首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The Sec7 domain of the guanine nucleotide exchange factor ARNO (ARNO-Sec7) is responsible for the exchange activity on the small GTP-binding protein ARF1. ARNO-Sec7 forms a stable complex with the nucleotide-free form of [Delta17]ARF1, a soluble truncated form of ARF1. The crystal structure of ARNO-Sec7 has been solved recently, and a site-directed mutagenesis approach identified a hydrophobic groove and an adjacent hydrophilic loop as the ARF1-binding site. We show that Glu156 in the hydrophilic loop of ARNO-Sec7 is involved in the destabilization of Mg2+ and GDP from ARF1. The conservative mutation E156D and the charge reversal mutation E156K reduce the exchange activity of ARNO-Sec7 by several orders of magnitude. Moreover, [E156K]ARNO-Sec7 forms a complex with the Mg2+-free form of [Delta17]ARF1-GDP without inducing the release of GDP. Other mutations in ARNO-Sec7 and in [Delta17]ARF1 suggest that prominent hydrophobic residues of the switch I region of ARF1 insert into the groove of the Sec7 domain, and that Lys73 of the switch II region of ARF1 forms an ion pair with Asp183 of ARNO-Sec7.  相似文献   

2.
The biological activities of Rho family GTPases are controlled by their guanine nucleotide binding states in cells. Here we have investigated the role of Mg(2+) cofactor in the guanine nucleotide binding and hydrolysis processes of the Rho family members, Cdc42, Rac1, and RhoA. Differing from Ras and Rab proteins, which require Mg(2+) for GDP and GTP binding, the Rho GTPases bind the nucleotides in the presence or absence of Mg(2+) similarly, with dissociation constants in the submicromolar concentration. The presence of Mg(2+), however, resulted in a marked decrease in the intrinsic dissociation rates of the nucleotides. The catalytic activity of the guanine nucleotide exchange factors (GEFs) appeared to be negatively regulated by free Mg(2+), and GEF binding to Rho GTPase resulted in a 10-fold decrease in affinity for Mg(2+), suggesting that one role of GEF is to displace bound Mg(2+) from the Rho proteins. The GDP dissociation rates of the GTPases could be further stimulated by GEF upon removal of bound Mg(2+), indicating that the GEF-catalyzed nucleotide exchange involves a Mg(2+)-independent as well as a Mg(2+)-dependent mechanism. Although Mg(2+) is not absolutely required for GTP hydrolysis by the Rho GTPases, the divalent ion apparently participates in the GTPase reaction, since the intrinsic GTP hydrolysis rates were enhanced 4-10-fold upon binding to Mg(2+), and k(cat) values of the Rho GTPase-activating protein (RhoGAP)-catalyzed reactions were significantly increased when Mg(2+) was present. Furthermore, the p50RhoGAP specificity for Cdc42 was lost in the absence of Mg(2+) cofactor. These studies directly demonstrate a role of Mg(2+) in regulating the kinetics of nucleotide binding and hydrolysis and in the GEF- and GAP-catalyzed reactions of Rho family GTPases. The results suggest that GEF facilitates nucleotide exchange by destabilizing both bound nucleotide and Mg(2+), whereas RhoGAP utilizes the Mg(2+) cofactor to achieve high catalytic efficiency and specificity.  相似文献   

3.
Guanine nucleotide binding proteins (GNB-proteins) play an essential role in cellular signaling, acting as molecular switches, cycling between the inactive, GDP-bound form and the active, GTP-bound form. It has been shown that conformational equilibria also exist within the active form of GNB-proteins between conformational states with different functional properties. Here we present (31)P NMR data on ADP ribosylation factor 1 (Arf1), a GNB-protein involved in Golgi traffic, promoting the coating of secretory vesicles. To investigate conformational equilibria in active Arf1, the wild type and switch I mutants complexed with GTP and a variety of commonly used GTP analogues, namely, GppCH(2)p, GppNHp, and GTPγS, were analyzed. To gain deeper insight into the conformational state of active Arf1, we titrated with Cu(2+)-cyclen and GdmCl and formed the complex with the Sec7 domain of nucleotide exchange factor ARNO and an effector GAT domain. In contrast to the related proteins Ras, Ral, Cdc42, and Ran, from (31)P NMR spectroscopic view, Arf1 exists predominantly in a single conformation independent of the GTP analogue used. This state seems to correspond to the so-called state 2(T) conformation, according to Ras nomenclature, which is interacting with the effector domain. The exchange of the highly conserved threonine in position 48 with alanine led to a shift of the equilibrium toward a conformational state with typical properties obtained for state 1(T) in Ras, such as interaction with guanine nucleotide exchange factors, a lower affinity for nucleoside triphosphates, and greater sensitivity to chaotropic agents. In active Arf1(wt), the effector interacting conformation is strongly favored. These intrinsic conformational equilibria of active GNB-proteins could be a fine-tuning mechanism of regulation and thereby an interesting target for the modulation of protein activity.  相似文献   

