首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Onali P  Olianas MC 《Life sciences》1995,56(11-12):973-980
In membranes of rat olfactory bulb, muscarinic receptor agonists stimulate basal adenylyl cyclase activity . This response is inhibited by a number of muscarinic receptor antagonists with a rank order of potency suggesting the involvement of the M4 muscarinic receptor subtype. The stimulatory effect does not require Ca2+ and occurs independently of activation of phosphoinositide hydrolysis. Pretreatment with pertussis toxin completely prevents the muscarinic stimulation of adenylyl cyclase, indicating the participation of G proteins of the Gi/Go family. Immunological impairment of the G protein, Gs, also reduces the muscarinic response, whereas concomitant activation of Gs-coupled receptors by CRH or VIP results in a synergistic stimulation of adenylyl cyclase activity. Although these data suggest a role for Gs, a body of evidence indicates that the muscarinic receptors do not interact directly with this G protein. Moreover, the Ca2+/calmodulin (Ca2+/CaM)- and forskolin-stimulated enzyme activities are inhibited by muscarinic receptor activation in a pertussis toxin-sensitive manner and with a pharmacological profile similar to that observed for the stimulatory response. These data indicate that in rat olfactory bulb M4 muscarinic receptors exert a bimodal control on cyclic AMP formation through a sequence of events that may involve activation of Gi/Go proteins, synergistic interaction with Gs and differential modulation of Ca2+/CaM-independent and -dependent forms of adenylyl cyclase.  相似文献   

2.
In the present study, we investigated the involvement of betagamma subunits of G(q/11) in the muscarinic M(1) receptor-induced potentiation of corticotropin-releasing hormone (CRH)-stimulated adenylyl cyclase activity in membranes of rat frontal cortex. Tissue exposure to either one of two betagamma scavengers, the QEHA fragment type II adenylyl cyclase and the GDP-bound form of the alpha subunit of transducin, inhibited the muscarinic M(1) facilitatory effect. Moreover, like acetylcholine (ACh), exogenously added betagamma subunits of transducin potentiated the CRH-stimulated adenylyl cyclase activity, and this effect was not additive with that elicited by ACh. Western blot analysis indicated the expression in frontal cortex of both type II and type IV adenylyl cyclases, two isoforms stimulated by betagamma subunits in synergism with activated G(s). The M(1) receptor-induced enhancement of the adenylyl cyclase response to CRH was counteracted by the G(q/11) antagonist GpAnt-2A but not by GpAnt-2, a preferential G(i/o) antagonist. In addition, the muscarinic facilitatory effect was inhibited by membrane preincubation with antiserum directed against the C terminus of the alpha subunit of G(q/11), whereas the same treatment with antiserum against either G(i1/2) or G(o) was without effect. These data indicate that in membranes of rat frontal cortex, activation of muscarinic M(1) receptors potentiates CRH-stimulated adenylyl cyclase activity through betagamma subunits of G(q/11).  相似文献   

3.
S Nomura  S H Zorn  S J Enna 《Life sciences》1987,40(18):1751-1760
Experiments were undertaken to determine whether the anticholinergic actions of tricyclic antidepressants are mediated by a selective interaction with a subclass of muscarinic receptors. To this end, the potencies of these antidepressants to inhibit [3H]-QNB binding to rat brain cerebral cortical membranes was compared to their potencies as antagonists of carbachol-stimulated inositol phosphate accumulation in cerebral cortical slices and carbachol-induced inhibition of GTP-stimulated adenylate cyclase in striatal membranes. Whereas amitriptyline was more potent than pirenzepine, a selective muscarinic M1 receptor antagonist, in competing for [3H]-QNB binding sites and as an antagonist of carbachol-induced inhibition of adenylate cyclase, pirenzepine was substantially more active (ten-fold) than amitriptyline in blocking carbachol-stimulated phosphatidyl inositol turnover. Atropine was more potent than all other agents in these assays, failing to display any significant degree of selectivity. The results suggest that the tricyclic antidepressants, in particular amitriptyline, appear to be selective antagonists for muscarinic receptors associated with adenylate cyclase in striatal membranes. Given the current classification of cholinergic receptors, these findings indicate that the tricyclic antidepressants may be useful for defining the properties of M2 receptors in brain.  相似文献   

