首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Ethylene plays a key role in sex determination of cucumber flowers. Gynoecious cucumber shoots produce more ethylene than monoecious shoots. Because monoecious cucumbers produce both male and female flower buds in the shoot apex and because the relative proportions of male and female flowers vary due to growing conditions, the question arises as to whether the regulation of ethylene biosynthesis in each flower bud determines the sex of the flower. Therefore, the expression of a 1-aminocyclopropane-1-carboxylic acid synthase gene, CS-ACS2, was examined in cucumber flower buds at different stages of development. The results revealed that CS-ACS2 mRNA began to accumulate just beneath the pistil primordia of flower buds at the bisexual stage, but was not detected prior to the formation of the pistil primordia. In buds determined to develop as female flowers, CS-ACS2 mRNA continued to accumulate in the central region of the developing ovary where ovules and placenta form. In gynoecious cucumber plants that produce only female flowers, accumulation of CS-ACS2 mRNA was detected in all flower buds at the bisexual stage and at later developmental stages. In monoecious cucumber, flower buds situated on some nodes accumulated CS-ACS2 mRNA, but others did not. The proportion of male and female flowers in monoecious cucumbers varied depending on the growth conditions, but was correlated with changes in accumulation of CS-ACS2 mRNA in flower buds. These results demonstrate that CS-ACS2-mediated biosynthesis of ethylene in individual flower buds is associated with the differentiation and development of female flowers.  相似文献   

2.
Sex determination is the most widely studied subject in cucumber. The sex of cucumber plants can be monoecious, hermaphrodite, gynoecious, androecious, or andromonoecious. Besides environmental factors, three major genes, F/f, M/m, and A/a mainly govern the sex types in cucumber. Regardless of their sex all floral buds are bisexual at the early bud stage. A stage specific arrest of either stamen or carpel leads to unisexual flower development. The possible downstream product of the interaction of the sex determining genes that may directly allow the growth or selectively arrest stamen or pistil is not yet identified. Therefore, in the current study, we performed suppression subtractive hybridization using floral buds from nearly isogenic gynoecious and hermaphrodite cucumber plants and identified for the first time a cDNA homologous to nucleotide sugar epimerase. The expression level of the isolated putative nucleotide sugar epimerase is weak in female floral buds but strong in bisexual and male flowers. The weak level of the putative nucleotide sugar epimerase may be an indication for its improper functioning, which may influence stamen development in cucumber plants.  相似文献   

3.
Ethylene evolution from cucumber plants as related to sex expression   总被引:13,自引:3,他引:10       下载免费PDF全文
Ethylene evolved from monoecious and gynoecious cucumber (Cucumis sativus) plants grown under short and long day conditions was determined. More ethylene was evolved from floral buds and apices bearing buds than from whole seedlings of comparable weight. More ethylene also was evolved from apices of the gynoecious than from those of the monoecious type. Furthermore, quantities evolved from female buds were greater than from male ones and plants grown under short day conditions which promote femaleness evolved more ethylene than those grown under long day conditions. The data suggest that ethylene participates in the endogenous regulation of sex expression by promoting femaleness.  相似文献   

4.
Changes in the levels of polyamines are associated with fundamental physiological processes such as embryogenesis, induction of flowering, fruit development and ripening, senescence, and responses to environmental stresses, but the role of polyamines in sex differentiation and unisexual flower development has not been deeply studied. To extend the knowledge on the regulatory mechanisms of flowering in monoecious plant (producing unisexual flowers), we investigated the morphogenesis and free polyamine levels in Cucumis sativus during sex differentiation and unisexual flower development in vitro using histocytological and biochemical methods. As shown in our study, floral development in vitro was undisturbed and flowers of both sexes were produced. Sex differentiation relied on preventing the development of generative organs of the opposite sex, as we observed carpel repression in male flowers and stamen repression in female flowers. Pollen viability was negatively correlated with female flower development on the same node. Biochemical analysis revealed increased accumulation of aliphatic amines (tri, tetra‐amines) in generative (flower buds and flowers) compare to vegetative (axillary buds and leaves) organs. Undifferentiated floral buds contained elevated levels of agmatine, cadaverine, spermidine and spermine. Sex differentiation was associated with significantly decreased levels of agmatine and cadaverine. Our results showed that female flowers contained higher levels of total polyamine than male flowers. The increased level of cadaverine was associated with macrogametogenesis and female flower maturation. Putrescine was important for male flower development. Such results support the hypothesis that aliphatic amines are involved in unisexual flower development.  相似文献   

5.

Background and Aims

Sexual dimorphism, at both the flower and plant level, is widespread in the palm family (Arecaceae), in contrast to the situation in angiosperms as a whole. The tribe Chamaedoreeae is of special interest for studies of the evolution of sexual expression since dioecy appears to have evolved independently twice in this group from a monoecious ancestor. In order to understand the underlying evolutionary pathways, it is important to obtain detailed information on flower structure and development in each of the main clades.

