首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
Immunocytological studies in this laboratory have suggested that NADH-dependent glutamate synthase (NADH-GOGAT; EC 1.4.1.14) in developing organs of rice (Oryza sativa L. cv. Sasanishiki) is involved in the utilization of glutamine remobilized from senescing organs through the phloem. Because most of the indica cultivars contained less NADH-GOGAT in their sink organs than japonica cultivars, over-expression of NADH-GOGAT gene from japonica rice was investigated using Kasalath, an indica cultivar. Several T0 transgenic Kasalath lines over-producing NADH-GOGAT under the control of a NADH-GOGAT promoter of Sasanishiki, a japonica rice, showed an increase in grain weight (80% as a maximum), indicating that NADH-GOGAT is indeed a key step for nitrogen utilization and grain filling in rice. A genetic approach using 98 backcross-inbred lines (BC(1)F(6)) developed between Nipponbare (a japonica rice) and Kasalath were employed to detect putative quantitative trait loci (QTLs) associated with the contents of cytosolic glutamine synthetase (GS1; EC 6.3.1.2), which is probably involved in the export of nitrogen from senescing organs and those of NADH-GOGAT. Immunoblotting analyses showed transgressive segregations toward lower or greater contents of these enzyme proteins in these BC(1)F(6). Seven chromosomal QTL regions were detected for GS1 protein content and six for NADH-GOGAT. Some of these QTLs were located in QTL regions for various biochemical and agronomic traits affected by nitrogen recycling. The relationships between the genetic variability of complex agronomic traits and traits for these two enzymes are discussed.  相似文献   

2.
A 2275-marker genetic map of rice (Oryza sativa L.) covering 1521.6 cM in the Kosambi function has been constructed using 186 F2 plants from a single cross between the japonica variety Nipponbare and the indica variety Kasalath. The map provides the most detailed and informative genetic map of any plant. Centromere locations on 12 linkage groups were determined by dosage analysis of secondary and telotrisomics using > 130 DNA markers located on respective chromosome arms. A limited influence on meiotic recombination inhibition by the centromere in the genetic map was discussed. The main sources of the markers in this map were expressed sequence tag (EST) clones from Nipponbare callus, root, and shoot libraries. We mapped 1455 loci using ESTs; 615 of these loci showed significant similarities to known genes, including single-copy genes, family genes, and isozyme genes. The high-resolution genetic map permitted us to characterize meiotic recombinations in the whole genome. Positive interference of meiotic recombination was detected both by the distribution of recombination number per each chromosome and by the distribution of double crossover interval lengths.  相似文献   

3.
Molecular mapping of quantitative trait loci in japonica rice.   总被引:1,自引:0,他引:1  
E D Redo?a  D J Mackill 《Génome》1996,39(2):395-403
Rice (Oryza sativa L.) molecular maps have previously been constructed using interspecific crosses or crosses between the two major subspecies: indica and japonica. For japonica breeding programs, however, it would be more suitable to use intrasubspecific crosses. A linkage map of 129 random amplified polymorphic DNA (RAPD) and 18 restriction fragment length polymorphism (RFLP) markers was developed using 118 F2 plants derived from a cross between two japonica cultivars with high and low seedling vigor, Italica Livorno (IL) and Labelle (LBL), respectively. The map spanned 980.5 cM (Kosambi function) with markers on all 12 rice chromosomes and an average distance of 7.6 cM between markers. Codominant (RFLP) and coupling phase linkages (among RAPDs) accounted for 79% of total map length and 71% of all intervals. This map contained a greater percentage of markers on chromosome 10, the least marked of the 12 rice chromosomes, than other rice molecular maps, but had relatively fewer markers on chromosomes 1 and 2. We used this map to detect quantitative trait loci (QTL) for four seedling vigor related traits scored on 113 F3 families in a growth chamber slantboard test at 18 degrees C. Two coleoptile, five root, and five mesocotyl length QTLs, each accounting for 9-50% of the phenotypic variation, were identified by interval analysis. Single-point analysis confirmed interval mapping results and detected additional markers significantly influencing each trait. About two-thirds of alleles positive for the putative QTLs were from the high-vigor parent, IL. One RAPD marker (OPAD13720) was associated with a IL allele that accounted for 18.5% of the phenotypic variation for shoot length, the most important determinant of seedling vigor in water-seeded rice. Results indicate that RAPDs are useful for map development and QTL mapping in rice populations with narrow genetic base, such as those derived from crosses among japonica cultivars. Other potential uses of the map are discussed. Key words : QTL mapping, RAPD, RFLP, seedling vigor, japonica, Oryza sativa.  相似文献   

