lead to phosphorylation of the majority of the 21 serine and two of the tyrosine residues in the C-terminal region of Cx43. While many studies have correlated changes in kinase activity with changes in gap junctional communication, further research is needed to directly link specific phosphorylation events with changes in connexin oligomerization and gap junction assembly.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号