首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
ALISTAIR DAWSON 《Ibis》2005,147(2):283-292
The mass and length of each primary flight feather was measured in 120 species of birds (347 individuals) representing 37 families and 15 orders. The scaling relationship between mass and length was determined using the mass of each primary as a proportion of total primary feather mass for that individual and, similarly, length as a proportion of total length. This eliminated errors due to intra- and interspecific differences in absolute size. In every species there was a highly significant constant scaling relationship (log mass/log length) for all of the primary feathers proximal to the feather that formed the wing tip. This relationship was allometric and varied between 1.80 in Rooks Corvus frugilegus and 4.87 in Winter Wrens Troglodytes troglodytes . The mean scaling relationship for 120 species was 2.41 ± 0.42 sd, which was significantly less ( P  < 0.0001) than isometry (i.e. 3.00). In most species (117 of 120) the primary feather forming the wing tip and all feathers distal to it had a different scaling relationship, and had a greater mass than expected from their length. The greater relative mass of the outer primaries may reflect a protective role against physical abrasion, or an aerodynamic role in that each of these feathers provides a leading edge to the wing. Thus, there were two scaling relationships that pivoted about the feather forming the wing tip, resulting in a characteristic 'signature' for each species. Scaling relationships can be related to flight characteristics and habitat, rather than to phylogeny. Closely related species often had widely varying scaling relationships. In general, species exploiting dense vegetation had greater scaling relationships than more aerial species. However, species with a high scaling relationship did not have a greater mean feather mass, so the increased relative mass of the distal primaries was at the expense of proximal primary feather mass.  相似文献   

2.
Birds encompass a large range of body sizes, yet the importance of body size on feather morphology and mechanical properties has not been characterized. In this study, I examined the scaling relationships of primary flight feathers within a phylogenetically diverse sample of avian species varying in body size by nearly three orders of magnitude. I measured the scaling relationships between body mass and feather linear dimensions as well as feather flexural stiffness. The resnlts of an independent contrasts analysis to test the effects of phylogenetic history on the characters measured had no effect on the scaling relationships observed. There was slight, but not significant, positive allometry in the scaling of shaft diameter with respect to feather length across a range of body masses. The scaling of feather length and diameter against body mass was not significantly different from isometry. Flexural stiffness, however, exhibited strong negative allometry. Therefore, larger birds have relatively more flexible feathers than smaller birds. The more flexible primary feathers of large birds may reduce stresses on the wing skeleton during take-off and landing and also make these feathers less susceptible to mechanical failure. Conversely, the greater flexibility of these feathers may also reduce their capacity to generate aerodynamic lift.  相似文献   

3.
The functional life span of feathers is always much less than the potential life span of birds, so feathers must be renewed regularly. But feather renewal entails important energetic, time and performance costs that must be integrated into the annual cycle. Across species the time required to replace flight feather increases disproportionately with body size, resulting in complex, multiple waves of feather replacement in the primaries of many large birds. We describe the rules of flight feather replacement for Hemiprocne mystacea, a small, 60g tree swift from the New Guinea region. This species breeds and molts in all months of the year, and flight feather molt occurs during breeding in some individuals. H. mystacea is one to be the smallest species for which stepwise replacement of the primaries and secondaries has been documented; yet, primary replacement is extremely slow in this aerial forager, requiring more than 300 days if molt is not interrupted. We used growth bands to show that primaries grow at an average rate of 2.86 mm/d. The 10 primaries are a single molt series, while the 11 secondaries and five rectrices are each broken into two molt series. In large birds stepwise replacement of the primaries serves to increase the rate of primary replacement while minimizing gaps in the wing. But stepwise replacement of the wing quills in H. mystacea proceeds so slowly that it may be a consequence of the ontogeny of stepwise molting, rather than an adaptation, because the average number of growing primaries is probably lower than 1.14 feathers per wing.  相似文献   

