首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We developed a novel approach to enlarge phosphoproteome coverage using successive elution of phosphopeptides with various buffers in series from a single microcolumn packed with hydroxy acid-modified metal oxides, such as titania and zirconia. Elution conditions were investigated to maximize the recovery of phosphopeptides from three standard phosphoproteins. Secondary amines, such as piperidine and pyrrolidine, provided better efficiency than the conventional conditions using ammonium hydroxide and phosphate buffers. Furthermore, elution with these secondary amines provided unique phosphopeptides that were not eluted under the conventional conditions in the analysis of HeLa cell lysates. On the basis of these results, we fractionated phosphopeptides captured by a single metal oxide microcolumn using successive elution with 5% ammonium hydroxide solution, 5% piperidine solution and 5% pyrrolidine solution in series. We identified 1,803 nonredundant phosphopeptides from 100 microg of HeLa cells, which represented a 1.6-fold increase in phosphopeptide number and a 1.9-fold increase in total peak area of phosphopeptides in comparison with the results obtained under the conventional conditions. Since this approach is applicable to any single tip-based protocol without coupling with other enrichment methods, this simple strategy can be easily incorporated as an option into existing protocols for phosphopeptide enrichment, and would be suitable for high-throughput analysis in a parallel format.  相似文献   

2.
Immobilized metal affinity chromatography (IMAC) and metal oxide type affinity chromatography (MOAC) techniques have been widely used for mass spectrometry-based phosphorylation analysis. Unlike MOAC techniques, IMAC requires rather complete removals of buffering reagents, salts and high concentrations of denaturant prior to sample loading in order for the successful enrichment of phosphopeptides. In this study, a simple off-line capillary column-based IMAC phosphopeptide enrichment method can shorten sample preparation time by eliminating the speed-vac step from the desalting process. Tryptic digest peptide samples containing 2M urea can be directly processed and the entire IMAC procedure can be completed within 6 h. When tryptic digest peptide samples prepared from mouse whole brain tissues were analyzed using our method, an average of 249 phosphoproteins and 463 unique phosphopeptides were identified from single 2-h RPLC-MS/MS analysis (~88% specificity). An additional advantage of this method is the significantly improved reproducibility of the phosphopeptide enrichment results. When four independent phosphopeptide enrichment experiments were carried out, the peak areas of phosphopeptides identified among four enrichment experiments were relatively similar (less than 16.2% relative standard dev.). Because of this increased reproducibility, relative phosphorylation quantification analysis of major phosphoproteins appears to be feasible without the need for stable isotope labeling techniques.  相似文献   

3.
Metal and metal oxide chelating-based phosphopeptide enrichment technologies provide powerful tools for the in-depth profiling of phosphoproteomes. One weakness inherent to current enrichment strategies is poor binding of phosphopeptides containing multiple basic residues. The problem is exacerbated when strong cation exchange (SCX) is used for pre-fractionation, as under low pH SCX conditions phosphorylated peptides with multiple basic residues elute with the bulk of the tryptic digest and therefore require more stringent enrichment. Here, we report a systematic evaluation of the characteristics of a novel phosphopeptide enrichment approach based on a combination of low pH SCX and Ti(4+)-immobilized metal ion affinity chromatography (IMAC) comparing it one-to-one with the well established low pH SCX-TiO(2) enrichment method. We also examined the effect of 1,1,1,3,3,3-hexafluoroisopropanol (HFP), trifluoroacetic acid (TFA), or 2,5-dihydroxybenzoic acid (DHB) in the loading buffer, as it has been hypothesized that high levels of TFA and the perfluorinated solvent HFP improve the enrichment of phosphopeptides containing multiple basic residues. We found that Ti(4+)-IMAC in combination with TFA in the loading buffer, outperformed all other methods tested, enabling the identification of around 5000 unique phosphopeptides containing multiple basic residues from 400 μg of a HeLa cell lysate digest. In comparison, ~ 2000 unique phosphopeptides could be identified by Ti(4+)-IMAC with HFP and close to 3000 by TiO(2). We confirmed, by motif analysis, the basic phosphopeptides enrich the number of putative basophilic kinases substrates. In addition, we performed an experiment using the SCX/Ti(4+)-IMAC methodology alongside the use of collision-induced dissociation (CID), higher energy collision induced dissociation (HCD) and electron transfer dissociation with supplementary activation (ETD) on considerably more complex sample, consisting of a total of 400 μg of triple dimethyl labeled MCF-7 digest. This analysis led to the identification of over 9,000 unique phosphorylation sites. The use of three peptide activation methods confirmed that ETD is best capable of sequencing multiply charged peptides. Collectively, our data show that the combination of SCX and Ti(4+)-IMAC is particularly advantageous for phosphopeptides with multiple basic residues.  相似文献   