4.
利用两个测序水稻品种构建微卫星连锁图谱   总被引:6,自引:0,他引:6  
利用已完成基因组测序的两个水稻品种日本晴和931l的数据库成功开发出水稻微卫星新标记,并利用由90个单株组成的日本晴×9311 F2作图群体,构建了一张包含152个SSR标记位点、覆盖基因组总长度2 455.7 cM的连锁图谱,有46个SSR新标记为自主开发,该图谱标记间的平均遗传距离为16.16 cM;并将未能在Temnykh等人(2001)构建的图谱上定位的微卫星标记RM345和RM494定位在第6染色体上.通过与Temnykh等人(2001)和兰涛等人(2003)所构建的图谱从作图群体的类型和大小、标记的类型和数量、标记在染色体上的线性排列顺序等几个方面进行比较,所绘制的图谱其标记在染色体线性排列上与Temnykh等人绘制的图谱具有很高的一致性,达93.81%.  相似文献   

5.
梁永书  彭勇  叶少平  李平  孙林静  马忠友  李艳萍 《遗传》2007,29(9):1110-1120
以部分基因组和全基因组测序水稻籼稻(O sativa L. indica)品种“培矮64S”(Pei’ai 64S♀)和粳稻(O sativa L. japonica)品种“日本晴”(Nipponbare♂)为构图亲本, 选取F2代180个株系为作图群体, 构建含138个微卫星位点的水稻遗传连锁图谱, 覆盖基因组2 046.2 cM, 平均图距17.1 cM, 即F2 图谱; 采用单粒传法获得F2:6 代330个株系, 用相同的多态性标记分析F6群体, 构建含92个标记连锁图谱, 覆盖基因组2 563.5 cM, 平均图距27.86 cM, 即F6图谱; F2、F6图谱在连锁群数、定位标记数、标记的位置顺序、遗传图距、平均图距等方面发生了较大变化, 并对产生这些差异的原因进行了初步分析。  相似文献   

6.
Yang ZM  Xie XF  Huang XB  Wang FQ  Tong ZJ  Duan YL  Lan T  Wu WR 《遗传》2012,34(5):615-620
"三明显性核不育水稻"突变体是由福建省三明市农业科学研究所于2001年在杂交组合"SE21S/Basmati370"的F2代群体中发现的。其不育性受1个显性基因控制(将该基因命名为SMS)。经过多代回交,该显性不育基因已导入籼稻品种佳福占的遗传背景中(将该不育材料称为佳不育)。为了定位SMS,文章将佳不育与粳稻品种日本晴杂交,并将F1与佳福占测交,构建了一个作图群体。利用SSR和INDEL标记,通过混合分离分析和连锁分析,将SMS定位于第8号染色体上两个INDEL标记ZM30和ZM9之间,约99 kb的区间内。该结果为克隆SMS奠定了基础。  相似文献   

7.
用双单倍体群体构建水稻的分子连锁图   总被引:37,自引:6,他引:31  
本研究以窄叶青8号(籼稻)×京系17(粳稻)的F1花培株系──DH群体为基础建立了1个水稻的RFLP连锁框架图,该图含RFLP标记、同功酶标记等共108个位点,标记间的平均间距为8.6cM。该图谱与已发表的用其他群体构建的图谱有很高的可比性。利用该框架图定位了2个未知位点的同功酶标记基因和1个籼稻亲本的抗稻瘟病基因。研究表明,目前的群体可进一步扩大成为一个永久性的作图群体,并应用于水稻基因定位和基因组研究  相似文献   

