首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has been theorized that photosynthetic radiation use efficiency (PhRUE) over the course of a day is constant for leaves throughout a canopy if leaf nitrogen content and photosynthetic properties are adapted to local light so that canopy photosynthesis over a day is optimized. To test this hypothesis, 'daily' photosynthesis of individual leaves of Solanum melongena plants was calculated from instantaneous rates of photosynthesis integrated over the daylight hours. Instantaneous photosynthesis was estimated from the photosynthetic responses to photosynthetically active radiation (PAR) and from the incident PAR measured on individual leaves during clear and overcast days. Plants were grown with either abundant or scarce N fertilization. Both net and gross daily photosynthesis of leaves were linearly related to daily incident PAR exposure of individual leaves, which implies constant PhRUE over a day throughout the canopy. The slope of these relationships (i.e. PhRUE) increased with N fertilization. When the relationship was calculated for hourly instead of daily periods, the regressions were curvilinear, implying that PhRUE changed with time of the day and incident radiation. Thus, linearity (i.e. constant PhRUE) was achieved only when data were integrated over the entire day. Using average PAR in place of instantaneous incident PAR increased the slope of the relationship between daily photosynthesis and incident PAR of individual leaves, and the regression became curvilinear. The slope of the relationship between daily gross photosynthesis and incident PAR of individual leaves increased for an overcast compared with a clear day, but the slope remained constant for net photosynthesis. This suggests that net PhRUE of all leaves (and thus of the whole canopy) may be constant when integrated over a day, not only when the incident PAR changes with depth in the canopy, but also when it varies on the same leaf owing to changes in daily incident PAR above the canopy. The slope of the relationship between daily net photosynthesis and incident PAR was also estimated from the photosynthetic light response curve of a leaf at the top of the canopy and from the incident PAR above the canopy, in place of that measured on individual leaves. The slope (i.e. net PhRUE) calculated in this simple way did not differ statistically from that calculated using data from individual leaves.  相似文献   

2.
A canopy photosynthesis model was derived on the assumption that the light diminution within a canopy is caused by both leaves and non-photosynthetic organs. The light diminution by leaves and that by non-photosynthetic organs were taken into account separately in the Lambert-Beer equation of light extinction. The light flux density on the leaf surface at each depth was evaluated from the leaf's share of light. The light flux density on the leaf surface thus obtained was incorporated into the Monsi-Saeki model of canopy photosynthesis. The proposed model was applied for estimating gross canopy photosynthesis in a 19-year-oldLarix leptolepis plantation where 38% of the light diminution was due to non-photosynthetic organs. The daily canopy photosynthesis on one summer day calculated using the present model was about 22% less than that calculated by the conventional Monsi-Saeki model, in which light interception by non-photosynthetic organs is neglected. The degree of such reduction in canopy photosynthesis through shading by non-photosynthetic organs was assessed in relation to parameters affecting light extinction, leaf photosynthetic characteristics, and light regime above the canopy.  相似文献   

3.
4.
Development of the Monsi-Saeki theory on canopy structure and function   总被引:11,自引:0,他引:11  
Hirose T 《Annals of botany》2005,95(3):483-494
BACKGROUND AND AIMS: Monsi and Saeki (1953) published the first mathematical model of canopy photosynthesis that was based on the light attenuation within a canopy and a light response of leaf photosynthesis. This paper reviews the evolution and development of their theory. SCOPE: Monsi and Saeki showed that under full light conditions, canopy photosynthesis is maximized at a high leaf area index (LAI, total leaf area per unit ground area) with vertically inclined leaves, while under low light conditions, it is at a low LAI with horizontal leaves. They suggested that actual plants develop a stand structure to maximize canopy photosynthesis. Combination of the Monsi-Saeki model with the cost-benefit hypothesis in resource use led to a new canopy photosynthesis model, where leaf nitrogen distribution and associated photosynthetic capacity were taken into account. The gradient of leaf nitrogen in a canopy was shown to be a direct response to the gradient of light. This response enables plants to use light and nitrogen efficiently, two resources whose supply is limited in the natural environment. CONCLUSION: The canopy photosynthesis model stimulated studies to scale-up from chloroplast biochemistry to canopy carbon gain and to analyse the resource-use strategy of species and individuals growing at different light and nitrogen availabilities. Canopy photosynthesis models are useful to analyse the size structure of populations in plant communities and to predict the structure and function of future terrestrial ecosystems.  相似文献   