4.
Zhang B  Zhang Y  Shacter E  Zheng Y 《Biochemistry》2005,44(7):2566-2576
Ras GTPases function as binary switches in the signaling pathways controlling cell growth and differentiation by cycling between the inactive GDP-bound and the active GTP-bound states. They are activated through interaction with guanine nucleotide exchange factors (GEFs) that catalyze the exchange of bound GDP with cytosolic GTP. In a conventional scheme, the biochemical roles of GEFs are postulated as stimulating the release of the bound GDP and stabilizing a nucleotide-free transition state of Ras. Herein we have examined in detail the catalyzed GDP/GTP exchange reaction mechanism by a Ras specific GEF, GRF1. In the absence of free nucleotide, GRF1 could not efficiently stimulate GDP dissociation from Ras. The release of the Ras-bound GDP was dependent upon the concentration and the structure of the incoming nucleotide, in particular, the hydrophobicity of the beta and gamma phosphate groups, suggesting that the GTP binding step is a prerequisite for GDP dissociation, is the rate-limiting step in the GEF reaction, or both. Using a pair of fluorescent guanine nucleotides (N-methylanthraniloyl GDP and 2',3'-O-(2,4,6-trinitrocyclohexadienylidene)-GTP) as donor and acceptor probes, we were able to detect fluorescence resonance energy transfer between the incoming GTP and the departing GDP on Ras under controlled kinetic conditions, providing evidence that there may exist a novel intermediate of the GEF-Ras complex that transiently binds to two nucleotides simultaneously. Furthermore, we found that Ras was capable of binding pyrophosphate (PPi) with a dissociation constant of 26 microM and that PPi and GMP, but neither alone, synergistically potentiated the GRF1-stimulated GDP dissociation from Ras. These results strongly support a GEF reaction mechanism by which nucleotide exchange occurs on Ras through a direct GTP/GDP displacement model.  相似文献   

5.
Mg(2+) ions are essential for guanosine triphosphatase (GTPase) activity and play key roles in guanine nucleotide binding and preserving the structural integrity of GTP-binding proteins. We determined the crystal structure of a small GTPase RHOA complexed with GDP in the absence of Mg(2+) at 2.0-A resolution. Elimination of a Mg(2+) ion induces significant conformational changes in the switch I region that opens up the nucleotide-binding site. Similar structural changes have been observed in the switch regions of Ha-Ras bound to its guanine nucleotide exchange factor, Sos. This RHOA-GDP structure reveals an important regulatory role for Mg(2+) and suggests that guanine nucleotide exchange factor may utilize this feature of switch I to produce an open conformation in GDP/GTP exchange.  相似文献   

6.
The interdependence of GTP hydrolysis and the second messenger functions of virtually all GTPases has stimulated intensive study of the chemical mechanism of the hydrolysis. Despite numerous mutagenesis studies, the presumed general base, whose role is to activate hydrolysis by abstracting a proton from the nucleophilic water, has not been identified. Recent theoretical and experimental work suggest that the gamma-phosphate of GTP could be the general base. The current study investigates this possibility by studying the pH dependence of the vibrational spectrum of the Ras.GTP.Mg(2+) and Ras.GDP.Mg(2+) complexes. Isotope-edited IR studies of the Ras.GTP.Mg(2+) complex show that GTP remains bound to Ras at pH as low as 2.0 and that the gamma-phosphate is not protonated at pH > or = 3.3, indicating that the active site decreases the gamma-phosphate pK(a) by at least 1.1 pK(a) units compared with solution. Amide I studies show that the Ras.GTP.Mg(2+) and Ras.GDP.Mg(2+) complexes partially unfold in what appear to be two transitions. The first occurs in the pH range 5.4-2.6 and is readily reversible. Differences in the pH-unfolding midpoints for the Ras.GTP.Mg(2+) and Ras.GDP.Mg(2+) complexes (3.7 and 4.8, respectively) reveal that the enzyme-gamma-phosphoryl interactions stabilize the structure. The second transition, pH 2.6-1.7, is not readily reversed. The pH-dependent unfolding of the Ras.GTP.Mg(2+) complex provides an alternative interpretation of the data that had been used to support the gamma-phosphate mechanism, thereby raising the issue of whether this mechanism is operative in GTPase-catalyzed GTP hydrolysis reactions.  相似文献   

