首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 519 毫秒
1.
2.
3.
The abundant Fis nucleoid protein selectively binds poorly related DNA sequences with high affinities to regulate diverse DNA reactions. Fis binds DNA primarily through DNA backbone contacts and selects target sites by reading conformational properties of DNA sequences, most prominently intrinsic minor groove widths. High-affinity binding requires Fis-stabilized DNA conformational changes that vary depending on DNA sequence. In order to better understand the molecular basis for high affinity site recognition, we analyzed the effects of DNA sequence within and flanking the core Fis binding site on binding affinity and DNA structure. X-ray crystal structures of Fis-DNA complexes containing variable sequences in the noncontacted center of the binding site or variations within the major groove interfaces show that the DNA can adapt to the Fis dimer surface asymmetrically. We show that the presence and position of pyrimidine-purine base steps within the major groove interfaces affect both local DNA bending and minor groove compression to modulate affinities and lifetimes of Fis-DNA complexes. Sequences flanking the core binding site also modulate complex affinities, lifetimes, and the degree of local and global Fis-induced DNA bending. In particular, a G immediately upstream of the 15 bp core sequence inhibits binding and bending, and A-tracts within the flanking base pairs increase both complex lifetimes and global DNA curvatures. Taken together, our observations support a revised DNA motif specifying high-affinity Fis binding and highlight the range of conformations that Fis-bound DNA can adopt. The affinities and DNA conformations of individual Fis-DNA complexes are likely to be tailored to their context-specific biological functions.  相似文献   

4.
5.
The EcoRV restriction endonuclease cleaves DNA not only at its recognition sequence but also at most other sequences that differ from the recognition site by one base pair. Compared to the reaction at the recognition site, the reactions at noncognate sites are slow but 1 out of the 12 noncognate sites on the plasmid pAT153 is cleaved more than 50 times faster than any other. The increase in the reaction rate at the preferred noncognate site, relative to other sites, was caused by the DNA sequences in the 4 base pairs from either side of the site. For enhanced activity by EcoRV, particular bases were needed immediately adjacent to the site, inside the DNA-protein complex. At these loci, the protein interacts with the phosphate groups in the DNA and the flanking sequence may control the activity of the enzyme by determining the conformation of the DNA, thus aligning the phosphate contacts. But the preferential cleavage also depended on sequences further away from the site, at loci outside the complex. At external positions, beyond the reach of the protein, the EcoRV enzyme required flanking sequences that give rise to flexibility in DNA conformation. These may facilitate the distortion of the DNA required for catalysis by EcoRV.  相似文献   

6.
The Escherichia coli protein Fis is remarkable for its ability to interact specifically with DNA sites of highly variable sequences. The mechanism of this sequence-flexible DNA recognition is not well understood. In a previous study, we examined the contributions of Fis residues to high-affinity binding at different DNA sequences using alanine-scanning mutagenesis and identified several key residues for Fis-DNA recognition. In this work, we investigated the contributions of the 15-bp core Fis binding sequence and its flanking regions to Fis-DNA interactions. Systematic base-pair replacements made in both half sites of a palindromic Fis binding sequence were examined for their effects on the relative Fis binding affinity. Missing contact assays were also used to examine the effects of base removal within the core binding site and its flanking regions on the Fis-DNA binding affinity. The results revealed that: (1) the − 7G and + 3Y bases in both DNA strands (relative to the central position of the core binding site) are major determinants for high-affinity binding; (2) the C5 methyl group of thymine, when present at the + 4 position, strongly hinders Fis binding; and (3) AT-rich sequences in the central and flanking DNA regions facilitate Fis-DNA interactions by altering the DNA structure and by increasing the local DNA flexibility. We infer that the degeneracy of specific Fis binding sites results from the numerous base-pair combinations that are possible at noncritical DNA positions (from − 6 to − 4, from − 2 to + 2, and from + 4 to + 6), with only moderate penalties on the binding affinity, the roughly similar contributions of − 3A or G and + 3T or C to the binding affinity, and the minimal requirement of three of the four critical base pairs to achieve considerably high binding affinities.  相似文献   

7.
Qu X  Ren J  Riccelli PV  Benight AS  Chaires JB 《Biochemistry》2003,42(41):11960-11967
The effect of the context of the flanking sequence on ligand binding to DNA oligonucleotides that contain consensus binding sites was investigated for the binding of the intercalator 7-amino actinomycin D. Seven self-complementary DNA oligomers each containing a centrally located primary binding site, 5'-A-G-C-T-3', flanked on either side by the sequences (AT)(n) or (AA)(n) (with n = 2, 3, 4) and AA(AT)(2), were studied. For different flanking sequences, (AA)(n)-series or (AT)(n)-series, differential fluorescence enhancements of the ligand due to binding were observed. Thermodynamic studies indicated that the flanking sequences not only affected DNA stability and secondary structure but also modulated ligand binding to the primary binding site. The magnitude of the ligand binding affinity to the primary site was inversely related to the sequence dependent stability. The enthalpy of ligand binding was directly measured by isothermal titration calorimetry, and this made it possible to parse the binding free energy into its energetic and entropic terms. Our results reveal a pronounced enthalpy-entropy compensation for 7-amino actinomycin D binding to this family of oligonucleotides and suggest that the DNA sequences flanking the primary binding site can strongly influence ligand recognition of specific sites on target DNA molecules.  相似文献   