5.
The rates of net photosynthesis per unit ground area by a closedcanopy of tomato plants were measured over a range of naturallight flux densities. The canopy, of leaf area index 8.6, wasdivided into three horizontal layers of equal depth. On successivedays the canopy was progressively defoliated in layers fromthe ground upwards, allowing the photosynthetic contributionfrom individual leaf layers to be determined. The uppermostlayer, 23% of the total leaf area, assimilated 66% of the netCO2 fixed by the canopy and accounted for a similar percentageof the total leaf respiration. Net photosynthesis versus light response curves for individualleaves from different positions within the canopy were alsoobtained. Leaf conductances to CO2 transfer and the dark respirationrates of leaves from the uppermost leaf layer were approximatelyten times those from the lowest layer. The canopy data were analysed using a simple model which assumedthat the canopy was composed of leaves with identical photosyntheticand respiratory characteristics. The model fitted the data andallowed the characteristics of an ‘idealized’ leafto be estimated. The estimated values of the leaf light utilizationefficiency, ,and the leaf conductance CO2 transfer, , were similarto values directly determined for individual leaves in the uppermostleaf layer and the estimated rate of leaf dark respiration,Rd, corresponded to measured rates for leaves much lower inthe canopy. The simple model may be used to examine gross effectsof crop environment on the leaf photosynthetic characteristicof an ‘idealized’ leaf, but cannot be used to predictaccurately canopy net photosynthesis from the photosyntheticand respiratory characteristics of any single real leaf. A moredetailed model, developed to allow explicitly for the observedvariation in and Rd within the canopy is appropriate for thispurpose.  相似文献   

6.
BACKGROUND AND AIMS: Photosynthetic radiation use efficiency (PhRUE) over the course of a day has been shown to be constant for leaves throughout a general canopy where nitrogen content (and thus photosynthetic properties) of leaves is distributed in relation to the light gradient. It has been suggested that this daily PhRUE can be calculated simply from the photosynthetic properties of a leaf at the top of the canopy and from the PAR incident on the canopy, which can be obtained from weather-station data. The objective of this study was to investigate whether this simple method allows estimation of PhRUE of different crops and with different daily incident PAR, and also during the growing season. METHODS: The PhRUE calculated with this simple method was compared with that calculated with a more detailed model, for different days in May, June and July in California, on almond (Prunus dulcis) and walnut (Juglans regia) trees. Daily net photosynthesis of 50 individual leaves was calculated as the daylight integral of the instantaneous photosynthesis. The latter was estimated for each leaf from its photosynthetic response to PAR and from the PAR incident on the leaf during the day. KEY RESULTS: Daily photosynthesis of individual leaves of both species was linearly related to the daily PAR incident on the leaves (which implies constant PhRUE throughout the canopy), but the slope (i.e. the PhRUE) differed between the species, over the growing season due to changes in photosynthetic properties of the leaves, and with differences in daily incident PAR. When PhRUE was estimated from the photosynthetic light response curve of a leaf at the top of the canopy and from the incident radiation above the canopy, obtained from weather-station data, the values were within 5 % of those calculated with the more detailed model, except in five out of 34 cases. CONCLUSIONS: The simple method of estimating PhRUE is valuable as it simplifies calculation of canopy photosynthesis to a multiplication between the PAR intercepted by the canopy, which can be obtained with remote sensing, and the PhRUE calculated from incident PAR, obtained from standard weather-station data, and from the photosynthetic properties of leaves at the top of the canopy. The latter properties are the sole crop parameters needed. While being simple, this method describes the differences in PhRUE related to crop, season, nutrient status and daily incident PAR.  相似文献   

7.
Summary A physiologically based steady-state model of whole leaf photosynthesis (WHOLEPHOT) is detailed which describes the functional dependence of net photosynthesis in C 3 leaves on [CO2], [O2], incident radiant flux (PhAR), and leaf temperature. The model simulates among other phenomena a) observed [CO2], [O2], and temperature effects on the initial slope of light response curves, b) a C 3 type temperature response curve of net photosynthesis, c) a shift of the optimum temperature of net photosynthesis to higher temperatures with increasing light intensity, and d) observed temperature and [O2] effects on the CO2 compensation point. Model parameters are derived from published response data of several C 3 species. Simulations also demonstrate that parameter changes based on literature data result in acclimation-like changes in net photosynthesis response with respect to light intensity and temperature. The advantages of this model are that the number of parameters is minimized in order to focus on environmental effects and that all parameters can be determined from measured net photosynthesis responses.  相似文献   