4.
Enrichment is essential for phosphoproteome analysis because phosphorylated proteins are usually present in cells in low abundance. Recently, titanium dioxide (TiO2) has been demonstrated to enrich phosphopeptides from simple peptide mixtures with high specificity; however, the technology has not been optimized. In the present study, significant non-specific bindings were observed when proteome samples were applied to TiO2 columns. Column wash with an NH4Glu solution after loading peptide mixtures significantly increased the efficiency of TiO2 phosphopeptide enrichment with a recovery of up to 84%. Also, for proteome samples, more than a 2-fold increase in unique phosphopeptide identifications has been achieved. The use of NH4Glu for a TiO2 column wash does not significantly reduce the phosphopeptide recovery. A total of 858 phosphopeptides corresponding to 1034 distinct phosphosites has been identified from HeLa cells using the improved TiO2 enrichment procedure in combination with data-dependent neutral loss nano-RPLC-MS2-MS3 analysis. While 41 and 35% of the phosphopeptides were identified only by MS2 and MS3, respectively, 24% was identified by both MS2 and MS3. Cross-validation of the phosphopeptide assignment by MS2 and MS3 scans resulted in the highest confidence in identification (99.5%). Many phosphosites identified in this study appear to be novel, including sites from antigen Ki-67, nucleolar phosphoprotein p130, and Treacle protein. The study also indicates that evaluation of confidence levels for phosphopeptide identification via the reversed sequence database searching strategy might underestimate the false positive rate.  相似文献   

5.
A new method for enrichment of phosphopeptides in complex mixtures derived by proteolytic digestion of biological samples has been developed. The method is based on calcium phosphate precipitation of the phosphopeptides prior to further enrichment with established affinity enrichment methods. Calcium phosphate precipitation combined with phosphopeptide enrichment using Fe(III) IMAC provided highly selective enrichment of phosphopeptides. Application of the method to a complex peptide sample derived from rice embryo resulted in more than 90% phosphopeptides in the enriched sample as determined by mass spectrometry. Introduction of a two-step IMAC enrichment procedure after calcium phosphate precipitation resulted in observation of an increased number of phosphopeptides.  相似文献   

6.
Four commercially available immobilized metal ion affinity chromatography (IMAC) methods for phosphopeptide enrichment were compared using small volumes and concentrations of phosphopeptide mixtures with or without extra-added bovine serum albumin (BSA) nonphosphorylated peptides. Addition of abundant tryptic BSA peptides to the phosphopeptide mixture increases the demand for selective IMAC capture. While SwellGel gallium Discs, IPAC Metal Chelating Resin, and ZipTipMC Pipette Tips allow for the possibility of enriching phosphopeptides, the Gyrolab MALDI IMAC1 also presents the possibility of verifying existing phosphopeptides after a dephosphorylation step. Phosphate-containing peptides are identified through a mass shift between phosphorylated and dephosphorylated spectra of 80 Da (or multiples of 80 Da). This verification is useful if the degree of phosphorylation is low in the sample or if the ionization is unfavorable, which often is the case for phosphopeptides. A peptide mixture in which phosphorylated serine, threonine, and tyrosine were represented was diluted in steps and thereafter enriched using the four different IMAC methods prior to analyses with matrix assisted laser desorption/ionization mass spectrometry. The enrichment of phosphopeptides using SwellGel Gallium Discs or Gyrolab MALDI IMAC1 was not significantly affected by the addition of abundant BSA peptides added to the sample mixture, and the achieved detection limits using these techniques were also the lowest. All four of the included phosphopeptides were detected by MALDI-MS only after enrichment using the Gyrolab MALDI IMAC1 compact disc (CD) and detection down to low femtomole levels was possible. Furthermore, selectivity, reproducibility, and detection for a number of other phosphopeptides using the IMAC CD are reported herein. For example, two phosphopeptides sent out in a worldwide survey performed by the Proteomics Research Group (PRG03) of the Association of Biomolecular Resource Facilities (ABRF) were detected and verified by means of the 80 Da mass shift achieved by on-column dephosphorylation.  相似文献   