8.
Boron toxicity tolerance of rice plants was studied. Modern japonica subspecies such as Koshihikari, Nipponbare, and Sasanishiki were tolerant, whereas indica subspecies such as Kasalath and IR36 were intolerant to excessive application of boron (B), even though their shoot B contents under B toxicity were not significantly different. Recombinant inbred lines (RILs) of japonica Nekken-1 and indica IR36 were used for quantitative trait locus (QTL) analysis to identify the gene responsible for B toxicity tolerance. A major QTL that could explain 45% of the phenotypic variation was detected in chromosome 4. The QTL was confirmed using a population derived from a recombinant inbred line which is heterogenic at the QTL region. The QTL was also confirmed in other chromosome segment substitution lines (CSSLs).  相似文献   

9.
水稻ILP标记遗传图谱的构建   总被引:1,自引:0,他引:1  
赵向前  吴为人 《遗传》2008,30(2):225-230
内含子长度多态性(ILP)是一种基于PCR的新型分子标记, 具有许多突出的优点。我们先前利用已公布的籼稻品种93-11和粳稻品种日本晴的基因组序列数据, 已开发了172个水稻ILP标记。为了检验这些ILP标记的可靠性及其在遗传作图中的可用性, 利用一个BC1F1(日本晴/93-11//日本晴)群体, 构建了一张含172个ILP标记座位和13个SSR标记座位的水稻遗传图谱, 总长度为1 905.7 cM。比较显示, 图谱上所有标记的顺序与其物理顺序完全一致, 证明了利用ILP标记进行遗传作图的可行性和有效性。文中还对标记偏分离现象进行了分析, 发现在第6号染色体短臂上存在一个严重偏分离的区域。  相似文献   

10.
We have found a 14 kbp double-stranded RNA (dsRNA) in many cultivars of japonica rice (Oryza sativa L.) but not in any cultivars of indica rice. This dsRNA is an RNA replicon with plasmid-like properties and is proposed to be a novel dsRNA virus, Oryza sativa endornavirus (OSV). Reciprocal crosses between the OSV-carrier japonica variety (Nipponbare) and the OSV-free indica variety (IR 26 or Kasalath) were performed to investigate whether OSV can be transmitted to F1 hybrids. When IR 26 and Nipponbare were used, efficient transmission of OSV from ova (93%) and pollen (89%) was observed. When Kasalath and Nipponbare were used, the OSV transmission efficiency to F1 progeny was 68% from ova and 20% from pollen. The transmission of OSV to F2 progeny plants was also complicated, showing non-Mendelian inheritance. These results suggest that the dsRNA replicon (OSV) is unstable in indica rice plants.  相似文献   

11.
Understanding genetic characteristics in rice populations will facilitate exploring evolutionary mechanisms and gene cloning. Numerous molecular markers have been utilized in linkage map construction and quantitative trait locus (QTL) mappings. However, segregation-distorted markers were rarely considered, which prevented understanding genetic characteristics in many populations. In this study, we designed a 384-marker GoldenGate SNP array to genotype 283 recombination inbred lines (RILs) derived from 93-11 and Nipponbare Oryza sativa crosses. Using 294 markers that were highly polymorphic between parents, a linkage map with a total genetic distance of 1,583.2 cM was constructed, including 231 segregation-distorted markers. This linkage map was consistent with maps generated by other methods in previous studies. In total, 85 significant quantitative trait loci (QTLs) with phenotypic variation explained (PVE) values≥5% were identified. Among them, 34 QTLs were overlapped with reported genes/QTLs relevant to corresponding traits, and 17 QTLs were overlapped with reported sterility-related genes/QTLs. Our study provides evidence that segregation-distorted markers can be used in linkage map construction and QTL mapping. Moreover, genetic information resulting from this study will help us to understand recombination events and segregation distortion. Furthermore, this study will facilitate gene cloning and understanding mechanism of inter-subspecies hybrid sterility and correlations with important agronomic traits in rice.  相似文献   