8.
The development of vertical canopy gradients of leaf N has beenregarded as an adaptation to the light gradient that helps tomaximize canopy photosynthesis. In this study we report thedynamics of vertical leaf N distribution during vegetative growthof wheat in response to changes in N availability and sowingdensity. The question of to what extent the observed verticalleaf N distribution maximized canopy photosynthesis was addressedwith a leaf layer model of canopy photosynthesis that integratesN-dependent leaf photosynthesis according to the canopy lightand leaf N distribution. Plants were grown hydroponically attwo amounts of N, supplied in proportion to calculated growthrates. Photosynthesis at light saturation correlated with leafN. The vertical leaf N distribution was associated with thegradient of absorbed light. The leaf N profile changed duringcrop development and was responsive to N availability. At highN supply, the leaf N profiles were constant during crop development.At low N supply, the leaf N profiles fluctuated between moreuniform and steep distributions. These changes were associatedwith reduced leaf area expansion and increasing N remobilizationfrom lower leaf layers. The distribution of leaf N with respectto the gradient of absorbed irradiance was close to the theoreticaloptimum maximizing canopy photosynthesis. Sensitivity analysisof the photosynthesis model suggested that plants maintain anoptimal vertical leaf N distribution by balancing the capacityfor photosynthesis at high and low light. Copyright 2000 Annalsof Botany Company Canopy photosynthesis, leaf nitrogen distribution, nitrogen, Triticum aestivum L, wheat  相似文献   

9.
Photosynthetic capacity was measured on detached leaves sampled in a canopy of Solidago altissima L. Non-rectangular hyperbola fitted the light response curve of photosynthesis and significant correlations were observed between leaf nitrogen per unit area and four parameters which characterize the light-response curve. Using regressions of the parameters on leaf nitrogen, a model of leaf photosynthesis was constructed which gave the relationships between leaf nitrogen, photon flux density (PFD) and photosynthesis. Curvilinear relations were obtained between leaf nitrogen and photosynthetic rate on both an instantaneous and a daily basis. Nitrogen use efficiency (NUE, photosynthesis per unit leaf nitrogen) was calculated against leaf nitrogen under varying PFDs. The optimum nitrogen content per unit leaf area that maximizes NUE shifted to higher values with increasing PFD. Field measurements of PFD showed high positive correlations between the distribution of leaf nitrogen in the canopy and relative PFD. The predicted optimum leaf nitrogen content for each level in the canopy, to achieve maximized NUE during a clear day, was close to the actual nitrogen distribution as found through sampling.  相似文献   

10.
BACKGROUND AND AIMS: Kaolin applied as a suspension to plant canopies forms a film on leaves that increases reflection and reduces absorption of light. Photosynthesis of individual leaves is decreased while the photosynthesis of the whole canopy remains unaffected or even increases. This may result from a better distribution of light within the canopy following kaolin application, but this explanation has not been tested. The objective of this work was to study the effects of kaolin application on light distribution and absorption within tree canopies and, ultimately, on canopy photosynthesis and radiation use efficiency. METHODS: Photosynthetically active radiation (PAR) incident on individual leaves within the canopy of almond (Prunus dulcis) and walnut (Juglans regia) trees was measured before and after kaolin application in order to study PAR distribution within the canopy. The PAR incident on, and reflected and transmitted by, the canopy was measured on the same day for kaolin-sprayed and control trees in order to calculate canopy PAR absorption. These data were then used to model canopy photosynthesis and radiation use efficiency by a simple method proposed in previous work, based on the photosynthetic response to incident PAR of a top-canopy leaf. KEY RESULTS: Kaolin increased incident PAR on surfaces of inner-canopy leaves, although there was an estimated 20 % loss in PAR reaching the photosynthetic apparatus, due to increased reflection. Assuming a 20 % loss of PAR, modelled photosynthesis and photosynthetic radiation use efficiency (PRUE) of kaolin-coated leaves decreased by only 6.3 %. This was due to (1) more beneficial PAR distribution within the kaolin-sprayed canopy, and (2) with decreasing PAR, leaf photosynthesis decreases less than proportionally, due to the curvature of the photosynthesis response-curve to PAR. The relatively small loss in canopy PRUE (per unit of incident PAR), coupled with the increased incident PAR on the leaf surface on inner-canopy leaves, resulted in an estimated increase in modelled photosynthesis of the canopy (+9 % in both walnut and almond). The small loss in PRUE (per unit of incident PAR) resulted in an increase in radiation use efficiency per unit of absorbed PAR, which more than compensated for the minor (7 %) reduction in canopy PAR absorption. CONCLUSIONS: The results explain the apparently contradictory findings in the literature of positive or no effects of kaolin applications on canopy photosynthesis and yield, despite the decrease in photosynthesis by individual leaves when measured at the same PAR.  相似文献   