4.
Hoye BJ  Buttemer WA 《PloS one》2011,6(2):e16230
The majority of bird species studied to date have molt schedules that are not concurrent with other energy demanding life history stages, an outcome assumed to arise from energetic trade-offs. Empirical studies reveal that molt is one of the most energetically demanding and perplexingly inefficient growth processes measured. Furthermore, small birds, which have the highest mass-specific basal metabolic rates (BMRm), have the highest costs of molt per gram of feathers produced. However, many small passerines, including white-plumed honeyeaters (WPHE; Lichenostomus penicillatus), breed in response to resource availability at any time of year, and do so without interrupting their annual molt. We examined the energetic cost of molt in WPHE by quantifying weekly changes in minimum resting metabolic rate (RMRmin) during a natural-molt period in 7 wild-caught birds. We also measured the energetic cost of feather replacement in a second group of WPHEs that we forced to replace an additional 25% of their plumage at the start of their natural molt period. Energy expenditure during natural molt revealed an energy conversion efficiency of just 6.9% (±0.57) close to values reported for similar-sized birds from more predictable north-temperate environments. Maximum increases in RMRmin during the molt of WPHE, at 82% (±5.59) above individual pre-molt levels, were some of the highest yet reported. Yet RMRmin maxima during molt were not coincident with the peak period of feather replacement in naturally molting or plucked birds. Given the tight relationship between molt efficiency and mass-specific metabolic rate in all species studied to date, regardless of life-history pattern (Efficiency (%)  = 35.720•10−0.494BMRm; r2 = 0.944; p = <0.0001), there appears to be concomitant physiological costs entrained in the molt period that is not directly due to feather replacement. Despite these high total expenditures, the protracted molt period of WPHE significantly reduces these added costs on a daily basis.  相似文献   

5.
Chan, N.R., Dyke, G.J. & Benton, M.J. 2013: Primary feather lengths may not be important for inferring the flight styles of Mesozoic birds. Lethaia, Vol. 46, pp. 146–152. Although many Mesozoic fossil birds have been found with primary feathers preserved, these structures have rarely been included in morphometric analyses. This is surprising because the flight feathers of modern birds can contribute approximately 50% of the total wing length, and so it would be assumed that their inclusion or exclusion would modify functional interpretations. Here we show, contrary to earlier work, that this may not be the case. Using forelimb measurements and primary feather lengths from Mesozoic birds, we constructed morphospaces for different clades, which we then compared with morphospaces constructed for extant taxa classified according to flight mode. Consistent with older work, our results indicate that among extant birds some functional flight groups can be distinguished on the basis of their body sizes and that variation in the relative proportions of the wing elements is conservative. Mesozoic birds, on the other hand, show variable proportions of wing bones, with primary feather length contribution to the wing reduced in the earlier diverging groups. We show that the diverse Mesozoic avian clade Enantiornithes overlaps substantially with extant taxa in both size and limb element proportions, confirming previous morphometric results based on skeletal elements alone. However, these measurements cannot be used to distinguish flight modes in extant birds, and so cannot be used to infer flight mode in fossil forms. Our analyses suggest that more data from fossil birds, combined with accurate functional determination of the flight styles of living forms is required if we are to be able to predict the flight modes of extinct birds. □Birds, flight, morphospace, Mesozoic, wing.  相似文献   

6.
The primary feathers of birds are subject to cyclical forces in flight causing their shafts (rachises) to bend. The amount the feathers deflect during flight is dependent upon the flexural stiffness of the rachises. By quantifying scaling relationships between body mass and feather linear dimensions in a large data set of living birds, we show that both feather length and feather diameter scale much closer to predictions for geometric similarity than they do to elastic similarity. Scaling allometry also indicates that the primary feathers of larger birds are relatively shorter and their rachises relatively narrower, compared to those of smaller birds. Two-point bending tests indicated that larger birds have more flexible feathers than smaller species. Discriminant functional analyses (DFA) showed that body mass, primary feather length and rachis diameter can be used to differentiate between different magnitudes of feather bending stiffness, with primary feather length explaining 63% of variance in rachis stiffness. Adding fossil measurement data to our DFA showed that Archaeopteryx and Confuciusornis do not overlap with extant birds. This strongly suggests that the bending stiffness of their primary feathers was different to extant birds and provides further evidence for distinctive flight styles and likely limited flight ability in Archaeopteryx and Confuciusornis.  相似文献   