Methods

Dissection and light and scanning electron microscopy were performed on developing flowers of Gaussia attenuata, a neotropical species belonging to one of the three monoecious genera of the tribe.

Key Results

Like species of the other monoecious genera of the Chamaedoreeae (namely Hyophorbe and Synechanthus), G. attenuata produces a bisexual flower cluster known as an acervulus, consisting of a row of male flowers with a basal female flower. Whereas the sterile androecium of female flowers terminated its development at an early stage of floral ontogeny, the pistillode of male flowers was large in size but with no recognizable ovule, developing for a longer period of time. Conspicuous nectary differentiation in the pistillode suggested a possible role in pollinator attraction.

Conclusions

Gaussia attenuata displays a number of floral characters that are likely to be ancestral to the tribe, notably the acervulus flower cluster, which is conserved in the other monoecious genera and also (albeit in a unisexual male form) in the dioecious genera (Wendlandiella and a few species of Chamaedorea). Comparison with earlier data from other genera suggests that large nectariferous pistillodes and early arrest in staminode development might also be regarded as ancestral characters in this tribe.  相似文献   

6.
7.
The Arabidopsis SUPERMAN (SUP) gene encodes a C2H2 type zinc finger protein that is required for maintaining the boundaries between stamens and carpels, and for regulating development of ovule outer integument. Orthologs of SUP have been characterized in bisexual flowers as well as dioecious species, but it remains elusive in monoecious plants with unisexual flowers on the same individual. Here we isolate the SUP ortholog in Cucumis sativus L (CsSUP), a monoecious vegetable. CsSUP is predominantly expressed in female specific organs: the female flower buds and ovules. Ectopic expression of CsSUP in Arabidopsis can partially complement the fruit development in sup-5 mutant, and its over-expression in wide-type leads to reduced silique length, suppressed stamen development and distorted petal patterning. Our data suggest that CsSUP plays conserved as well as distinct roles during flower and fruit development, and it may function in the boundaries and ovules to balance petal patterning, stamen and ovule development in Arabidopsis.  相似文献   

8.
Floral sex allocation (weight of male flower buds over weight of female flower buds) was examined at the levels of current-year shoot, individual tree and population, and the tree individual level and population level floral sex ratio was explained as a consequence of the behavior of current-year shoots in the shoot-level monoecious (flowering current-year shoots have both male and female flowers) species, Siberian alder (Alnus hirsuta var. sibirica). The current-year shoot level floral sex allocation was not size-dependent and not different over years. However, in the year when the reproductive intensity was high, individual tree level floral sex allocation was size-dependent and the population level floral sex allocation was relatively female-biased. The female-biased floral sex allocation at the population level resulted from many gynoecious shoots (current-year shoots which have only female flowers). These results suggest that the floral sex allocation of Siberian alder was controlled not by changing the floral sex allocation of each current-year shoot, but by shifting the sex expression of current-year shoots from shoot-level monoecy to shoot-level gynomonoecy.  相似文献   

9.
南瓜两性花的形态与结构研究   总被引:2,自引:0,他引:2  
黄玉源  缪汝槐  张宏达   《广西植物》1999,19(2):136-142
对南瓜的两性花进行外部形态及结构的研究,结果表明:南瓜的两性花可有子房上位花、子房半下位花和子房下位花三种类型:花萼、花冠均为5,合瓣;雄蕊3,其中有两枚各由两个雄蕊合生而成,分离和部分联合,花药结构特殊,花粉发育正常;雌蕊具有单个或两个柱头及花柱。子房壁结构正常。上方的子房壁表皮发育完好,具气孔器。胚珠在外形上也发育正常。两性花与单性花同生长在一个植株上,可以连续多代稳定地遗传,萌生当代植株的种子来源于上一代雌花。这对探讨被子植物的系统进化关系有着重要的意义  相似文献   

10.
11.
During the first stages of development, flowers of most dioecious species are hermaphroditic, with their transition to unisexual flowers being the result of the developmental arrest of one set of reproductive organs. In this work, we describe the development of male and female flowers of the dioecious wild grape species Vitis vinifera ssp. silvestris through scanning electron microscopy analysis and cytological observations, focusing our attention on the transition from bisexual to unisexual development. We divide floral development of the wild grape into eight stages. Differences between male and female flowers appear first at stage 6, when the style and stigma start to differentiate in female but not in male flowers. Cytological analysis of the slowly growing abortive pistil of male flowers shows that megagametophyte formation is, surprisingly, not inhibited. Instead of pistil abortion in the male flower, sexual determination is accomplished through programmed death of external nucellus cells and some layers of integumentary cells. Sterility of male structures in female flowers follows a different pattern, with microspore abnormalities evident from the time of their release from the tetrad. Sterile microspores and pollen grains in female flowers display an abnormal round shape, lacking colpi and possessing uniformly thickened cell walls that impede germination.  相似文献   