4.
Ehlert FJ 《Life sciences》2003,74(2-3):355-366
Both M(2) and M(3) muscarinic receptors are expressed in smooth muscle and influence contraction through distinct signaling pathways. M(3) receptors interact with G(q) to trigger phosphoinositide hydrolysis, Ca(2+) mobilization and a direct contractile response. In contrast, M(2) receptors interact with G(i) and G(o) to inhibit adenylyl cyclase and Ca(2+)-activated K(+) channels and to potentiate a Ca(2+)-dependent, nonselective cation conductance. Ultimately, these mechanisms lead to the prediction that the influence of the M(2) receptor on contraction should be conditional upon mobilization of Ca(2+) by another receptor such as the M(3). Mathematical modeling studies of these mechanisms show that the competitive antagonism of a muscarinic response mediated through activation of both M(2) and M(3) receptors should resemble the profile of the directly acting receptor (i.e., the M(3)) and not that of the conditionally acting receptor (i.e., the M(2)). Using a combination of pharmacological and genetic approaches, we have identified two mechanisms for the M(2) receptor in contraction: 1) a high potency inhibition of the relaxation elicited by agents that increase cytosolic cAMP and 2) a low potency potentiation of contractions elicited by the M(3) receptor. The latter mechanism may be involved in muscarinic agonist-mediated heterologous desensitization of smooth muscle, which requires activation of both M(2) and M(3) receptors.  相似文献   

5.
6.
Abstract: In human Y-79 retinoblastoma cells, corticotropin-releasing hormone (CRH) stimulates adenylyl cyclase activity and increases cyclic AMP accumulation. Different CRH analogues mimic the CRH stimulation of adenylyl cyclase and show similar sensitivity to the CRH receptor antagonist α-helical CRH9–41. Vasoactive intestinal peptide (VIP) also increases the enzyme activity but less potently than CRH, and its effect is counteracted by the VIP receptor antagonist [ d - p -Cl-Phe6,Leu17]VIP. The VIP antagonist does not affect the response to CRH. The CRH-stimulated adenylyl cyclase activity is amplified by Mg2+, is inhibited by submicromolar concentrations of Ca2+, and requires GTP. Moreover, the CRH stimulation is reduced by pretreatment of cells with cholera toxin and by incubation of membranes with the RM/1 antibody, which recognizes the C-terminus of the α subunit of Gs. In immunoblots, the RM/1 antibody identifies a doublet of 45 and 52 kDa. Two proteins of similar molecular weights are ADP-ribosylated by cholera toxin. These data demonstrate that in human Y-79 retinoblastoma cells, specific CRH receptors stimulate cyclic AMP formation by interacting with Gs and by affecting a Ca2+-inhibitable form of adenylyl cyclase.  相似文献   

7.
Molecular cloning and expression of a fifth muscarinic acetylcholine receptor   总被引:13,自引:0,他引:13  
A cDNA of 2149 base pairs with an incomplete open reading frame (ORF) encoding amino acids 1-516 of a 531-amino acid protein highly homologous to muscarinic receptors was cloned from a rat brain cDNA library. The complete ORF was then deduced from a DNA fragment cloned from a rat genomic library. This ORF was subcloned into the eukaryotic expression vector p91023(B) under control of the adenovirus major late promoter and co-transfected with the thymidine kinase selection marker into muscarinic receptor-negative, thymidine kinase-negative murine L cells. Stable transformants were selected and tested for acquisition of muscarinic receptors by following appearance of specific binding sites for the muscarinic ligand [3H] N-methylscopolamine. Two cell lines, LM5.36 and LM5.40, were cloned and shown to express typical muscarinic receptor sites, thus confirming that the newly cloned ORF encodes a muscarinic receptor, the rat M5 muscarinic acetylcholine receptor. Tests for activities showed it to stimulate phosphoinositide hydrolysis in intact cells, without affecting positively or negatively adenylyl cyclase activity. The M5 receptor contains two putative glycosylation sites at its amino terminus and, based on hydropathicity analysis, is predicted to span the plasma membrane seven times. Like 17 other receptors of this class, the M5 receptor has 19 conserved amino acids, among which are 4 prolines located in the 4th, 5th, 6th, and 7th predicted transmembrane regions, conferring possible bends to these helices, and 2 cysteines, one in the 1st and the other in the 2nd extracellular loop, possibly providing for a disulfide bond. Similarity in amino acid composition and in patterns of antagonist binding and biologic effects suggest the M5 receptor to be M1-like.  相似文献   