7.
In this study, we describe and compare the duration and timing of post-breeding moult of primary and secondary wing feathers, tail feathers, wing coverts and body feathers in captive partially migratory and non-migratory Australian silvereyes (Zosterops lateralis). This study allowed us to follow individual birds through the course of their moult and record the progression of moult in two populations. Both groups of birds underwent a conventional (or basic) post-breeding moult. While all birds followed a similar pattern of feather replacement, differences were found in the timing and duration of moult between migratory and non-migratory birds. The migratory birds generally started their moult earlier in the year and completed it before the non-migratory birds. The migratory birds revealed an overall uniformity in the timing and duration of their moult, while the non-migratory birds showed a greater degree of variability between individuals.  相似文献   

8.
We used allometric scaling to explain why the regular replacement of the primary flight feathers requires disproportionately more time for large birds. Primary growth rate scales to mass (M) as M0.171, whereas the summed length of the primaries scales almost twice as fast (M0.316). The ratio of length (mm) to rate (mm/day), which would be the time needed to replace all the primaries one by one, increases as the 0.14 power of mass (M0.316/M0.171=M0.145), illustrating why the time required to replace the primaries is so important to life history evolution in large birds. Smaller birds generally replace all their flight feathers annually, but larger birds that fly while renewing their primaries often extend the primary molt over two or more years. Most flying birds exhibit one of three fundamentally different modes of primary replacement, and the size distributions of birds associated with these replacement modes suggest that birds that replace their primaries in a single wave of molt cannot approach the size of the largest flying birds without first transitioning to a more complex mode of primary replacement. Finally, we propose two models that could account for the 1/6 power allometry between feather growth rate and body mass, both based on a length-to-surface relationship that transforms the linear, cylindrical growing region responsible for producing feather tissue into an essentially two-dimensional structure. These allometric relationships offer a general explanation for flight feather replacement requiring disproportionately more time for large birds.  相似文献   

9.

Background

The trade-off between current and residual reproductive values is central to life history theory, although the possible mechanisms underlying this trade-off are largely unknown. The ‘molt constraint’ hypothesis suggests that molt and plumage functionality are compromised by the preceding breeding event, yet this candidate mechanism remains insufficiently explored.

Methodology/Principal Findings

The seasonal change in photoperiod was manipulated to accelerate the molt rate. This treatment simulates the case of naturally late-breeding birds. House sparrows Passer domesticus experiencing accelerated molt developed shorter flight feathers with more fault bars and body feathers with supposedly lower insulation capacity (i.e. shorter, smaller, with a higher barbule density and fewer plumulaceous barbs). However, the wing, tail and primary feather lengths were shorter in fast-molting birds if they had an inferior body condition, which has been largely overlooked in previous studies. The rachis width of flight feathers was not affected by the treatment, but it was still condition-dependent.

Conclusions/Significance

This study shows that sedentary birds might face evolutionary costs because of the molt rate–feather quality conflict. This is the first study to experimentally demonstrate that (1) molt rate affects several aspects of body feathers as well as flight feathers and (2) the costly effects of rapid molt are condition-specific. We conclude that molt rate and its association with feather quality might be a major mediator of life history trade-offs. Our findings also suggest a novel advantage of early breeding, i.e. the facilitation of slower molt and the condition-dependent regulation of feather growth.  相似文献   

10.
Migration causes temporal and energetic constraints during plumage development, which can compromise feather structure and function. In turn, given the importance of a good quality of flight feathers in migratory movements, selection may have favoured the synthesis of feathers with better mechanical properties than expected from a feather production constrained by migration necessities. However, no study has assessed whether migratory behaviour affects the relationship between the mechanical properties of feathers and their structural characteristics. We analysed bending stiffness (a feather mechanical property which is relevant to birds’ flight), rachis width and mass (two main determinants of variation in bending stiffness) of wing and tail feathers in migratory and sedentary blackcaps Sylvia atricapilla. Migratory blackcaps produced feathers with a narrower rachis in both wing and tail, but their feathers were not significantly lighter; in addition, bending stiffness was higher in migratory blackcaps than in sedentary blackcaps. Such unexpected result for bending stiffness remained when we statistically controlled for individual variation in rachis width and feather mass, which suggests the existence of specific mechanisms that help migratory blackcaps to improve the mechanical behaviour of their feathers under migration constraints.  相似文献   