7.
ADP-ribosylation factor (Arf) and other Arf-family small G proteins participate in many cellular functions via their characteristic GTP/GDP conformational cycles, during which a nucleotide(?)Mg(2+)-binding site communicates with a remote N-terminal helix. However, the conformational interplay between the nucleotides, the helix, the protein core, and Mg(2+) has not been fully delineated. Herein, we report a study of the dynamics of an Arf-family protein, Arl8, under various conditions by means of NMR relaxation spectroscopy. The data indicated that, when GDP is bound, the protein core, which does not include the N-terminal helix, reversibly transition between an Arf-family GDP form and another conformation that resembles the Arf-family GTP form. Additionally, we found that the N-terminal helix and Mg(2+), respectively, stabilize the aforementioned former and latter conformations in a population-shift manner. Given the dynamics of the conformational changes, we can describe the Arl8 GTP/GDP cycle in terms of an energy diagram.  相似文献   

8.
The Caulobacter crescentus CgtA protein is a member of the Obg-GTP1 subfamily of monomeric GTP-binding proteins. In vitro, CgtA specifically bound GTP and GDP but not GMP or ATP. CgtA bound GTP and GDP with moderate affinity at 30 degrees C and displayed equilibrium binding constants of 1.2 and 0.5 microM, respectively, in the presence of Mg(2+). In the absence of Mg(2+), the affinity of CgtA for GTP and GDP was reduced 59- and 6-fold, respectively. N-Methyl-3'-O-anthranoyl (mant)-guanine nucleotide analogs were used to quantify GDP and GTP exchange. Spontaneous dissociation of both GDP and GTP in the presence of 5 to 12 mM Mg(2+) was extremely rapid (k(d) = 1.4 and 1.5 s(-1), respectively), 10(3)- to 10(5)-fold faster than that of the well-characterized eukaryotic Ras-like GTP-binding proteins. The dissociation rate constant of GDP increased sevenfold in the absence of Mg(2+). Finally, there was a low inherent GTPase activity with a single-turnover rate constant of 5.0 x 10(-4) s(-1) corresponding to a half-life of hydrolysis of 23 min. These data clearly demonstrate that the guanine nucleotide binding and exchange properties of CgtA are different from those of the well-characterized Ras-like GTP-binding proteins. Furthermore, these data are consistent with a model whereby the nucleotide occupancy of CgtA is controlled by the intracellular levels of guanine nucleotides.  相似文献   

9.
Conformational changes associated with nucleotide exchange or truncation of the N-terminal alpha-helix of human Arf1 have been investigated by using forms of easily acquired NMR data, including residual dipolar couplings and amide proton exchange rates. ADP-ribosylation factors (Arfs) are 21-kDa GTPases that regulate aspects of membrane traffic in all eukaryotic cells. An essential component of the biological actions of Arfs is their ability to reversibly bind to membranes, a process that involves exposure of the myristoylated N-terminal amphipathic alpha-helix upon activation and GTP binding. Deletion of this helix results in a protein, termed Delta17Arf1, that has a reduced affinity for GDP and the ability to bind GTP in the absence of lipids or detergents. Previous studies, comparing crystal structures for Arf1.GDP and Delta17Arf1.GTP, identified several regions of structural variation and suggested that these be associated with nucleotide exchange rather than removal of the N-terminal helix. However, separation of conformational changes because of nucleotide binding and N-terminal truncation cannot be addressed in comparing these structures, because both the bound nucleotide and the N terminus differ. Resolving the two effects is important as any structural changes involving the N terminus may represent membrane-mediated conformational adjustments that precede GTP binding. Results from NMR experiments presented here on Arf1.GDP and Delta17Arf1.GDP in solution reveal substantial structural differences that can only be associated with N-terminal truncation.  相似文献   