8.
The rat M1 muscarinic receptor gene was cloned and expressed in a rat cell line lacking endogenous muscarinic receptors. Assignment of the cloned receptors to the M1 class was pharmacologically confirmed by their high affinity for the M1-selective muscarinic antagonist pirenzepine and low affinity for the M2-selective antagonist AF-DX-116. Guanylyl imidodiphosphate [Gpp(NH)p] converted agonist binding sites on the receptor, from high-affinity to the low-affinity state, thus indicating that the cloned receptors couple to endogenous G-proteins. The cloned receptors mediated both adenylate cyclase inhibition and phosphoinositide hydrolysis, but by different mechanisms. Pertussis toxin blocked the inhibition of adenylate cyclase (indicating coupling of the receptor to inhibitory G-protein), but did not affect phosphoinositide turnover. Furthermore, the stimulation of phosphoinositide hydrolysis was less efficient than the inhibition of adenylate cyclase. These findings demonstrate that cloned M1 receptors are capable of mediating multiple responses in the cell by coupling to different effectors, possibly to different G-proteins.  相似文献   

9.
We reported previously that in homogenates of rat olfactory bulb muscarinic and opioid receptor agonists stimulate adenylyl cyclase activity. In the present study we show that carbachol (CCh) and Leu-Enkephalin act synergistically with vasoactive intestinal peptide (VIP) and corticotropin-releasing hormone (CRH), but not with /-isoproterenol, in increasing cyclic AMP formation. The synergistic interaction consists of an increase in the maximal a0denylyl cyclase activation without a significant change in the potency of each agonist. CCh also fails to affect 125ICRH binding to olfactory bulb membranes. The synergism requires micromolar concentrations of GTP. Substitution of the stable GTP analog guanosine 5′-O-(3′-thiotriphosphate) for GTP allows the CRH stimulation, but abolishes the CCh enhancement of both basal and CRH-stimulated enzyme activities. Moreover, in vivo treatment of olfactory bulbs with pertussis toxin completely prevents the muscarinic and opioid effects. Thus, the synergistic interaction appears to result from opioid- and muscarinic-induced activation of a pertussis toxin-sensitive GTP-binding protein which may potentiate the adenylyl cyclase stimulation by the stimulatory GTP-binding protein activated by either VIP or CRH receptors.  相似文献   

10.
Betel quid (BQ) is a widely accepted etiological factor for oral squamous cell carcinoma (OSCC) in Southeast Asia, but how BQ chewing leads to oral carcinogenesis remains to be elucidated. We have previously demonstrated that the activation of Src family kinases (SFKs) is critical for BQ-induced oral cancer cell motility. Here we investigate whether this biological effect is mediated by specific membrane receptors in oral cancer cells. We found that BQ-induced activation of extracellular signal-regulated kinase 1/2 (ERK1/2) and cell migration could be inhibited by atropine, suggesting the involvement of the muscarinic receptor family. The enhanced activities of ERK1/2 and cell migration were significantly counteracted by PD102807, the selective antagonist of muscarinic M4 receptor. Moreover, cold BQ extract effectively competed with a known ligand, [3H]-N-methyl scopolamine, for binding to muscarinic M4 receptor in vitro, thereby implying that BQ could activate motility-promoting signaling pathways through direct interaction with the receptor. The requirement of muscarinic M4 receptor for BQ-induced oral cancer cell migration was demonstrated by knockdown of the receptor using RNA interference (RNAi). Remarkably, ectopic expression of muscarinic M4 receptor in two oral cancer cell lines, Ca9-22 and SCC-9, further augmented BQ-induced cell migration by 83% and 99%, respectively. Finally, we verified that BQ-induced oral cancer cell migration was mediated through a muscarinic M4 receptor → SFKs → ERK1/2 signaling pathway. Thus, our findings have identified a novel signaling cascade mediating BQ-induced oral cancer cell motility, which could be a therapeutic target for BQ-related oral malignancies.  相似文献   