11.
The model RATP (radiation absorption, transpiration and photosynthesis) is presented. The model was designed to simulate the spatial distribution of radiation and leaf-gas exchanges within vegetation canopies as a function of canopy structure, canopy microclimate within the canopy and physical and physiological leaf properties. The model uses a three-dimensional (3D) representation of the canopy (i.e. an array of 3D cells, each characterized by a leaf area density). Radiation transfer is computed by a turbid medium analogy, transpiration by the leaf energy budget approach, and photosynthesis by the Farquhar model, each applied for sunlit and shaded leaves at the individual 3D cell-scale. The model typically operates at a 20–30 min time step. The RATP model was applied to an isolated, 20-year-old walnut tree grown in the field. The spatial distribution of wind speed, stomatal response to environmental variables, and light acclimation of leaf photosynthetic properties were taken into account. Model outputs were compared with data acquired in the field. The model was shown to simulate satisfactorily the intracrown distribution of radiation regime, transpiration and photosynthetic rates, at shoot or branch scales.  相似文献   

12.
Muraoka H  Koizumi H  Pearcy RW 《Oecologia》2003,135(4):500-509
To examine a possible convergence in leaf photosynthetic characteristics and leaf display responses to light environment in seedlings of three canopy and two shrub tree species in understorey of cool-temperate deciduous broadleaf forest, relationships between light environment, leaf orientation and leaf light-photosynthetic response were measured. Light capture of the seedlings (17-24 individuals with 2-12 leaves for each species) was assessed with a three dimensional geometric modeling program Y-plant. Leaf photosynthetic characteristics of the five species were found to have acclimated to the understorey light environment, i.e., low light compensation point and high apparent quantum yield. In addition, light-saturated photosynthetic rates were higher in seedlings inhabiting microsites with higher light availability. Efficiencies of light capture and carbon gain of the leaf display were evaluated by simulating the directionalities of light capture and daily photosynthesis for each seedling using hemispherical canopy photography. The results showed that most of the seedlings orientated their leaves in a way to increase the daily photosynthesis during the direct light periods (sunflecks) rather than maximize daily photosynthesis by diffuse light. Simulations also showed that daily photosynthesis would increase only 10% of that on actual leaf display when the leaves orientated to maximize the diffuse light interception. Simulations in which leaf orientations were varied showed that when the leaf display fully maximized direct light interception, the time that leaves were exposed to excessive photon flux density of >800 mumol photons m(-2) s(-1) were doubled. The understorey seedlings studied responded to the given light environments in a way to maximize the efficiency of acquisition and use of light during their short (approximately 3 month) seasonal growth period.  相似文献   

13.
Summary A hypothesis that a dense stand should develop a less uniform distribution of leaf nitrogen through the canopy than an open stand to increase total canopy photosynthesis was tested with experimentally established stands of Lysimachia vulgaris L. The effect of stand density on spatial variation of photon flux density, leaf nitrogen and specific leaf weight within the canopy was examined. Stand density had little effect on the value of the light extinction coefficient, but strongly affected the distribution of leaf nitrogen per unit area within a canopy. The open stand had more uniform distribution of leaf nitrogen than the dense stand. However, different light climates between stands explained only part of the variation of leaf nitrogen in the canopy. The specific leaf weight in the canopy increased with increasing relative photon flux density and with decreasing nitrogen concentration.  相似文献   

14.
Measurements of net ecosystem CO2 exchange by eddy correlation, incident photosynthetically active photon flux density (PPFD), soil temperature, air temperature, and air humidity were made in a black spruce (Picea mariana) boreal woodland near Schefferville, Quebec, Canada, from June through August 1990. Nighttime respiration was between 0.5 and 1.5 kg C ha–1 h–1, increasing with temperature. Net uptake of carbon during the day peaked at 3 kg C ha–1 h–1, and the daily net uptake over the experiment was 12 kg C ha–1 day–1. Photosynthesis dropped substantially at leaf-to-air vapor pressure deficit (VPD) greater than 7 mb, presumably as a result of stomatal closure. The response of ecosystem photosynthesis to incident PPFD was markedly non-linear, with an abrupt saturation at 600 mol m–2 s–1. This sharp saturation reflected the geometry of the spruce canopy (isolated conical crowns), the frequently overcast conditions, and an increase in VPD coincident with high radiation. The ecosystem light-use efficiency increased markedly during overcast periods as a result of a more even distribution of light across the forest surface. A mechanistic model of forest photosynthesis, parameterized with observations of leaf density and nitrogen content from a nearby stand, provided accurate predictions of forest photosynthesis. The observations and model results indicated that ecosystem carbon balance at the site is highly sensitive to temperature, and relatively insensitive to cloudiness.  相似文献   