10.
The influence of divalent metal ions on the intrinsic and kirromycin-stimulated GTPase activity in the absence of programmed ribosomes and on nucleotide binding affinity of elongation factor Tu (EF-Tu) from Thermus thermophilus prepared as the nucleotide- and Mg(2+)-free protein has been investigated. The intrinsic GTPase activity under single turnover conditions varied according to the series: Mn(2+) (0.069 min(-1)) > Mg(2+) (0.037 min(-1)) approximately no Me(2+) (0.034 min(-1)) > VO(2+) (0.014 min(-1)). The kirromycin-stimulated activity showed a parallel variation. Under multiple turnover conditions (GTP/EF-Tu ratio of 10:1), Mg(2+) retarded the rate of hydrolysis in comparison to that in the absence of divalent metal ions, an effect ascribed to kinetics of nucleotide exchange. In the absence of added divalent metal ions, GDP and GTP were bound with equal affinity (K(d) approximately 10(-7) m). In the presence of added divalent metal ions, GDP affinity increased by up to two orders of magnitude according to the series: no Me(2+) < VO(2+) < Mn(2+) approximately Mg(2+) whereas the binding affinity of GTP increased by one order of magnitude: no Me(2+) < Mg(2+) < VO(2+) < Mn(2+). Estimates of equilibrium (dissociation) binding constants for GDP and GTP by EF-Tu on the basis of Scatchard plot analysis, together with thermodynamic data for hydrolysis of triphosphate nucleotides (Phillips, R. C., George, P., and Rutman, R. J. (1969) J. Biol. Chem. 244, 3330-3342), showed that divalent metal ions stabilize the EF-Tu.Me(2+).GDP complex over the protein-free Me(2+).GDP complex in solution, with the effect greatest in the presence of Mg(2+) by approximately 10 kJ/mol. These combined results show that Mg(2+) is not a catalytically obligatory cofactor in intrinsic and kirromycin-stimulated GTPase action of EF-Tu in the absence of programmed ribosomes, which highlights the differential role of Mg(2+) in EF-Tu function.  相似文献   

11.
The activity of Ras is controlled by the interconversion between GTP- and GDP-bound forms partly regulated by the binding of the guanine nucleotide exchange factor Son of Sevenless (Sos). The details of Sos binding, leading to nucleotide exchange and subsequent dissociation of the complex, are not completely understood. Here, we used uniformly 15N-labeled Ras as well as [13C]methyl-Met,Ile-labeled Sos for observing site-specific details of Ras-Sos interactions in solution. Binding of various forms of Ras (loaded with GDP and mimics of GTP or nucleotide-free) at the allosteric and catalytic sites of Sos was comprehensively characterized by monitoring signal perturbations in the NMR spectra. The overall affinity of binding between these protein variants as well as their selected functional mutants was also investigated using intrinsic fluorescence. The data support a positive feedback activation of Sos by Ras·GTP with Ras·GTP binding as a substrate for the catalytic site of activated Sos more weakly than Ras·GDP, suggesting that Sos should actively promote unidirectional GDP → GTP exchange on Ras in preference of passive homonucleotide exchange. Ras·GDP weakly binds to the catalytic but not to the allosteric site of Sos. This confirms that Ras·GDP cannot properly activate Sos at the allosteric site. The novel site-specific assay described may be useful for design of drugs aimed at perturbing Ras-Sos interactions.  相似文献   