11.
The effects of acute and chronic administration of diisopropylfluorophosphate (DFP) to rats on acetylcholinesterase (AChE) activity (in striatum, medulla, diencephalon, cortex, and medulla) and muscarinic, dopamine (DA), and gamma-aminobutyric acid (GABA) receptor characteristics (in striatum) were investigated. After a single injection of (acute exposure to) DFP, striatal region was found to have the highest degree of AChE inhibition. After daily DFP injections (chronic treatment), all brain regions had the same degree of AChE inhibition, which remained at a steady level despite the regression of the DFP-induced cholinergic overactivity. Acute administration of DFP increased the number of DA and GABA receptors without affecting the muscarinic receptor characteristics. Whereas chronic administration of DFP for either 4 or 14 days reduced the number of muscarinic sites without affecting their affinity, the DFP treatment caused increase in the number of DA and GABA receptors only after 14 days of treatment; however, the increase was considerably lower than that observed after the acute treatment. The in vitro addition of DFP to striatal membranes did not affect DA, GABA, or muscarinic receptors. The results indicate an involvement of GABAergic and dopaminergic systems in the actions of DFP. It is suggested that the GABAergic and dopaminergic involvement may be a part of a compensatory inhibitory process to counteract the excessive cholinergic activity produced by DFP.  相似文献   

12.
Iloperidone has demonstrated an interesting monoamine receptor profile in radioligand binding studies, with nanomolar affinity for certain noradrenaline, dopamine, and serotonin receptors. In this study, the agonist/antagonist activity of iloperidone was determined in cell lines expressing recombinant human D(2A), D(3), alpha(2C), 5-HT(1A), or 5-HT(6) receptors. With the exception of 5-HT(6) receptors, these receptors are negatively coupled to cyclase. Thus, after stimulation with forskolin, the agonists dopamine (at D(2A) and D(3)), noradrenaline (at alpha(2C)), or 8-OH-DPAT (at 5-HT(1A)) induced a reduction in cAMP accumulation. Conversely, activation of the 5-HT(6) receptor by 5-HT led to an increase in cAMP accumulation. Iloperidone alone was devoid of significant agonist activity but inhibited the agonist response in all 5 cell lines in a surmountable and concentration-dependent fashion. Iloperidone was most potent at D(3) receptors (pK(B) 8.59 +/- 0.20; n = 6), followed by alpha(2C) (pK(B) 7.83 +/- 0.06; n = 15), 5-HT(1A) (pK(B) 7.69 +/- 0.18; n = 10), D(2A) (pK(B) 7.53 +/- 0.04; n = 11) and 5-HT(6) (pK(B) 7.11 +/- 0.08; n = 11) receptors.  相似文献   