11.
Lv L  Pan K  Li XD  She KL  Zhao JJ  Wang W  Chen JG  Chen YB  Yun JP  Xia JC 《PloS one》2011,6(3):e18219

Background

The role of IL-17 producing cells in tumors is controversial. In the present study, we investigated the prognostic value of measuring tumor-infiltrating IL-17 producing cell levels in human esophageal squamous cell carcinoma (ESCC).

Methodology/Principal Findings

Immunohistochemical staining was performed to investigate the levels of IL-17+ tumor infiltrating lymphocytes (TILs), as well as CD8+ cytotoxic T lymphocytes (CTLs) and CD57+ natural killer (NK) cells from 181 ESCC patients. The prognostic value of measuring the densities of IL-17+TILs and the correlation with CTLs and NK was evaluated. IL-17 producing cells were detected in esophageal squamous cell carcinoma tissues. The IL-17 producing cells were major CD4 positive, but Foxp3 negative. The median level of IL-17+TILs was 3.90 cells/high power microscopic field (HPF). The density of IL-17 producing cells correlated negatively with T stage (P = 0.042). The higher densities of tumor infiltrating IL-17+ lymphocytes were associated with better overall survival (P = 0.031). Furthermore, we found that there were positive correlations between levels of IL-17 producing cells and the densities of CD8+cells, as well as CD57+cells (r = 0.198, P = 0.008 for CD8+ cells and r = 0.261, P<0.001 for CD57+ cells, respectively). The prognosis analysis also showed that the higher levels of CD8+ CTLs and CD57+ NK cells correlated with better overall survival of ESCC patients.

Conclusions

Our study suggests that tumor infiltrating IL-17 producing cells in ESCC patients may have protective roles in the tumor microenvironment and may be treated as a prognostic marker for ESCC patients.  相似文献   

12.
13.
The geometry of feather barbs (barb length and barb angle) determines feather vane asymmetry and vane rigidity, which are both critical to a feather''s aerodynamic performance. Here, we describe the relationship between barb geometry and aerodynamic function across the evolutionary history of asymmetrical flight feathers, from Mesozoic taxa outside of modern avian diversity (Microraptor, Archaeopteryx, Sapeornis, Confuciusornis and the enantiornithine Eopengornis) to an extensive sample of modern birds. Contrary to previous assumptions, we find that barb angle is not related to vane-width asymmetry; instead barb angle varies with vane function, whereas barb length variation determines vane asymmetry. We demonstrate that barb geometry significantly differs among functionally distinct portions of flight feather vanes, and that cutting-edge leading vanes occupy a distinct region of morphospace characterized by small barb angles. This cutting-edge vane morphology is ubiquitous across a phylogenetically and functionally diverse sample of modern birds and Mesozoic stem birds, revealing a fundamental aerodynamic adaptation that has persisted from the Late Jurassic. However, in Mesozoic taxa stemward of Ornithurae and Enantiornithes, trailing vane barb geometry is distinctly different from that of modern birds. In both modern birds and enantiornithines, trailing vanes have larger barb angles than in comparatively stemward taxa like Archaeopteryx, which exhibit small trailing vane barb angles. This discovery reveals a previously unrecognized evolutionary transition in flight feather morphology, which has important implications for the flight capacity of early feathered theropods such as Archaeopteryx and Microraptor. Our findings suggest that the fully modern avian flight feather, and possibly a modern capacity for powered flight, evolved crownward of Confuciusornis, long after the origin of asymmetrical flight feathers, and much later than previously recognized.  相似文献   

14.