12.
It has been shown before by (31)P NMR that Ras bound to the nonhydrolyzable GTP analogue guanosine 5'-O-(beta, gamma-imidotriphosphate) (GppNHp) exists in two conformations which are rapidly interconverting with a rate constant of 3200 s-1 at 30 degrees C [Geyer, M., et al. (1996) Biochemistry 35, 10308-10320]. Here we show that Ran complexed with GTP also exists in two conformational states, 1 and 2, which can be directly inferred from the occurrence of two (31)P NMR resonance lines for the gamma-phosphate group of bound GTP. The exchange between the two states is slow on the NMR time scale with a value of <200 s-1 at 5 degrees C for the corresponding first-order rate constants. In wild-type Ran, the equilibrium constant K' between the two states is 0.7 at 278 K, is different for various mutants, and is strongly dependent on the temperature. The standard enthalpy DeltaH degrees and the standard entropy DeltaS degrees for the conformational transitions determined from the NMR spectra are as follows: DeltaH degrees = 37 kJ mol-1 and DeltaS degrees = 130 J mol-1 K-1 for wild-type Ran.GTP. In complex with the Ran-binding protein RanBP1, one of the Ran.GTP conformations (state 2) is stabilized. The interaction of Ran with the guanine nucleotide exchange factor protein RCC1 was also studied by (31)P NMR spectroscopy. In the presence of nucleotide, the ternary complex of Ran.nucleotide.RCC1, an intermediate in the guanine nucleotide exchange reaction, could be observed. A model for the conformational transition of Ran.GTP is proposed where the two states observed are caused by the structural flexibility of the effector loop of Ran; in solution, state 2 resembles the GTP-bound form found in the crystal structure of the Ran-RanBP complex.  相似文献   

13.
Typical members of the Ras superfamily of small monomeric GTP-binding proteins function as regulators of diverse processes by cycling between biologically active GTP- and inactive GDP-bound conformations. Proteins that control this cycling include guanine nucleotide exchange factors or GEFs, which activate Ras superfamily members by catalyzing GTP for GDP exchange, and GTPase activating proteins or GAPs, which accelerate the low intrinsic GTP hydrolysis rate of typical Ras superfamily members, thus causing their inactivation. Two among the latter class of proteins have been implicated in common genetic disorders associated with an increased cancer risk, neurofibromatosis-1, and tuberous sclerosis. To facilitate genetic analysis, I surveyed Drosophila and human sequence databases for genes predicting proteins related to GAPs for Ras superfamily members. Remarkably, close to 0.5% of genes in both species (173 human and 64 Drosophila genes) predict proteins related to GAPs for Arf, Rab, Ran, Rap, Ras, Rho, and Sar family GTPases. Information on these genes has been entered into a pair of relational databases, which can be used to identify evolutionary conserved proteins that are likely to serve basic biological functions, and which can be updated when definitive information on the coding potential of both genomes becomes available.  相似文献   

14.
The guanine nucleotide-binding protein Ras exists in solution in two different conformational states when complexed with different GTP analogs such as GppNHp or GppCH(2)p. State 1 has only a very low affinity to effectors and seems to be recognized by guanine nucleotide exchange factors, whereas state 2 represents the high affinity effector binding state. In this work we investigate Ras in complex with the physiological nucleoside triphosphate GTP. By polarization transfer (31)P NMR experiments and effector binding studies we show that Ras(wt)·Mg(2+)·GTP also exists in a dynamical equilibrium between the weakly populated conformational state 1 and the dominant state 2. At 278 K the equilibrium constant between state 1 and state 2 of C-terminal truncated wild-type Ras(1-166) K(12) is 11.3. K(12) of full-length Ras is >20, suggesting that the C terminus may also have a regulatory effect on the conformational equilibrium. The exchange rate (k(ex)) for Ras(wt)·Mg(2+)·GTP is 7 s(-1) and thus 18-fold lower compared with that found for the Ras·GppNHp complex. The intrinsic GTPase activity substantially increases after effector binding for the switch I mutants Ras(Y32F), (Y32R), (Y32W), (Y32C/C118S), (T35S), and the switch II mutant Ras(G60A) by stabilizing state 2, with the largest effect on Ras(Y32R) with a 13-fold increase compared with wild-type. In contrast, no acceleration was observed in Ras(T35A). Thus Ras in conformational state 2 has a higher affinity to effectors as well as a higher GTPase activity. These observations can be used to explain why many mutants have a low GTPase activity but are not oncogenic.  相似文献   