13.
Although M1-M4 muscarinic acetylcholine receptors (mAChRs) in HEK-293 cells internalize on agonist stimulation, only M1, M3, and M4 but not M2 mAChRs recycle to the plasma membrane. To investigate the functional consequences of this phenomenon, we compared desensitization and resensitization of M2 versus M4 mAChRs. Treatment with 1 mM carbachol for 1 h at 37 degrees C reduced numbers of cell surface M2 and M4 mAChRs by 40-50% and M2 and M4 mAChR-mediated inhibition of adenylyl cyclase, intracellular Ca2+ concentration ([Ca2+]i) increases, and phospholipase C (PLC) activation by 60-70%. Receptor-mediated inhibition of adenylyl cyclase and [Ca2+]i increases significantly resensitized within 3 h. However, M4 but not M2 mAChR-mediated PLC activation resensitized. At 16 degrees C, M2 mAChR-mediated [Ca2+]i increases and PLC stimulation desensitized to a similar extent as at 37 degrees C. However, at 16 degrees C, where M2 mAChR internalization is negligible, both M2 mAChR responses resensitized, demonstrating that M2 mAChR resensitization proceeds at the plasma membrane. Examination of M2 mAChR responses following inactivation of cell surface mAChRs by quinuclidinyl benzilate revealed substantial receptor reserve for coupling to [Ca2+]i increases but not to PLC. We conclude that M2 mAChR internalization induces long-lasting PLC desensitization predominantly because receptor loss is not compensated for by receptor recycling or receptor reserve.  相似文献   

14.
Abstract: In rat olfactory bulb, muscarinic and opioid receptor agonists stimulate basal adenylyl cyclase activity in a GTP-dependent and pertussis toxin-sensitive manner. However, in the present study, we show that in the same brain area activation of these receptors causes inhibition of adenylyl cyclase activity stimulated by Ca2+ and calmodulin (CaM) and by forskolin (FSK), two direct activators of the catalytic unit of the enzyme. The opioid and muscarinic inhibitions consist of a decrease of the maximal stimulation elicited by either CaM or FSK, without a change in the potency of these agents. [Leu5]Enkephalin and selective δ- and μ-, but not κ-, opioid receptors agonists inhibit the FSK stimulation of adenylyl cyclase activity with the same potencies displayed in stimulating basal enzyme activity. Similarly, the muscarinic inhibition of FSK-stimulated adenylyl cyclase activity shows agonist and antagonist sensitivities similar to those characterizing the muscarinic stimulation of basal enzyme activity. Fluoride stimulation of adenylyl cyclase is not affected by either carbachol or [Leu5]enkephalin. In vivo treatment of olfactory bulb with pertussis toxin prevents both opioid and muscarinic inhibition of Ca2+/CaM- and FSK-stimulated enzyme activities. These results indicate that in rat olfactory bulb δ- and μ-opioid receptors and muscarinic receptors, likely of the M4 subtype, can exert a dual effect on cyclic AMP formation by interacting with pertussis toxin-sensitive GTP-binding protein(s) and possibly by affecting different molecular forms of adenylyl cyclase.  相似文献   

15.
KCNQ2 and KCNQ3 subunits encode for the muscarinic-regulated current (I(KM)), a sub-threshold voltage-dependent K+ current regulating neuronal excitability. In this study, we have investigated the involvement of I(KM) in dopamine (DA) release from rat striatal synaptosomes evoked by elevated extracellular K+ concentrations ([K+]e) and by muscarinic receptor activation. [3H]dopamine ([3H]DA) release triggered by 9 mmol/L [K+]e was inhibited by the I(KM) activator retigabine (0.01-30 micromol/L; Emax = 54.80 +/- 3.85%; IC50 = 0.50 +/- 0.36 micromol/L). The I(KM) blockers tetraethylammonium (0.1-3 mmol/L) and XE-991 (0.1-30 micromol/L) enhanced K+-evoked [3H]DA release and prevented retigabine-induced inhibition of depolarization-evoked [3H]DA release. Retigabine-induced inhibition of K+-evoked [3H]DA release was also abolished by synaptosomal entrapment of blocking anti-KCNQ2 polyclonal antibodies, an effect prevented by antibody pre-absorption with the KCNQ2 immunizing peptide. Furthermore, the cholinergic agonist oxotremorine (OXO) (1-300 micromol/L) potentiated 9 mmol/L [K+]e-evoked [3H]DA release (Emax = 155 +/- 9.50%; EC50 = 25 +/- 1.80 micromol/L). OXO (100 micromol/L)-induced [3H]DA release enhancement was competitively inhibited by pirenzepine (1-10 nmol/L) and abolished by the M3-preferring antagonist 4-diphenylacetoxy N-methylpiperidine methiodide (1 micromol/L), but was unaffected by the M1-selective antagonist MT-7 (10-100 nmol/L) or by Pertussis toxin (1.5-3 microg/mL), which uncouples M2- and M4-mediated responses. Finally, OXO-induced potentiation of depolarization-induced [3H]DA release was not additive to that produced by XE-991 (10 micromol/L), was unaffected by retigabine (10 micromol/L), and was abolished by synaptosomal entrapment of anti-KCNQ2 antibodies. Collectively, these findings indicate that, in rat striatal nerve endings, I(KM) channels containing KCNQ2 subunits regulate depolarization-induced DA release and that I(KM) suppression is involved in the reinforcement of depolarization-induced DA release triggered by the activation of pre-synaptic muscarinic heteroreceptors.  相似文献   