12.
Comparative studies are made on floral morphology and anatomy of female and male flowers of Pittosporum tobira. The two types of flower differ little from each other in structure at the early stage of floral development, but appear dimorphic towards anthesis. The male flower becomes cryptically bisexual, although its pistil is slender compared to that of the female flower. The stigmas of the male flower are receptive and can induce pollen germination. The structure of the style in the male flower is identical to that in the female flower. Ovules are produced on the protruded parietal placenta in the male flower, but their development is arrested at the stage of the 4–nucleate embryo sac. The female flower is clearly unisexual, with obviously aborted and sagittate anthers. Its pistil is rather plump and can produce darkish red seeds immersed in sticky pulp. The male and female flowers are similar in vascular anatomy. A conspicuous difference between the two types of flower lies in the stamens. Variation of sexual organs in the genus Pittosporum is reviewed. We assume that the flowers of Pittosporum are derived from the hermaphrodite-flowered ancestor and the female flower has become unisexual through partial reduction of sexual organs at a faster rate than the male flower.  相似文献   

13.
AbA, ethephon and gibberellin were applied to cucumber plantsof monoecious, gynoecious, andromoneocious and hermaphroditeinbred lines, as well as to F1 (gynoecious?monoecious) plants.Exogenous AbA enhanced the male tendency in monoecious cucumberplants and the female tendency in gynoecious plants, irrespectiveof light regime. Exogenous ethephon treatments increased thefemale tendency in monoecious plants, and decreased it in gynoeciousones. These effects were influenced by day length. ExogenousAbA counteracted the effect of gibberellin (A4+7) treatmentin gynoecious plants, but had no such effect in monoecious ones. In addition to its differential effect on sexual differentiation,AbA stimulated flower development in gynoecious plants and inhibitedit in monoecious plants. These responses to AbA are discussedin the light of previously reported effects of plant growthregulators on various sex types of cucumber. The present resultsare being integrated into an updated working hypothesis on sexcontrol in cucumbers. (Received August 30, 1976; )  相似文献   

14.
Characterization of ethylene effects on sex determination in cucumber plants   总被引:16,自引:1,他引:15  
Sex differentiation in cucumber plants (Cucumis sativus L.) appears to be determined by the selective arrest of the stamen or pistil primordia. We investigated the influence of an ethylene-releasing agent (ethephon) or an inhibitor of ethylene biosynthesis (aminoethoxyvinyl glycine) on sex differentiation in different developmental stages of flower buds. These treatments influence sex determination only at the stamen primordia differentiation stage in both monoecious and gynoecious cucumbers. To clarify the relationships between the ethylene-producing tissues and the ethylene-perceiving tissues in inducing female flowers in the cucumber, we examined the localization of mRNA accumulation of both the ACC synthase gene (CS-ACS2) and the ethylene-receptor-related genes (CS-ETR1, CS-ETR2, and CS-ERS) in flower buds by in situ hybridization analysis. CS-ACS2 mRNA was detected in the pistil primordia of gynoecious cucumbers, whereas it was located in the tissues just below the pistil primordia and at the adaxial side of the petals in monoecious cucumbers. In flower buds of andromonoecious cucumbers, only CS-ETR1 mRNA was detected, and was located in the pistil primordia. The localization of the mRNAs of the three ethylene-receptor-related genes in the flower buds of monoecious and gynoecious cucumbers overlap but are not identical. We discuss the relationship between the mRNA accumulation patterns and sex expression in cucumber plants.  相似文献   

15.
The selection of candidate plus trees of desirable phenotypes from tropical forest trees and the rapid devastation of the natural environments in which these trees are found have created the need for a more detailed knowledge of the floral and reproductive biology of tropical tree species. In this article, the organogenic processes related to unisexual flower development in tropical mahogany, Swietenia macrophylla , are described. Mahogany inflorescences at different developmental stages were evaluated using scanning electron microscopy or optical microscopy of histological sections. The unisexual flowers of S. macrophylla are usually formed in a thyrse, in which the positions of the female and male flowers are not random. Differences between male and female flowers arise late during development. Both female and male flowers can only be structurally distinguished after stage 9, where ovule primordia development is arrested in male flowers and microspore development is aborted in female flower anthers. After this stage, male and female flowers can be distinguished by the naked eye as a result of differences in the dimensions of the gynoecium. The floral characteristics of S. macrophylla (distribution of male and female flowers within the inflorescence, and the relative number of male to female flowers) have practical implications for conservation strategies of this endangered species.  © 2008 The Linnean Society of London, Botanical Journal of the Linnean Society , 2008, 156 , 529–535.  相似文献   