Background

We aimed to find support for the hypothesis that telomere length (TL) is causally involved in the pathogenesis of ischemic heart failure (IHF). We measured TL in IHF patients and their high-risk offspring and determined whether mean leukocyte TL reflects TL in CD34+ progenitor. We additionally measured TL of offspring of patients and controls to examine heritability throughout different cell types.

Methods and Results

TL was measured by qPCR in overall leukocytes, CD34+ progenitor cells, mononuclear cells (MNCs), and buccal cells in 27 IHF patients, 24 healthy controls and 60 offspring. TL in IHF patients was shorter than healthy controls in leukocytes (p = 0.002), but not in CD34+ cells (p = 0.39), MNCs (p = 0.31) or buccal cells (p = 0.19). Offspring of IHF patients had shorter TL in leukocytes than offspring of healthy subjects (p = 0.04) but not in other cell types. Controls and offspring showed a good within person correlation between leukocytes and CD34+ cells (r 0.562; p = 0.004 and r 0.602; p = 0.001, respectively). In IHF patients and offspring the correlation among cell types was blunted. Finally, we found strong correlations between parent and offspring TL in all four cell types.

Conclusions

Reduced leukocyte TL in offspring of IHF subjects suggests a potential causal link of TL in ischemic heart disease. However, this causality is unlikely to originate from exhaustion of TL in CD34+ progenitor or MNC cells as their lengths are not well captured by overall leukocyte TL. Additionally, we found strong correlations between parent and offspring TL in all examined cell types, suggesting high heritability of TL among cell types.  相似文献   

15.
Intraepithelial lymphocytes (IELs) bearing the γδ T-cell receptor are a unique intestinal subset whose function remains elusive. Here, we examine how they behave in AIDS and during various regimens of antiretroviral treatment in order to obtain mechanistic insight into their adaptive or innate functional in vivo properties. IELs were studied by multimarker two-colour immunofluorescence in situ staining. Consecutive duodenal biopsies were obtained from advanced infection-prone HIV+ patients (n = 30). The systemic adaptive immune status was monitored by determining T-cell subsets and immunoglobulins in peripheral blood. The γδ IEL ratio (median 14.5%, range 1.5–56.3%) was significantly increased (p<0.02) compared with that in clinically healthy HIV control subjects (n = 11, median 2.8%; range 0.3–38%), although the number of γδ IELs per mucosal length unit (U) only tended to be increased (4.0/U in HIV+ versus 3.2/U in HIVsubjects). Notably, the total number of CD3+ IELs was significantly reduced in AIDS (p<0.0001, 39.6/U in HIV+ versus 86.4/U in HIV subjects). Almost 100% of the γδ IELs were CD8 and they often expressed the Vδ1/Jδ1-encoded epitope (median 65.2%). HIV+ patients on highly active antiretroviral therapy only tended to have a lower ratio of γδ IELs (median 12.8%) than those receiving no treatment (median 14.3%) or 1 nucleoside analogue (NA) (median 23.5%) or 2 NAs (median 13.0%). This minimal variation among therapy groups, contrasting the treatment response of systemic and local adaptive immunity, harmonizes with the novel idea derived from animal experiments that γδ T cells are largely innate cells in first-line microbial defence.  相似文献   

16.
Feathers have been widely used to assess mercury contamination in birds as they reflect metal concentrations accumulated between successive moult periods: they are also easy to sample and have minimum impact on the study birds. Moult is considered the major pathway for mercury excretion in seabirds. Penguins are widely believed to undergo a complete, annual moult during which they do not feed. As penguins lose all their feathers, they are expected to have a low individual-variability in feather mercury concentration as all feathers are formed simultaneously from the same somatic reserves. This assumption is central to penguin studies that use feathers to examine the annual or among-individual variation in mercury concentrations in penguins. To test this assumption, we measured the mercury concentrations in 3–5 body feathers of 52 gentoo penguins (Pygoscelis papua) breeding at Bird Island, South Georgia (54°S 38°W). Twenty-five percent of the penguins studied showed substantial within-individual variation in the amount of mercury in their feathers (Coefficient of Variation: 34.7–96.7%). This variation may be caused by differences in moult patterns among individuals within the population leading to different interpretations in the overall population. Further investigation is now needed to fully understand individual variation in penguins’ moult.  相似文献   