7.
Global profiling of phosphoproteomes has proven to be a great challenge due to the relatively low stoichiometry of protein phosphorylation and poor ionization efficiency in mass spectrometers. Effective, physiologically relevant, phosphoproteome research relies on the efficient phosphopeptide enrichment from complex samples. Immobilized metal affinity chromatography and titanium dioxide chromatography can greatly assist selective phosphopeptide enrichment. However, the complexity of resultant enriched samples is often still high, suggesting that further separation of enriched phosphopeptides is required. We have developed a pH gradient elution technique for enhanced phosphopeptide identification in conjunction with titanium dioxide chromatography. Using this process, we demonstrated its superiority to the traditional “one-pot” strategies for differential protein identification. Our technique generated a highly specific separation of phosphopeptides by an applied pH gradient between 9.2 and 11.3. The most efficient elution range for high-resolution phosphopeptide separation was between pHs 9.2 and 9.4. High-resolution separation of multiply phosphorylated peptides was primarily achieved using elution ranges greater than pH 9.4. Investigation of phosphopeptide sequences identified in each pH fraction indicated that phosphopeptides with phosphorylated residues proximal to acidic residues, including glutamic acid, aspartic acid, and other phosphorylated residues, were preferentially eluted at higher pH values.  相似文献   

8.
Accurate determination of protein phosphorylation is challenging, particularly for researchers who lack access to a high-accuracy mass spectrometer. In this study, multiple protocols were used to enrich phosphopeptides, and a rigorous filtering workflow was used to analyze the resulting samples. Phosphopeptides were enriched from cultured rat renal proximal tubule cells using three commonly used protocols and a dual method that combines separate immobilized metal affinity chromatography (IMAC) and titanium dioxide (TiO2) chromatography, termed dual IMAC (DIMAC). Phosphopeptides from all four enrichment strategies were analyzed by liquid chromatography-multiple levels of mass spectrometry (LC-MSn) neutral-loss scanning using a linear ion trap mass spectrometer. Initially, the resulting MS2 and MS3 spectra were analyzed using PeptideProphet and database search engine thresholds that produced a false discovery rate (FDR) of <1.5% when searched against a reverse database. However, only 40% of the potential phosphopeptides were confirmed by manual validation. The combined analyses yielded 110 confidently identified phosphopeptides. Using less-stringent initial filtering thresholds (FDR of 7–9%), followed by rigorous manual validation, 262 unique phosphopeptides, including 111 novel phosphorylation sites, were identified confidently. Thus, traditional methods of data filtering within widely accepted FDRs were inadequate for the analysis of low-resolution phosphopeptide spectra. However, the combination of a streamlined front-end enrichment strategy and rigorous manual spectral validation allowed for confident phosphopeptide identifications from a complex sample using a low-resolution ion trap mass spectrometer.  相似文献   

9.
The selective enrichment of phosphorylated peptides prior to reversed-phase separation and mass spectrometric detection significantly improves the analytical results in terms of higher number of detected phosphorylation sites and spectra of higher quality. Metal oxide chromatography (MOC) has been recently described for selective phosphopeptide enrichment (Pinkse et al., 2004 [1]; Larsen et al., 2005 [2]; Kweon and Hakansson, 2006 [3]; Cantin et al., 2007 [4]; Collins et al., 2007 [5]). In the present work we have tested the effect of a modified loading solvent containing a novel acid mix and optimized wash conditions on the efficiency of TiO2-based phosphopeptide enrichment in order to improve our previously published method (Mazanek et al., 2007 [6]). Applied to a test mixture of synthetic and BSA-derived peptides, the new method showed improved selectivity for phosphopeptides, whilst retaining a high recovery rate. Application of the new enrichment method to digested purified protein complexes resulted in the identification of a significantly higher number of phosphopeptides as compared to the previous method. Additionally, we have compared the performance of TiO2 and ZrO2 columns for the isolation and identification of phosphopeptides from purified protein complexes and found that for our test set, both media performed comparably well. In summary, our improved method is highly effective for the enrichment of phosphopeptides from purified protein complexes prior to mass spectrometry, and is suitable for large-scale phosphoproteomic projects that aim to elucidate phosphorylation-dependent cellular processes.  相似文献   