15.
Light interception by grain legume row crops   总被引:1,自引:0,他引:1  
Abstract. Four contrasting grain legume species ( Glycine max, Vigna radiata. Vigna mungo and Vigna angularis ) were grown as row crops with both 0.5 m and 1.0 m spacings between row centres. Light transmission profiles, at ground level, across rows of plants, were obtained for each crop on a number of occasions during growth. The proportion of the incident downward light flux density intercepted by each crop at solar noon was found to be simply and directly related to the product of the proportion of the ground area covered by the crop's leaf canopy and the proportion of the downward light flux density incident at the row centre that was intercepted by the crop. The average proportion of the incident light energy intercepted over the whole day could be related to the proportion intercepted at solar noon.  相似文献   

16.
Acclimation of photosynthesis in canopies: models and limitations   总被引:8,自引:0,他引:8  
Olevi Kull 《Oecologia》2002,133(3):267-279
Within a time-scale of several days photosynthesis can acclimate to light by variation in the capacity for photosynthesis with depth in a canopy or by variation in the stoichiometry of photosynthetic components at each position within the canopy. The changes in leaf photosynthetic capacity are usually related to and expressed as changes in leaf nitrogen content. However, photosynthetic capacity and leaf nitrogen never match exactly the photon flux density (PFD) gradient within a canopy. As a result, photosynthetic light use efficiency, i.e. photosynthetic performance per incident PFD, increases considerably from the top of the canopy to the lower shaded part. Many of existing optimisation models fail to express the actual pattern of nitrogen or photosynthetic capacity distribution within a canopy. This failure occurs because these optimisation models do not consider that the quantitative aspect of photosynthesis acclimation is a whole plant phenomenon. Although turnover models, which describe the distribution of the photosynthetic apparatus within a canopy as a dynamic equilibrium between breakdown and regeneration of apparatus with respect to nitrogen availability, photosynthetic rate and export of carbohydrates, produce realistic results, these models require confirmation. The mechanism responsible for changes in the relative share of light-harvesting apparatus as acclimation to irradiance remains unknown. Ability of the photosynthetic apparatus to balance properly the light harvesting capacity with electron transport and biochemical capacities is limited. As a result of this fundamental limitation, photosynthetic light use efficiency always increases with increasing thickness of the photosynthetic apparatus.  相似文献   

17.
Relative influence of city structure on canopy photosynthesis   总被引:2,自引:0,他引:2  
No analytical models seem to exist which are capable of investigating the relative effects of the physical urban landscape on the rates of leaf net photosynthesis in canopies. This paper deals with the results of the combination of two deterministic models: a multi-layered canopy leaf energy budget-photosynthesis model CANOPY and a complex, analytical street canyon energy budget model URBAN 3. Both models were validated previously. A range of three widely contrasting plant photosynthesis response systems (C3 and C4 plants) were chosen as well as were different latitudes, seasons, and urban morphologies. The results indicated both reductions and increases of relative photosynthesis and an almost linear correlation between relative sunlit area and relative net photosynthesis.  相似文献   

18.

Background and Aims

At present most process-based models and the majority of three-dimensional models include simplifications of plant architecture that can compromise the accuracy of light interception simulations and, accordingly, canopy photosynthesis. The aim of this paper is to analyse canopy heterogeneity of an explicitly described tomato canopy in relation to temporal dynamics of horizontal and vertical light distribution and photosynthesis under direct- and diffuse-light conditions.

Methods

Detailed measurements of canopy architecture, light interception and leaf photosynthesis were carried out on a tomato crop. These data were used for the development and calibration of a functional–structural tomato model. The model consisted of an architectural static virtual plant coupled with a nested radiosity model for light calculations and a leaf photosynthesis module. Different scenarios of horizontal and vertical distribution of light interception, incident light and photosynthesis were investigated under diffuse and direct light conditions.

