首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
表观遗传学是与经典遗传学相对应的一个遗传学分支,是没有DNA序列变化的、可遗传的基因表达改变。其分子机制研究主要集中在DNA甲基化、组蛋白修饰、染色质重塑、非编码RNA的调控、X染色体失活等几个方面。表观遗传异常可导致诸多人类智力发育障碍,例如瑞特综合征、Rubinstein Taybi综合征、Beckwith-Wiedemann综合征、Prader-Willi综合征与Angelman综合征等。从疾病的临床表现、发病的遗传机制及相关治疗进展等方面对表观遗传相关人类智力发育异常疾病进行详细阐述,并对相关研究提出新的展望。  相似文献   

2.
肿瘤发生和恶化转化过程中导致细胞的异常编程,并由此产生了肿瘤干细胞。肿瘤干细胞具有自我更新和可塑性潜能,是肿瘤起始、转移、耐药和复发的根源。因此,对肿瘤重编程和肿瘤干细胞的研究具有重大科学价值和临床意义。表观遗传调控在肿瘤重编程中发挥重要作用。染色质重塑复合物、组蛋白修饰和非编码RNA等表观遗传机制都参与了癌变重编程。这些表观遗传调控可以调控肿瘤干细胞的自我更新和分化形成新肿瘤的能力。表观遗传调控癌变重编程、肿瘤干细胞自我更新的调控以及针对肿瘤干细胞表观调控机制的靶向治疗等问题,已成为肿瘤生物学研究的重点。现就染色质重塑复合物、组蛋白修饰和非编码RNA对癌变重编程和肿瘤干细胞调控的研究进展进行了综述。  相似文献   

3.
精子发生过程中组蛋白甲基化和乙酰化   总被引:1,自引:0,他引:1  
Ge SQ  Li JZ  Zhang XJ 《遗传》2011,33(9):939-946
精子发生(Spermatogenesis)这一高度复杂的独特分化过程包括精原细胞发育为精母细胞、单倍体精细胞的形成和精子成熟,并以阶段特异性和睾丸特异性基因的表达、有丝分裂和减数分裂以及组蛋白向鱼精蛋白的转变为特征。表观遗传修饰在减数分裂重组、联会复合物的形成、姊妹染色体的结合、减数分裂后精子的变态、基因表达阻遏和异染色质形成过程中发挥着重要作用。其中具有一定组成形式、起抑制作用和/或激活作用的组蛋白甲基化和乙酰化标记,不仅保证了正确的染色体配对和二价染色体的成功分离,并且精确调节减数分裂特异性基因的适时表达。精子发生过程中组蛋白甲基化和/或乙酰化错误会直接影响表观遗传修饰的建立和维持,导致生精细胞异常甚至引发不育。文章旨在对精子发生过程中组蛋白甲基化和乙酰化表观遗传修饰的动态变化及其相关酶的调节机制进行综述,为进一步研究精子发生的表观遗传调控,预防男性不育疾病的发生提供基础资料。  相似文献   

4.
组蛋白甲基化研究进展   总被引:5,自引:0,他引:5  
组蛋白甲基化是表观遗传修饰方式中的一种,参与异染色质形成、基因印记、X染色体失活和基因转录调控.组蛋白甲基化过程的异常参与多种肿瘤的发生.既往认为组蛋白甲基化是稳定的表观遗传标记,而组蛋白去甲基化酶的发现对这一观点提出了挑战,也为进一步深入研究组蛋白修饰提供新的途径.  相似文献   

5.
胚外组织尤其是胎盘的正常发生对于维持哺乳动物胎儿在子宫中的发育和生长是必须的。胎盘发生是一个复杂的基因表达调控的过程,近年来的研究表明表观遗传在该过程中也起着重要作用。表观遗传调控在胎盘发生过程的几个主要事件中发挥作用,包括表观遗传对滋养层细胞分化和发育的调控、印记基因对胎盘发生和营养转运的调控、胎盘中的X染色体失活,以及胎盘表观遗传调控异常所导致的妊娠相关疾病。  相似文献   