15.
Small G-proteins of the superfamily Ras function as molecular switches, interacting with different cellular partners according to their activation state. G-protein activation involves the dissociation of bound GDP and its replacement by GTP, in an exchange reaction that is accelerated and regulated in the cell by guanine-nucleotide exchange factors (GEFs). Large conformational changes accompany the exchange reaction, and our understanding of the mechanism is correspondingly incomplete. However, much knowledge has been derived from structural studies of blocked or inactive mutant GEFs, which presumably closely represent intermediates in the exchange reaction and yet which are by design incompetent for carrying out the nucleotide exchange reaction. In this study we have used comparative modelling to recreate an exchange-competent form of a late, pre-GDP-ejection intermediate species in Arf1, a well-characterized small G-protein. We extensively characterized three distinct models of this intermediate using molecular dynamics simulations, allowing us to address ambiguities related to the mutant structural studies. We observed in particular the unfavorable nature of Mg associated forms of the complex and the establishment of closer Arf1-GEF contacts in its absence. The results of this study shed light on GEF-mediated activation of this small G protein and on predicting the fate of the Mg ion at a critical point in the exchange reaction. The structural models themselves furnish additional targets for interfacial inhibitor design, a promising direction for exploring potentially druggable targets with high biological specificity.  相似文献   

16.
Both Ras protein and calcium play significant roles in various cellular processes via complex signaling transduction networks. However, it is not well understood whether and how Ca(2+) can directly regulate Ras function. Here we demonstrate by isothermal titration calorimetry that Ca(2+) directly binds to the H-Ras.GDP.Mg(2+) complex with moderate affinity at the first binding site followed by two weak binding events. The results from limited proteinase degradation show that Ca(2+) protects the fragments of H-Ras from being further degraded by trypsin and by proteinase K. HPLC studies together with fluorescence spectroscopic measurements indicate that binding of Ca(2+) to the H-Ras.GDP.Mg(2+) complex remarkably promotes guanine nucleotide exchange on H-Ras under emulated physiological Ca(2+) concentration conditions. Addition of high concentrations of either of two macromolecular crowding agents, Ficoll 70 and dextran 70, dramatically enhances H-Ras guanine nucleotide exchange extent in the presence of Ca(2+) at emulated physiological concentrations, and the nucleotide exchange extent increases significantly with the concentrations of crowding agents. Together, these results indicate that binding of calcium ions to H-Ras remarkably promotes H-Ras guanine nucleotide exchange under emulated physiological conditions. We thus propose that Ca(2+) may activate Ras signaling pathway by interaction with Ras, providing clues to understand the role of calcium in regulating Ras function in physiological environments.  相似文献   

17.
BACKGROUND: Based on sequence similarities, Arf-like (ARL) proteins have been assigned to the Arf subfamily of the superfamily of Ras-related GTP binding proteins. They have been identified in several isoforms in a wide variety of species. Their cellular function is unclear, but they are proposed to regulate intracellular transport. RESULTS: The 1.7 A crystal structure of murine ARL3-GDP provides a first insight into the structural features of this subgroup of Ar proteins. The N-terminal extension of ARL3 folds into an elongated loop region that is hydrophobically anchored onto the surface by burying 1440 A2. The features observed suggest that ARL3 releases its N terminus and undergoes a beta sheet register shift upon the binding of GTP. The structure and kinetic experiments with fluorescent mGDP demonstrate that tight GDP (but not GTP) binding is achieved in the absence of a magnesium ion. This is due to a lysine residue in the active site, close to the canonical Mg2+ site found in other GTP binding proteins. This is a distinct feature separating ARL2 and ARL3 from Arf proteins. CONCLUSION: The disturbed magnesium binding site and the independence of GDP coordination from the presence of Mg2+ separate ARL2 and ARL3 from Arf proteins. The D sheet register shift, which is similar to that of Arf, that is observed in the present structure, along with the postulated release of the N-terminal extension and the concomitant exposure of a patch of conserved hydrophobic residues in this region suggest that ARL proteins might be localized to target membranes upon exchange of GDP to GTP. Contrary to the situation in Arf, however, the conformational change to ARL-GTP does not require the presence of membranes and might thus be energetically unfavored. Together with the very low affinity described for the interaction of ARL3 with Mg-GTP, this suggests that ARL protein activation requires the presence of effectors stabilizing the GTP coordination rather than guanine nucleotide exchange factors (GEFs).  相似文献   