16.
Receptor characterization in human esophageal smooth muscle is limited by tissue availability. We used human esophageal smooth muscle cells in culture to examine the expression and function of muscarinic receptors. Primary cultures were established using cells isolated by enzymatic digestion of longitudinal muscle (LM) and circular muscle (CM) obtained from patients undergoing esophagectomy for cancer. Cultured cells grew to confluence after 10-14 days in medium containing 10% fetal bovine serum and stained positively for anti-smooth muscle specific alpha-actin. mRNA encoding muscarinic receptor subtypes M(1)-M(5) was identified by RT-PCR. The expression of corresponding protein for all five subtypes was confirmed by immunoblotting and immunocytochemistry. Functional responses were assessed by measuring free intracellular Ca(2+) concentration ([Ca(2+)](i)) using fura 2 fluorescence. Basal [Ca(2+)](i), which was 135 +/- 22 nM, increased transiently to 543 +/- 29 nM in response to 10 microM ACh in CM cells (n = 8). This response was decreased <95% by 0.01 microM 4-diphenylacetoxy-N-methylpiperidine, a M(1)/M(3)-selective antagonist, whereas 0.1 microM methoctramine, a M(2)/M(4)-selective antagonist, and 0.1 microM pirenzepine, a M(1)-selective antagonist, had more modest effects. LM and CM cells showed similar results. We conclude that human smooth muscle cells in primary culture express five muscarinic receptor subtypes and respond to ACh with a rise in [Ca(2+)](i) mediated primarily by the M(3) receptor and involving release of Ca(2+) from intracellular stores. This culture model provides a useful tool for further study of esophageal physiology.  相似文献   

17.
The effectiveness of several detergents and salts in solubilizing the muscarinic acetylcholine receptor (identified by its atropine-sensitive [3H]3-quinuclidinyl benzilate (QNB) binding) from bovine striatal membranes is reported. The highest density of receptor is obtained by extraction with 1% digitonin-0.1 mM EDTA. Although the total solubilized muscarinic receptors (sites/ml) are increased and the nonspecific binding is decreased when 1 M NaCl is included in this extraction medium, the receptor density (sites/mg protein) is lower. The solubilized receptors have the same specific QNB binding affinity, and sensitivity to a variety of drugs, as the membrane-bound muscarinic receptors.  相似文献   

18.
Muscarinic acetylcholine receptors in the heart have been shown to display agonist-independent spontaneous (constitutive) activity which causes changes in the opening of cardiac ion channels and in the activity of G proteins. We investigated whether an inhibition of the constitutive activity of muscarinic receptors induced by the binding of antagonist brings about a change in the synthesis of cyclic AMP in rat cardiac membranes, and whether the action ofthe antagonist is stereospecific. Atropine and S-(-)-hyoscyamine were indeed found to enhance the forskolin-stimulated synthesis of cyclic AMP in rat cardiac (both atrial and ventricular) membranes by up to 24%. The effect was stereospecific and the potency of R-(+)-hyoscyamine was 30 fold lower than that of the S-(-) enantiomer, confirming that the action of hyoscyamine is receptor-mediated. The effect did not depend on the presence of endogenous acetylcholine in the system used. The results strongly suggest that the adenylyl cyclase in the heart is exposed to continuous mild inhibition by constitutively active muscarinic receptors in the membranes of cardiomyocytes.  相似文献   