16.
Woonyoungia septentrionalis (Dandy) Law is aceae. The floral morphology and structure of the species a dioecious species with unisexual flowers in Magnoliare conspicuously different from other species and are important to the study of floral phylogeny in this family. The floral anatomy and ontogeny were investigated to evaluate the systematic position of W. septentrionalis, using scanning electron microscopy and light microscopy. All of the floral organs are initiated acropetally and spirally. The carpels are of conduplicated type without the differentiation of stigma and style. The degenerated stamens in the female flowers have the same structures as the normal stamens at the earlier developmental stages, but they do not undergo successive development and eventually degenerate. The male floral apex was observed to have the remnants of carpels in a few investigated samples. As the bisexual flower features could be traced both in the male and female flowers in W. septentrionalis, it suggests that the flower sex in Magnoliaceae tends toward unisexual. As well as the unisexual flowers, the reduced tepals and carpels and concrescence of carpels conform to the specialized tendency in Magnoliaceae, which confirms the derived position of W. septentrionalis in this family. As the initiation pattern of floral parts of W. septentrionalis is very similar to other species in this family, it needs further investigation and especially comparison with species in Kmeria to evaluate the separation of Woonyoungia.  相似文献   

17.
文冠果可孕花与不孕花发育过程的比较研究   总被引:1,自引:0,他引:1  
利用半薄切片和透射电镜技术对文冠果可孕花和不孕花的发育过程进行观察和比较。结果显示:(1)小孢子发育初期,两种类型花花药形态无明显差别;小孢子发育双核期,可孕花花药内壁纤维层细胞壁带状加厚,无唇细胞形成。而不孕花花药同侧两个花粉囊之间唇细胞正在分化;小孢子发育成熟期,不孕花花药唇细胞完全形成;散粉期,不孕花花药开裂呈双心形,而可孕花花药则不能开裂散粉。(2)可孕花雌蕊子房内有两室,柱头细胞排列紧密,柱头逐渐发育成圆球形,周围密布乳突细胞,具中空花柱道;不孕花雌蕊柱头停止发育,无中空花柱道,子房室变小,胚囊发育退化。(3)不孕花花药绒毡层中含大量蛋白体,小泡以及乌氏体等细胞器,发育后期绒毡层解体。而可孕花花药绒毡层中细胞器和营养物质积累均较少,发育后期绒毡层解体不完全。(4)可孕花花药内花粉粒细胞壁连续无萌发孔,细胞内含物较少。不孕花花药内花粉出现3个向内凹陷的萌发孔,且花粉内含有大量造粉质体和脂类物质。  相似文献   

18.
19.
Bai SL  Peng YB  Cui JX  Gu HT  Xu LY  Li YQ  Xu ZH  Bai SN 《Planta》2004,220(2):230-240
To understand the regulatory mechanisms governing unisexual flower development in cucumber, we conducted a systematic morphogenetic analysis of male and female flower development, examined the dynamic changes in expression of the C-class floral organ identity gene CUM1, and assessed the extent of DNA damage in inappropriate carpels of male flowers. Accordingly, based on the occurrence of distinct morphological events, we divided the floral development into 12 stages ranging from floral meristem initiation to anthesis. As a result of our investigation we found that the arrest of stamen development in female flowers, which occurs just after the differentiation between the anther and filament, is mainly restricted to the primordial anther, and that it is coincident with down-regulation of CUM1 gene expression. In contrast, the arrest of carpel development in the male flowers occurs prior to the differentiation between the stigma and ovary, given that no indication of ovary differentiation was observed even though CUM1 gene expression remained detectable throughout the development of the stigma-like structures. Although the male and female reproductive organs have distinctive characteristics in terms of organ differentiation, there are two common features regarding organ arrest. The first is that the arrest of the inappropriate organ does not affect the entirety of the organ uniformly but occurs only in portions of the organs. The second feature is that all the arrested portions in both reproductive organs are spore-bearing parts.Abbreviations SEM Scanning electron microscopy - TEM Transmission electron microscopy - TUNEL TdT-mediated dUTP nick-end labeling  相似文献   

20.
The production of unisexual flowers has evolved numerous times in dioecious and monoecious plant taxa. Based on repeated evolutionary origins, a great variety of developmental and genetic mechanisms underlying unisexual flower development is predicted. Here, we comprehensively review the modes of development of unisexual flowers, test potential correlations with sexual system, and end with a synthesis of the genetics and hormonal regulation of plant sex determination. We find that the stage of organ abortion in male and female flowers is temporally correlated within species and also confirm that the arrest of development does not tend to occur preferentially at a particular stage, or via a common process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号