18.
The GDP/GTP nucleotide exchange of Arf1 is catalyzed by nucleotide exchange factors (GEF), such as Arno, which act through their catalytic Sec7 domain. This exchange is a complex mechanism that undergoes conformational changes and intermediate complex species involving several allosteric partners such as nucleotides, Mg2+, and Sec7 domains. Using a surface plasmon resonance approach, we characterized the kinetic binding parameters for various intermediate complexes. We first confirmed that both GDP and GTP counteract equivalently to the free-nucleotide binary Arf1-Arno complex stability and revealed that Mg2+ potentiates by a factor of 2 the allosteric effect of GDP. Then we explored the uncompetitive inhibitory mechanism of brefeldin A (BFA) that conducts to an abortive pentameric Arf1-Mg2+-GDP-BFA-Sec7 complex. With BFA, the association rate of the abortive complex is drastically reduced by a factor of 42, and by contrast, the 15-fold decrease of the dissociation rate concurs to stabilize the pentameric complex. These specific kinetic signatures have allowed distinguishing the level and nature as well as the fate in real time of formed complexes according to experimental conditions. Thus, we showed that in the presence of GDP, the BFA-resistant Sec7 domain of Arno can also associate to form a pentameric complex, which suggests that the uncompetitive inhibition by BFA and the nucleotide allosteric effect combine to stabilize such abortive complex.  相似文献   

19.
Polypeptide chain initiation in mammalian systems is regulated at the level of the guanine nucleotide exchange factor (GEF). This multisubunit protein catalyzes the exchange of GDP bound to eukaryotic initiation factor 2 (eIF-2) for GTP. Although various models have been proposed for its mode of action, the exact sequence of events involved in nucleotide exchange is still uncertain. We have studied this reaction by three different experimental techniques: (a) membrane filtration assays to measure the release of [3H]GDP from the eIF-2.[3H]GDP binary complex, (b) changes in the steady-state polarization of fluorescamine-GDP during the nucleotide exchange reaction, and (c) sucrose gradient analysis of the total reaction. The results obtained do not support the reaction as written: eIF-2.GDP + GEF in equilibrium eIF-2.GEF + GDP. The addition of GEF alone does not result in the displacement of eIF-2-bound GDP. The release of bound GDP is dependent on the presence of both GTP and GEF, and this argues against the possibility of a substituted enzyme (ping-pong) mechanism for the guanine nucleotide exchange reaction. An important finding of the present study is the observation that GTP binds to GEF. The Kd value of 4 microM for GTP was estimated (a) by the extent of quenching of tryptophan fluorescence of GEF in the presence of GTP and (b) by the binding of [3H]GTP to GEF as measured on nitrocellulose membranes. The GEF-dependent release of eIF-2-bound GDP was studied at several constant concentrations of one substrate (GTP or eIF-2.GDP) while varying the second substrate concentration, and the results were then plotted according to the Lineweaver-Burk method. Taken together, the results of GTP and eIF-2.GDP binding to GEF and the pattern of the double-reciprocal plots strongly suggest that the guanine nucleotide exchange reaction follows a sequential mechanism.  相似文献   

20.
Time-resolved Fourier transform infrared spectroscopy (FTIR) in combination with photo-induced release of (18)O-labeled caged nucleotide has been employed to address mechanistic issues of GTP hydrolysis by Ras protein. Infrared spectroscopy of Ras complexes with nitrophenylethyl (NPE)-[alpha-(18)O(2)]GTP, NPE-[beta-(18)O(4)]GTP, or NPE-[gamma-(18)O(3)]GTP upon photolysis or during hydrolysis afforded a substantially improved mode assignment of phosphoryl group absorptions. Photolysis spectra of hydroxyphenylacyl-GTP and hydroxyphenylacyl-GDP bound to Ras and several mutants, Ras(Gly(12))-Mn(2+), Ras(Pro(12)), Ras(Ala(12)), and Ras(Val(12)), were obtained and yielded valuable information about structures of GTP or GDP bound to Ras mutants. IR spectra revealed stronger binding of GDP beta-PO(3)(2-) moiety by Ras mutants with higher activity, suggesting that the transition state is largely GDP-like. Analysis of the photolysis and hydrolysis FTIR spectra of the [beta-nonbridge-(18)O(2), alphabeta-bridge-(18)O]GTP isotopomer allowed us to probe for positional isotope exchange. Such a reaction might signal the existence of metaphosphate as a discrete intermediate, a key species for a dissociative mechanism. No positional isotope exchange was observed. Overall, our results support a concerted mechanism, but the transition state seems to have a considerable amount of dissociative character. This work demonstrates that time-resolved FTIR is highly suitable for monitoring positional isotope exchange and advantageous in many aspects over previously used methods, such as (31)P NMR and mass spectrometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号