Key Results

Simulated light interception showed a good correspondence to the measured values. Explicitly described leaf angles resulted in higher light interception in the middle of the plant canopy compared with fixed and ellipsoidal leaf-angle distribution models, although the total light interception remained the same. The fraction of light intercepted at a north–south orientation of rows differed from east–west orientation by 10 % on winter and 23 % on summer days. The horizontal distribution of photosynthesis differed significantly between the top, middle and lower canopy layer. Taking into account the vertical variation of leaf photosynthetic parameters in the canopy, led to approx. 8 % increase on simulated canopy photosynthesis.

Conclusions

Leaf angles of heterogeneous canopies should be explicitly described as they have a big impact both on light distribution and photosynthesis. Especially, the vertical variation of photosynthesis in canopy is such that the experimental approach of photosynthesis measurements for model parameterization should be revised.  相似文献   

19.
Carex acutiformis and Brachypodium pinnatum were grown with a uniform distribution of photosynthetic photon flux density (PFD) with height, and in a vertical PFD gradient similar to the PFD gradient in a leaf canopy. Distribution of organic leaf N and light-saturated rates of photosynthesis were determined. These parameters were also determined on plants growing in a natural vegetation stand. The effect of a PFD gradient was compared with the effect of a leaf canopy. In Brachypodium, plants growing in a vegetation stand had increasing leaf N with plant height. However, distribution of leaf N was not influenced by the PFD gradient treatment. The gradient of leaf N in plants growing in a leaf canopy was not due to differences within the long, mostly erect, leaves but to differences between leaves. In Carex, however, the PFD gradient caused a clear increase of leaf N with height in individual leaves and thus also in plants. The leaf N gradient was similar to that of plants growing in a leaf canopy. Leaf N distribution was not affected by nutrient availability in Carex. In most cases, photosynthesis was positively related to leaf N. Hence, lightsaturated rates of photosynthesis increased towards the top of the plants growing in leaf canopies in both species and, in Carex, also in the PFD gradient, thus contributing to increased N use efficiency for photosynthesis of the whole plant. It is concluded that in Carex the PFD gradient is the main environmental signal for leaf N allocation in response to shading in a leaf canopy, but one or more other signals must be involved in Brachypodium.  相似文献   

20.
The aim of this study was to predict crop growth of year-round cut chrysanthemum (Chrysanthemum morifolium Ramat.) based on an empirical model of potential crop growth rate as a function of daily incident photosynthetically active radiation (PAR, MJ m-2 d-1), using generalized estimated parameters of the expolinear growth equation. For development of the model, chrysanthemum crops were grown in four experiments at different plant densities (32, 48, 64 and 80 plants m-2), during different seasons (planting in January, May-June and September) and under different light regimes [natural light, shading to 66 and 43 % of natural light, and supplementary assimilation light (ASS, 40-48 micro mol m-2 s-1)]. The expolinear growth equation as a function of time (EXPOT) or as a function of incident PAR integral (EXPOPAR) effectively described periodically measured total dry mass of shoot (R2 > 0.98). However, growth parameter estimates for the fitted EXPOPAR were more suitable as they were not correlated to each other. Coefficients of EXPOPAR characterized the relative growth rate per incident PAR integral [rm,i (MJ m-2)-1] and light use efficiency (LUE, g MJ-1) at closed canopy. In all four experiments, no interaction effects between treatments on crop growth parameters were found. rm,i and LUE were not different between ASS and natural light treatments, but were increased significantly when light levels were reduced by shading in the summer experiments. There was no consistent effect of plant density on growth parameters. rm,i and LUE showed hyperbolic relationships to average daily incident PAR averaged over 10-d periods after planting (rm,i) or before final harvest (LUE). Based on those relationships, maximum relative growth rate (rm, g g-1 d-1) and maximum crop growth rate (cm, g m-2 d-1) were described successfully by rectangular hyperbolic relationships to daily incident PAR. In model validation, total dry mass of shoot (Wshoot, g m-2) simulated over time was in good agreement with measured ones in three independent experiments, using daily incident PAR and leaf area index as inputs. Based on these results, it is concluded that the expolinear growth equation is a useful tool for quantifying cut chrysanthemum growth parameters and comparing growth parameter values between different treatments, especially when light is the growth-limiting factor. Under controlled environmental conditions the regression model worked satisfactorily, hence the model may be applied as a simple tool for understanding crop growth behaviour under seasonal variation in daily light integral, and for planning cropping systems of year-round cut chrysanthemum. However, further research on leaf area development in cut chrysanthemum is required to advance chrysanthemum crop growth prediction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号