19.
Muscarinic receptors in brain membranes from honey bees, houseflies, and the American cockroach were identified by their specific binding of the non-selective muscarinic receptor antagonist [3H]quinuclidinyl benzilate ([3H]QNB) and the displacement of this binding by agonists as well as subtype-selective antagonists, using filtration assays. The binding parameters, obtained from Scatchard analysis, indicated that insect muscarinic receptors, like those of mammalian brains, had high affinities for [3H]QNB (KD = 0.47 nM in honey bees, 0.17 nM in houseflies and 0.13 nM in the cockroach). However, the receptor concentration was low (108, 64.7, and 108 fmol/mg protein for the three species, respectively). The association and dissociation rates of [3H]QNB binding to honey bee brain membranes, sensitivity of [3H]QNB binding to muscarinic agonists, and high affinity for atropine were also features generally similar to muscarinic receptors of mammalian brains. In order to further characterize the three insect brain muscarinic receptors, the displacement of [3H]QNB binding by subtype-selective antagonists was studied. The rank order of potency of pirenzepine (PZ), the M1 selective antagonist, 11-[2-[dimethylamino)-methyl)1-piperidinyl)acetyl)-5,11- dihydro-6H-pyrido(2,3-b)-(1,4)-benzodiazepin-6 one (AF-DX 116), the M2-selective antagonist, and 4-DAMP (4-diphenylacetoxy-N-methylpiperidine methiodide) the M3-selective antagonist, was also the same as that of mammalian brains, i.e., 4-DAMP greater than PZ greater than AF-DX 116. The three insect brain receptors had 27-50-fold lower affinity for PZ (Ki 484-900 nM) than did the mammalian brain receptor (Ki 16 nM), but similar to that reported for the muscarinic receptor subtype cloned from Drosophila. Also, the affinity of insect receptors for 4-DAMP (Ki 18.9-56.6 nM) was much lower than that of the M3 receptor, which predominates in rat submaxillary gland (Ki of 0.37 nM on [3H]QNB binding). These drug specificities of muscarinic receptors of brains from three insect species suggest that insect brains may be predominantly of a unique subtype that is close to, though significantly different from, the mammalian M3 subtype.  相似文献   

20.
Current treatment of Alzheimer's Disease (AD) requires acetylcholinesterase inhibition to increase acetylcholine (ACh) concentrations in the synaptic cleft. Another mechanism by which ACh levels can be increased is blockade of presynaptic M2 muscarinic autoreceptors that regulate ACh release. An antagonist designed for this purpose must be highly selective for M2 receptors to avoid blocking postsynaptic M1 receptors, which mediate the cognitive effects of ACh. Structure-activity studies of substituted methylpiperadines led to the synthesis of 4-[4-[1(S)-[4-[(1,3-benzodioxol-5-yl)sulfonyl]phenyl]ethyl]-3(R)-methyl-1-piperazinyl]-4-methyl-1-(propylsulfonyl)piperidine. This compound, SCH 72788, binds to cloned human M2 receptors expressed in CHO cells with an affinity of 0.5 nM, and its affinity at M1 receptors is 84-fold lower. SCH 72788 is a functional M2 antagonist that competitively inhibits the ability of the agonist oxotremorine-M to inhibit adenylyl cyclase activity. In an in vivo microdialysis paradigm, SCH 72788 increases ACh release from the striatum of conscious rats. The compound is also active in a rodent model of cognition, the young rat passive avoidance response paradigm. The effects of SCH 72788 suggest that M2 receptor antagonists may be useful for treating the cognitive decline observed in AD and other dementias.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号