12.
A genetic linkage map of rice was constructed using a double haploid (DH) population from "Gui 630” (Oryza sativa subsp, indica)/"02428" (O. sativa subsp, japonica, wide compatibility variety) and RFLP markers. It consists of 233 loci and covers rice genomes about 2070 cM (centimorgan), and compares well with the other published rice maps. 25 RFLP markers, 2 telomeres and sh-2 (shattering ability) gene were first located on the molecular map of rice. RFLPs between "Gui 630' and "02428' mainly came from base substitution and a few DNA construction variance, not distributed evenly among chromosomes and on chromosome. This was probably resulted from the difference genetic stability among chromosomes and regions, in exchanging recombination ability in different segments of chromosome.  相似文献   

13.
Bulked segregant analysis was used to determine randomly amplifiedpolymorphic DNA (RAPD) markers in a specific interval in themiddle of chromosome 6 of rice for tagging the photoperiod sensitivitygene.Two pools of F2 individuals (japonica cv. Nipponbare and indicacv. Kasalath) were constructed according to the genotypes ofthree restriction fragment length polymorphism (RFLP) markerslocated at both ends and the middle of the targeted interval.Then another pair of pools were constructed based on the "graphicalgenotype," which was made with our high density linkage map.RAPD analysis was performed using these DNA pools as templates,and polymorphic fragments were detected and mapped. Using 80primers, either singlyor pairwise, we tested 2,404 primer pairsand established 14 markers tightly linked to the photoperiodsensitivitygene. The obtained RAPD markers were converted intosequence-tagged sites bycloning and sequencing of the polymorphicfragments and they can be used directlyfor construction of physicalmaps. This bulked segregant method can be applied for any speciesand any region of interest in which detailed linkage maps orphysical maps are needed.  相似文献   

14.
不同生长环境下水稻最上节间长度QTL定位研究   总被引:1,自引:0,他引:1  
乔保建  王盈盈  朱晓彪  洪德林 《遗传》2007,29(8):1001-1001―1007
利用由98 个家系组成的 Nipponbare/Kasalath//Nipponbare 回交重组自交系(backcross inbred lines, BIL)作图群体(BC1F12和BC1F13)和复合区间作图方法(CIM), 在3种不同的生长环境下对水稻最上节间长度进行了 QTL 分析。结果表明, 3种不同的生长环境共检测到 13 个 QTL , 分布于第 1, 2, 3, 5, 6, 8, 10, 11 染色体上, 解释性状变异的 3.97%~15.21%。其中qUIL-6在3种不同生长环境中均检测到, qUIL-1a, qUIL-3a, qUIL-3b和 qUIL-10a 等4个位点在两种不同生长环境中均被检测到, 说明这些 QTL 位点受环境影响较小, 表达较为稳定。  相似文献   

15.
70个水稻微卫星标记染色体位置的更正   总被引:1,自引:0,他引:1  
微卫星标记(SSR)因其操作简单和稳定可靠的特点而成为一种重要的分子标记,被广泛应用于遗传作图和种质鉴定等方面。但其在染色体上位置的正确性将直接影响到基因定位的正确性和后续研究的方向。利用美国国家生物信息技术中心(NCBI)网站的Blast程序,将2740个SSR标记的前后引物序列与水稻粳稻品种日本晴基因组进行比对,共发现70个标记位于另一条染色体,对这70个标记重新锚定的染色体进行了更正。这将有助于今后水稻分子标记遗传连锁图的正确构建。  相似文献   

16.
17.
A high density genetic linkage map comprised of aA. 4 loci was constructed from a doubled haploid population derived from a inter-subspecific cross between an Oryza satire L. ssp. Indica vari.t.v ("Zhaiyeqing 8") and a japonica variety ("Jingxi 17"). The genetic map consisted of 276 RFLP markers, 34 RAPD markers, 89 microsatellite markers, 10 AFLP markers, 26 markers based on telomeric repetitive associated sequence (TAS) and 9 isozyme markers. This genetic map was highly comparable with other high density rice genetic maps and had its unique feature which meritted it suitable for sustained genetic analysis.  相似文献   