6.
表观遗传调控机制是后基因组时代的重点研究领域,当前许多证据表明表观遗传学调控心脏发育进程,参与多种心脏疾病的调控。本文综述了DNA甲基化、组蛋白修饰、染色质重塑复合物和microRNAs在心脏发育中的作用,以及在动脉粥样硬化、心力衰竭、心肌缺血、心肌纤维化等心脏疾病中表观遗传调控的研究进展,同时概述了生物活性食品化合物在心脏保护中的作用,为心脏发育的分子机制研究和心脏疾病的预防与治疗方向提供新的视角。  相似文献   

7.
表观遗传学是遗传学的伴生学科,发源于对多个不能被传统遗传学理论解释的意外现象的探究.早在1930年,诺贝尔生理学或医学奖得主Hermann Muller就观察到了第一个经典的表观遗传学现象,位置效应花斑现象(position effect variegation).随后果蝇中的多梳基因沉默(polycomb silencing)、哺乳动物中的X染色体失活(X chromosome inactivation)和基因组印迹(genomic imprinting)、植物中的副突变(paramutation)等经典表观遗传现象先后被发现.对这些现象的机制研究逐渐使科学家理解到这些现象的本质是染色质对基因表达的调控.染色质的组成、结构、修饰、重塑等等都承载着表观遗传信息,它们既响应基因的转录状态,也调节基因的转录. 表观遗传体系具有基因组所不具备的可塑性,从而将一个基因组以几百个表观基因组和几百个转录组的形式呈现,使得多细胞生物能够有效地实现细胞形态与功能的分化;同时表观遗传体系具有一定的可继承性,使得每一个表观基因组能够相对稳定地存在,保证了每种细胞形态与功能的相对稳定,也使得同类细胞的增殖成为可能.总之,表观遗传伴生于基因组,帮助生命体利用同一套基因组实现多种细胞形态的分化与稳定. 表观遗传调控的分子机制、生理意义和新型研究手段始终是表观遗传研究的中心.作为《生物化学与生物物理进展》的客座编辑,此次很荣幸邀请到了国内多位表观遗传领域的精英,为杂志撰写了本期表观遗传学综述专刊.在本期专刊中,作者们基于围绕表观遗传调控的分子机制,对组蛋白去乙酰化酶的结构及应用、染色质重塑、组蛋白变体的染色质装配、30 nm染色质高级结构、非组蛋白修饰和DNA甲基化修饰展开讨论;同时对这些表观遗传机制在微生物、植物、动物中的作用,从细胞水平、发育水平到重编程事件进行论述;此外,专刊还涉及新兴的研究手段冷冻电镜技术在表观遗传研究中的应用. 通过这一专刊,我们希望向读者介绍表观遗传领域的新进展、新动向,也希望能向读者展示国内科学家在表观遗传学领域研究中亮丽的冰山一角.  相似文献   

8.
表观遗传学(Epigenetics)是指基因的DNA序列不发生改变的情况下,基因的表达水平与功能发生改变,并产生可遗传表型的遗传现象。主要内容包括DNA甲基化,组蛋白共价修饰,染色质重塑,非编码RNA 4个调控机制。这些表观遗传学变化与多种疾病的发生发展有关,该文就表观遗传学及其与疾病相关性作一综述。  相似文献   

9.
哺乳动物受精过程中染色体构象发生剧烈的变化.来自精子高度凝缩的染色质在卵母细胞胞质环境中解凝缩,与雌性染色质融合,发生基因组重编程共同构建合子基因组,激活胚胎基因组转录,获得发育的全能性,并进一步发育成完整的胚胎.表观遗传调节机制在这一过程中起重要作用,其中主要包括DNA甲基化、组蛋白甲基化、组蛋白乙酰化及组蛋白替代,这些修饰形式改变了染色体的空间构象以及与转录调节因子的结合模式,调控染色体的活性,进而调节胚胎的发生发育.  相似文献   

10.
精子发生(spermatogenesis)是一个高度特化的细胞复杂分化过程,其中DNA二核苷酸CpG甲基化变化与基因转录激活、染色质改构以及遗传印记相关,并且该甲基化与基因表达之间的关系是非直接的,其可通过染色质结构的改变或DNA与蛋白质的相互作用来介导。本文着重介绍精子发生过程中DNA甲基化及其跨代遗传风险、DNA甲基转移酶的调控机制以及DNA甲基化与男性不育之间的关系等,为不育症的防治、精子表观遗传质量评价以及降低辅助生殖技术后代表观遗传疾病风险等提供基础资料。  相似文献   