10.
Global profiling of phosphopeptides by titania affinity enrichment   总被引:1,自引:0,他引:1  
Protein phosphorylation is a ubiquitous post-translational modification critical to many cellular processes. Large-scale unbiased characterization of phosphorylation status remains a major technical challenge in proteomics. In the present work, we evaluate and optimize titania-based affinity enrichment for global profiling of phosphopeptides from complex biological mixtures. We demonstrate that inclusion of glutamic acid in the sample loading buffer substantially reduced nonspecific binding of nonphosphorylated peptides to the titania while retaining the high binding affinity for phosphopeptides. The reduction in nonspecific peptide binding enhanced overall phosphopeptide recovery, ranging from 22 to 85%, and led to substantial improvement in large-scale global profiling. In addition, we observed that the overall identification of phosphopeptides was significantly enhanced by neutral loss-triggered MS (3) scans and respective use of multiple charge- and mass-dependent filtering criteria for MS (2) and MS (3) spectra. In conjunction with strong-cation exchange chromatography (SCX) for prefractionation, a total of 4002 distinct phosphopeptides were identified from SKBr3 breast cancer cells at false-positive rates of 3.7% and 5.5%, respectively, for singly and doubly phosphorylated peptides.  相似文献   

11.
Immobilized-metal-ion affinity chromatography (IMAC) is used extensively for phosphopeptide enrichment in phosphoproteomics. However, the effect of nucleic acids in protein samples on phosphopeptide enrichment by IMAC has not yet been well clarified. In this study, we demonstrate that IMAC beads possess a strong adsorption of nucleic acids, especially single-stranded or single-stranded-region-containing nucleic acids, leading to approximately 50% loss of phosphopeptides during the process of IMAC enrichment. Therefore, nucleic acids must be removed from protein samples prior to IMAC. Acetonitrile (ACN) precipitation, a simple and efficient procedure, was established to remove nucleic acids from the protein samples. We showed that ACN precipitation approximately doubled the phosphopeptide number identified by IMAC and mass spectrometry, indicating that nucleic acid removal significantly improves the identification of phosphopeptides. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
Protein phosphorylation activates or deactivates many other proteins especially protein enzymes, and plays a significant role in a wide range of cellular processes. Recent advances in phosphopeptide enrichment procedures and mass spectrometry-based peptide sequencing techniques have enabled us to identify large number of protein phosphorylation sites. In this study, we combined three different HPLC techniques in fractionating enriched phosphopeptides before RPLC-MS/MS analysis, and found that although between 4000-5000 unique phosphopeptides could be identified following any of the HPLC fraction method, different HPLC method yielded a considerable amount of non-overlapping unique phosphopeptides. Combining data from all the HPLC methods, we were able to identify 9069 unique phosphopeptides and 3260 phosphoproteins covering 9463 unique phosphorylation sites, indicating that different HPLC methods are complementary to each other, and can be used together in order to increase the phosphoproteome coverage. A number of new phosphorylation sites and novel phosphorylation motifs were also discovered from our study.  相似文献   

13.
Herein we report the characterization and optimization of single-step inline enrichment of phosphopeptides directly from small amounts of whole cell and tissue lysates (100-500 μg) using a hydroxyapatite (HAP) microcolumn and Multidimensional Protein Identification Technology (MudPIT). In comparison to a triplicate HILIC-IMAC phosphopeptide enrichment study, ~80% of the phosphopeptides identified using HAP-MudPIT were unique. Similarly, analysis of the consensus phosphorylation motifs between the two enrichment methods illustrates the complementarity of calcium- and iron-based enrichment methods and the higher sensitivity and selectivity of HAP-MudPIT for acidic motifs. We demonstrate how the identification of more multiply phosphorylated peptides from HAP-MudPIT can be used to quantify phosphorylation cooperativity. Through optimization of HAP-MudPIT on a whole cell lysate we routinely achieved identification and quantification of ca. 1000 phosphopeptides from a ~1 h enrichment and 12 h MudPIT analysis on small quantities of material. Finally, we applied this optimized method to identify phosphorylation sites from a mass-limited mouse brain region, the amygdala (200-500 μg), identifying up to 4000 phosphopeptides per run.  相似文献   

14.
蛋白质的磷酸化与去磷酸化过程,调控着包括信号转换、基因表达、细胞周期等诸多细胞过程。因此,对蛋白质磷酸化修饰的分析是蛋白质组研究中的重要内容。但由于磷酸化蛋白的丰度较低,难以用质谱直接检测。为了解决这个问题,改善质谱对磷酸肽的信号响应,需要对磷酸化蛋白质或磷酸肽进行富集。目前主要的富集方法包括免疫沉淀、固相金属离子亲和色谱、金属氧化物/氢氧化物亲和色谱等。  相似文献   