8.
9.
10.
The purified T-antigen origin binding domain binds site specifically to site II, the central region of the simian virus 40 core origin. However, in the context of full-length T antigen, the origin binding domain interacts poorly with DNA molecules containing just site II. Here we investigate the contributions of additional core origin regions, termed the flanking sequences, to origin recognition and the assembly of T-antigen hexamers and double hexamers. Results from these studies indicate that in addition to site-specific binding of the T-antigen origin binding domain to site II, T-antigen assembly requires non-sequence-specific interactions between a basic finger in the helicase domain and particular flanking sequences. Related studies demonstrate that the assembly of individual hexamers is coupled to the distortions in the proximal flanking sequence. In addition, the point in the double-hexamer assembly process that is regulated by phosphorylation of threonine 124, the sole posttranslational modification required for initiation of DNA replication, was further analyzed. Finally, T-antigen structural information is used to model various stages of T-antigen assembly on the core origin and the regulation of this process.  相似文献   

11.
12.
The ETS domain of murine PU.1 tolerates a large number of DNA cognates bearing a central consensus 5'-GGAA-3' that is flanked by a diverse combination of bases on both sides. Previous attempts to define the sequence selectivity of this DNA binding domain by combinatorial methods have not successfully predicted observed patterns among in vivo promoter sequences in the genome, and have led to the hypothesis that energetic coupling occurs among the bases in the flanking sequences. To test this hypothesis, we determined, using thermodynamic cycles, the complex stabilities and base coupling energies of the PU.1 ETS domain for a set of 26 cognate variants (based on the lambdaB site of the Ig(lambda)2-4 enhancer, 5'-AATAAAAGGAAGTGAAACCAA-3') in which flanking sequences up to three bases upstream and/or two bases downstream of the core consensus are substituted. We observed that both cooperative and anticooperative coupling occurs commonly among the flanking sequences at all the positions investigated. This phenomenon extends at least three bases in the 5' side and is, at least on our experimental data, due exclusively to pairwise interactions between the flanking bases, and not changes in the local environment of the DNA groove floor. Energetic coupling also occurs between the flanking sides across the core consensus, suggesting long-range conformational effects along the DNA target and/or in the protein. Our data provide an energetic explanation for the pattern of flanking bases observed among in vivo promoter sequences and reconcile the apparent discrepancies raised by the combinatorial experiments. We also discuss the significance of base coupling in light of an indirect readout mechanism in ETS/DNA site recognition.  相似文献   

13.
14.
15.
16.
17.
18.
C C Yang  M D Topal 《Biochemistry》1992,31(40):9657-9664
NaeI endonuclease uses a two-site binding mechanism to cleave substrate DNA: reaction-rate studies imply that occupancy of the second DNA site causes an allosteric change in the protein that enables DNA cleavage at the first site [Conrad, M., & Topal, M. D. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 9707-9711]. Measurements of relative binding affinities for 14-base-pair DNA fragments containing the NaeI recognition sequence GCCGGC and various flanking sequences showed that the two DNA-binding sites are not identical. G.C-rich flanking sequences were preferred by the activator binding site, whereas A.T-rich flanking sequences were preferred by the substrate binding site: GGGTGCCGGCAGGG was preferred 8-fold more by the activator site but 14-fold less by the substrate site than TTTCGCCGGCGTTT. Substitution of pyrimidine or 7-deazapurine for purine immediately 3' to GCCGGC reduced DNA affinity for only the activator site by up to 26-fold, implying that the activator DNA-binding site requires N-7 base contacts immediately flanking GCCGGC. The implications of nonidentical DNA-binding sites, one of which binds a specific DNA site to allosterically activate the other, are discussed.  相似文献   

19.
Low salt extracts of chicken oviduct nuclei contain a DNA binding protein with high affinity for specific DNA sequences in the flanking regions of the chicken lysozyme gene. Two of the three binding sites found within a total of 11 kb upstream from the promoter are located only 92 bp apart from each other. Upon comparison of the DNA binding sites, the symmetrical consensus sequence 5'- TGGCANNNTGCCA -3' can be deduced as the protein recognition site. This sequence is the central part of 23 to 25 base pairs protected by the DNA binding protein from DNAase I digestion. A homologous binding activity can be detected in nuclei from several chicken tissues and from mouse liver.  相似文献   

20.
Eukaryotic type 1B topoisomerases act by forming covalent enzyme-DNA intermediates that transiently nick DNA and thereby release DNA supercoils. Here we present a study of the topoisomerase encoded by the pathogenic poxvirus molluscum contagiosum. Our studies of DNA sites favored for catalysis reveal a larger recognition site than the 5'-(T/C)CCTT-3' sequence previously identified for poxvirus topoisomerases. Separate assays of initial DNA binding and covalent complex formation revealed that different DNA sequences were important for each reaction step. The location of the protein-DNA contacts was mapped by analyzing mutant sites and inosine-substituted DNAs. Some of the bases flanking the 5'-(T/C)CCTT-3' sequence were selectively important for covalent complex formation but not initial DNA binding. Interactions important for catalysis were probed with 5'-bridging phosphorothiolates at the site of strand cleavage, which permitted covalent complex formation but prevented subsequent religation. Kinetic studies revealed that the flanking sequences that promoted recovery of covalent complexes increased initial cleavage instead of inhibiting resealing of the nicked intermediate. These data 1) indicate that previously unidentified DNA contacts can accelerate a step between initial binding and covalent complex formation and 2) help specify models for conformational changes promoting catalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号