11.
12.
DNA methylation and human disease   总被引:24,自引:0,他引:24  
  相似文献   

13.
Chromatin remodeling and human disease   总被引:6,自引:0,他引:6  
In the past few years, there has been a nascent convergence of scientific understanding of inherited human diseases with epigenetics. Identified epigenetic processes involved in human disease include covalent DNA modifications, covalent histone modifications, and histone relocation. Each of these processes influences chromatin structure and thereby regulates gene expression and DNA methylation, replication, recombination, and repair. The importance of these processes for nearly all aspects of normal growth and development is illustrated by the array of multi-system disorders and neoplasias caused by their dysregulation.  相似文献   

14.
15.
16.
The human genome is compacted in a dynamic macromolecular complex, chromatin, whose structure presents a considerable barrier to the cellular machinery which responds to DNA double-strand breaks. This review discusses current understanding of the processes that modify chromatin architecture to enable, first, the sensing of DNA breakage, next, the assembly of the protein complexes that resolve the lesion, and finally, the restoration of epigenetic marks after its repair. The importance of these fundamental biological processes is underscored by the growing appreciation that they are aberrant in human diseases, and that their modulation could provide new approaches to disease therapy.  相似文献   

17.
Many essential aspects of genome function, including gene expression and chromosome segregation, are mediated throughout development and differentiation by changes in the chromatin state. Along with genomic signals encoded in the DNA, epigenetic processes regulate heritable gene expression patterns. Genomic signals such as enhancers, silencers, and repetitive DNA, while required for the establishment of alternative chromatin states, have an unclear role in epigenetic processes that underlie the persistence of chromatin states throughout development. Here, we demonstrate in fission yeast that the maintenance and inheritance of ectopic heterochromatin domains are independent of the genomic sequences necessary for their de novo establishment. We find that both structural heterochromatin and gene silencing can be stably maintained over an ~10-kb domain for up to hundreds of cell divisions in the absence of genomic sequences required for heterochromatin establishment, demonstrating the long-term persistence and stability of this chromatin state. The de novo heterochromatin, despite the absence of nucleation sequences, is also stably inherited through meiosis. Together, these studies provide evidence for chromatin-dependent, epigenetic control of gene silencing that is heritable, stable, and self-sustaining, even in the absence of the originating genomic signals.  相似文献   

18.
Epigenetics     
《Epigenetics》2013,8(8):823-840
Emerging evidence is shedding light on a large and complex network of epigenetic modifications at play in human stem cells. This “epigenetic landscape” governs the fine-tuning and precision of gene expression programs that define the molecular basis of stem cell pluripotency, differentiation and reprogramming. This review will focus on recent progress in our understanding of the processes that govern this landscape in stem cells, such as histone modification, DNA methylation, alterations of chromatin structure due to chromatin remodeling and non-coding RNA activity. Further investigation into stem cell epigenetics promises to provide novel advances in the diagnosis and treatment of a wide array of human diseases.  相似文献   

19.
染色质可及性(chromatin accessibility)作为一种衡量染色质结合因子与染色质DNA结合能力高低的染色质属性,是评价染色质结构稳态的重要指标之一,在多种细胞核进程中扮演重要角色,包括基因转录调控以及DNA损伤修复等。该属性的异常调控与多种疾病的发生发展密切相关,包括肿瘤以及神经退行性疾病等。对于该属性探究已经成为生命科学与疾病领域的热点。伴随越来越多的新技术应运而生,例如染色质构象捕获技术、高通量测序技术以及两种技术的结合等。随着技术的进步,多种参与调控染色质可及性的因素被发现和总结,包括核小体占位、组蛋白修饰以及非编码RNA等。多项大规模的染色质组学数据绘制了多种疾病的染色质可及性图谱,为揭示疾病的发生发展与染色质可及性之间的关系提供了数据支持。同时,随着单细胞染色质可及性测序技术的发展,实现了对细胞类型染色质层面的划分,弥补了单纯依赖基因表达划分细胞类型的不足。本文将从染色质的组成与可及性、影响染色质可及性的因素、染色质可及性的检测方法,以及染色质可及性与癌症的关系等方面简要阐述染色质可及性的研究进展。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号