15.
Zhou H  Xu S  Ye M  Feng S  Pan C  Jiang X  Li X  Han G  Fu Y  Zou H 《Journal of proteome research》2006,5(9):2431-2437
Phosphorylation is one of the most important post-translational modifications of proteins, which modulates a wide range of biological functions and activity of proteins. The analysis of phosphopeptides is still one of the most challenging tasks in proteomics research by mass spectrometry. In this study, a novel phosphopeptide enrichment approach based on the strong interaction of zirconium phosphonate (ZrP) modified surface with phosphopeptides has been developed. ZrP modified porous silicon (ZrP-pSi) wafer was prepared to specifically capture the phosphopeptides from complex peptide mixtures, and then the captured phosphopeptides were analyzed by MALDI-TOF MS by directly placing the wafer on a MALDI target. The phosphopeptide enrichment and MALDI analysis were both performed on the ZrP-pSi wafer which significantly reduced the sample loss and simplified the analytical procedures. The prepared ZrP-pSi wafer has been successfully applied for the enrichment of phosphopeptides from the tryptic digest of standard phosphoproteins beta-casein and alpha-casein. The excellent selectivity of this approach was demonstrated by analyzing phosphopeptides in the digest mixture of beta-casein and bovine serum albumin with molar ratio of 1:100. High detection sensitivity has been achieved for the analysis of the phosphopeptides from tryptic digestion of 2 fmol beta-casein on the ZrP-pSi surface.  相似文献   

16.
We present a phosphoproteomics approach using diagonal RP chromatography as the basic isolation principle. Phosphopeptides present in a tryptic digest of total cellular lysates were first enriched by Fe3+-immobilized metal ion affinity chromatography. Further sorting of the phosphopeptides took place in three steps. First, the resulting peptide mixture was fractionated over reversed-phase chromatography. Second, peptides present in each fraction were treated with phosphatases. Third, the dephosphorylated peptides were then more hydrophobic and shifted towards a later elution interval from the contaminating non-phosphopeptides eluting at the same position as during the primary run. Since the phosphopeptides are isolated as their dephosphorylated form, additional proof for their original phosphorylation state was obtained by split-differential 16O-18O labeling. The method was validated with alpha-casein phosphopeptides and consecutively applied on HepG2 cells. We identified 190 phosphorylated peptides from 152 different proteins. This dataset includes 38 novel protein phosphorylation sites.  相似文献   

17.
Recent advances in instrument control and enrichment procedures have enabled us to quantify large numbers of phosphoproteins and record site-specific phosphorylation events. An intriguing problem that has arisen with these advances is to accurately validate where phosphorylation events occur, if possible, in an automated manner. The problem is difficult because MS/MS spectra of phosphopeptides are generally more complicated than those of unmodified peptides. For large scale studies, the problem is even more evident because phosphorylation sites are based on single peptide identifications in contrast to protein identifications where at least two peptides from the same protein are required for identification. To address this problem we have developed an integrated strategy that increases the reliability and ease for phosphopeptide validation. We have developed an off-line titanium dioxide (TiO(2)) selective phosphopeptide enrichment procedure for crude cell lysates. Following enrichment, half of the phosphopeptide fractionated sample is enzymatically dephosphorylated, after which both samples are subjected to LC-MS/MS. From the resulting MS/MS analyses, the dephosphorylated peptide is used as a reference spectrum against the original phosphopeptide spectrum, in effect generating two peptide spectra for the same amino acid sequence, thereby enhancing the probability of a correct identification. The integrated procedure is summarized as follows: 1) enrichment for phosphopeptides by TiO(2) chromatography, 2) dephosphorylation of half the sample, 3) LC-MS/MS-based analysis of phosphopeptides and corresponding dephosphorylated peptides, 4) comparison of peptide elution profiles before and after dephosphorylation to confirm phosphorylation, and 5) comparison of MS/MS spectra before and after dephosphorylation to validate the phosphopeptide and its phosphorylation site. This phosphopeptide identification represents a major improvement as compared with identifications based only on single MS/MS spectra and probability-based database searches. We investigated an applicability of this method to crude cell lysates and demonstrate its application on the large scale analysis of phosphorylation sites in differentiating mouse myoblast cells.  相似文献   