18.
Shen YJ  Jiang H  Jin JP  Zhang ZB  Xi B  He YY  Wang G  Wang C  Qian L  Li X  Yu QB  Liu HJ  Chen DH  Gao JH  Huang H  Shi TL  Yang ZN 《Plant physiology》2004,135(3):1198-1205
DNA polymorphism is the basis to develop molecular markers that are widely used in genetic mapping today. A genome-wide rice (Oryza sativa) DNA polymorphism database has been constructed in this work using the genomes of Nipponbare, a cultivar of japonica, and 93-11, a cultivar of indica. This database contains 1,703,176 single nucleotide polymorphisms (SNPs) and 479,406 Insertion/Deletions (InDels), approximately one SNP every 268 bp and one InDel every 953 bp in rice genome. Both SNPs and InDels in the database were experimentally validated. Of 109 randomly selected SNPs, 107 SNPs (98.2%) are accurate. PCR analysis indicated that 90% (97 of 108) of InDels in the database could be used as molecular markers, and 68% to 89% of the 97 InDel markers have polymorphisms between other indica cultivars (Guang-lu-ai 4 and Long-te-pu B) and japonica cultivars (Zhong-hua 11 and 9522). This suggests that this database can be used not only for Nipponbare and 93-11, but also for other japonica and indica cultivars. While validating InDel polymorphisms in the database, a set of InDel markers with each chromosome 3 to 5 marker was developed. These markers are inexpensive and easy to use, and can be used for any combination of japonica and indica cultivars used in this work. This rice DNA polymorphism database will be a valuable resource and important tool for map-based cloning of rice gene, as well as in other various research on rice (http://shenghuan.shnu.edu.cn/ricemarker).  相似文献   

19.
水稻外观品质的数量性状基因位点分析   总被引:27,自引:1,他引:26  
利用由98个家系组成的Nipponbare(粳)/Kasalath(秒)∥Nipponbare回交重组自交系(backcross inbred lines,BILs)群体(BC1F9)及其分子连锁图谱,采用复合区间作图的方法,在2个不同年份对粒长、粒宽、粒形、垩白率、垩白大小、垩白度和透明度等7个稻米外观品质性状的数量性状基因位点(Quantiative trait loci,QTL)进行了定位分析。共定位到33个四QTLs,单个性状QTL数目在4-7个之间,以垩白率最多,为7个;粒长和垩白大小次之,为5个;其他性状均为4个,表明该组合外观品质是由多基因控制的数量性状。单个QTL对性状变异解释率粒长为6.2%-15.2%,粒宽为8.3%-32.5%,长宽比为6.8%-19.8%,垩白率为6.4%-28.5%,垩白大小为6.1%-16.9%,垩白度为9.3%-17.2%,透明度为5.6%-25.2%.QTL在染色体上成集中分布的特点,第3染色体C1488-C563、第5染色体R830-R3166和R1436-R2289、第6染色体R2147-R2171均有3个以上的QTLs分布。比较2年的检测结果表明,外观品质性状的QTL定位都受环境影响,但不同性状受影响的程度差异很大。粒长和粒形的QTL定位受环境影响很小,垩白率、垩白大小和垩白度的QTL定位受环境影响很大。  相似文献   

20.
Application of genetic linkage maps in plant genetics and breeding can be greatly facilitated by integrating the available classical and molecular genetic linkage maps. In rice, Oryza sativa L., the classical linkage map includes about 300 genes which correspond to various important morphological, physiological, biochemical and agronomic characteristics. The molecular maps consist of more than 500 DNA markers which cover most of the genome within relatively short intervals. Little effort has been made to integrate these two genetic maps. In this paper we report preliminary results of an ongoing research project aimed at the complete integration and alignment of the two linkage maps of rice. Six different F2 populations segregating for various phenotypic and RFLP markers were used and a total of 12 morphological and physiological markers (Table 1) were mapped onto our recently constructed molecular map. Six linkage groups (i.e., chr. 1, 3, 7, 9, 11 and 12) on our RFLP map were aligned with the corresponding linkage groups on the classical map, and the previous alignment for chromosome 6 was further confirmed by RFLP mapping of an additional physiological marker on this chromosome. Results from this study, combined with our previous results, indicate that, for most chromosomes in rice, the RFLP map encompasses the classical map. The usefulness of an integrated genetic linkage map for rice genetics and breeding is discussed.Abbreviations RFLP restriction fragment length polymorphism - chr chromosome - cM centiMorgan  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号