17.
There is increasing evidence of adaptive preferential investment during moult in those feather tracts that are more advantageous for fitness. In this study, we assessed whether, after the manual removal of two functionally different flight feathers (one primary and one rectrix), birds from two common passerine species (Eurasian Blackcap Sylvia atricapilla and European Robin Erithacus rubecula) favoured the regeneration of primary (supposedly the most functionally important feathers) over rectrix feathers. Our results did not show differences between replaced primary and rectrix feathers in their final length, but demonstrated that the gap left by the loss of the primary feather was filled earlier, suggesting that a rapid repair of the most essential feather tracts is also evolutionarily advantageous during the adventitious replacement of plumage.  相似文献   

18.
The distribution of feather mites (Astigmata) along the wing of passerine birds could change dramatically within minutes because of the rapid movement of mites between feathers. However, no rigorous study has answered how fine‐tuned is the pattern of distribution of feather mites at a given time. Here we present a multiscale study of the distribution of feather mites on the wing of non‐moulting blackcaps Sylvia atricapilla in a short time period and at a single locality. We found that the number and distribution of mites differed among birds, but it was extremely similar between the wings of each bird. Moreover, mites consistently avoided the first secondary feather, despite that it is placed at the centre of the feathers most used by them. Thus, our results suggest that feather mites do precise, feather‐level decisions on where to live, contradicting the current view that mites perform “mass”, or “blind” movements across wing feathers. Moreover, our findings indicate that “rare” distributions are not spurious data or sampling errors, but each distribution of mites on the wing of each bird is the outcome of the particular conditions operating on each ambient‐bird‐feather mite system at a given time. This study indicates that we need to focus on the distribution of feather mites at the level of the individual bird and at the feather level to improve our understanding of the spatial ecology of mites on the wings of birds.  相似文献   

19.
The aim of the present study was to investigate TLR2 expression in peripheral blood monocytes from dogs naturally infected with Leishmania (Leishmania) infantum to determine whether it correlates with CD11b/CD18 (CR3) expression, and to evaluate the potential of dogs as sources of infection using phlebotomine xenodiagnosis. Forty eight dogs were serologically diagnosed with L. infantum infection by indirect immunofluorescence antibody test (IFAT) and enzyme linked immunosorbent assay (ELISA). Parasitological exams from bone-marrow aspirates were positive by PCR analysis. All dogs were clinical defined as symptomatic. Ear skin tissue samples were obtained for immunohistochemistry (IHQ) analysis. The potential of these dogs as a source of infection using phlebotomine xenodiagnosis (XENO) was evaluated. Flow cytometry was carried out on peripheral blood mononuclear cells using superficial receptors including CD14, CD11b, TLR2 and MHCII. IHQ ear skin tissue parasite load and XENO where done where we found a strict correlation (r = 0.5373). Dogs with higher expression of MFI of CD11b inside CD14 monocytes were represented by dogs without parasite ear tissue load that were unable to infect phlebotomines (IHQ/XENO). Dogs with lower expression of MFI of CD11b inside CD14 monocytes were represented by dogs with parasite ear tissue load and able to infect phlebotomines (IHQ+/XENO+) (p = 0,0032). Comparable results were obtained for MFI of MHCII (p = 0.0054). In addition, considering the population frequency of CD11b+TLR2+ and CD11b+MHCII+, higher values were obtained from dogs with IHQ/XENO than dogs with IHQ+/XENO+ (p = 0.01; p = 0.0048, respectively). These data, together with the TLR2 and NO assays results (CD11b+TLR2+ and NO with higher values for dogs with IHQ/XENO than dogs with IHQ+/XENO+), led to the conclusion that IHQ/XENO dogs are more resistant or could modulate the cellular immune response essential for Leishmania tissue clearance.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号