18.
Immobilized metal affinity chromatography (IMAC) based on Fe (3+) or Ga (3+) chelation is the most widely employed technique for the enrichment of phosphopeptides from biological samples prior to mass spectrometric analysis. An IMAC resin geared mainly toward phosphoprotein enrichment, Pro-Q Diamond, has been assessed for its utility in phosphopeptide isolation. Using both single phosphoprotein tryptic digests of beta-casein and ovalbumin and synthetic mixtures composed of tryptic digests of phosphorylated and nonphosphorylated protein standards, the selectivity and sensitivity of Pro-Q Diamond resin in an immobilized metal affinity-reversed phase microcolumn format were compared to an alternate titanium dioxide approach. The biphasic microcolumn method was found to be superior to metal oxide-based phosphopeptide capture in biological samples of increasing complexity. The lower limit of mass spectrometric detection for the immobilized metal affinity-reversed phase microcolumn approach was determined to be 10 pmol of beta-casein monophosphorylated peptide in 20 muL of a solution of human serum protein digest (from 200 mug total serum protein after digestion and desalting).  相似文献   

19.
Wu HT  Hsu CC  Tsai CF  Lin PC  Lin CC  Chen YJ 《Proteomics》2011,11(13):2639-2653
Magnetic nanoparticles (MNP, <100 nm) have rapidly evolved as sensitive affinity probes for phosphopeptide enrichment. By taking advantage of the easy magnetic separation and flexible surface modification of the MNP, we developed a surface‐blocked, nanoprobe‐based immobilized metal ion affinity chromatography (NB‐IMAC) method for the enhanced purification of multiply phosphorylated peptides. The NB‐IMAC method allowed rapid and specific one‐step enrichment by blocking the surface of titanium (IV) ion‐charged nitrilotriacetic acid‐conjugated MNP (Ti4+‐NTA‐PEG@MNP) with low molecular weight polyethylene glycol. The MNP demonstrated highly sensitive and unbiased extraction of both mono‐ and multiply phosphorylated peptides from diluted β‐casein (2×10?10 M). Without chemical derivation or fractionation, 1283 phosphopeptides were identified from 400 μg of Raji B cells with 80% purification specificity. We also showed the first systematic comparison on the particle size effect between nano‐sclae IMAC and micro‐scale IMAC. Inductively coupled plasma‐mass spectrometry (ICP‐MS) analysis revealed that MNP had a 4.6‐fold higher capacity for metal ions per unit weight than did the magnetic micro‐sized particle (MMP, 2–10 μm), resulting in the identification of more phosphopeptides as well as a higher percentage of multiply phosphorylated peptides (31%) at the proteome scale. Furthermore, NB‐IMAC complements chromatography‐based IMAC and TiO2 methods because <13% of mono‐ and 12% of multiply phosphorylated peptide identifications overlapped among the 2700 phosphopeptides identified by the three methods. Notably, the number of multiply phosphorylated peptides was enriched twofold and threefold by NB‐IMAC relative to micro‐scale IMAC and TiO2, respectively. NB‐IMAC is an innovative material for increasing the identification coverage in phosphoproteomics.  相似文献   

20.
An automated phosphopeptide enrichment strategy is described using titanium dioxide (TiO2)-packed, fused silica capillaries for use with liquid chromatography (LC)-mass spectrometry (MS)/MS-based, label-free proteomics workflows. To correlate an optimum peptide:TiO2 loading ratio between different particle types, the ratio of phenyl phosphate-binding capacities was used. The optimum loading for the column was then verified through replicate enrichments of a range of quantities of digested rat brain tissue cell lysate. Fractions were taken during sample loading, multiple wash steps, and the elution steps and analyzed by LC-MS/MS to gauge the efficiency and reproducibility of the enrichment. Greater than 96% of the total phosphopeptides were detected in the elution fractions, indicating efficient trapping of the phosphopeptides on the first pass of enrichment. The quantitative reproducibility of the automated setup was also improved greatly with phosphopeptide intensities from replicate enrichments exhibiting a median coefficient of variation (CV) of 5.8%, and 80% of the identified phosphopeptides had CVs below 11.1%, while maintaining >85% specificity. By providing this high degree of analytical reproducibility, this method allows for label-free phosphoproteomics over large sample sets with complex experimental designs (multiple biological conditions, multiple biological replicates, multiple time-points, etc.), including large-scale clinical cohorts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号