首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electroacupuncture (EA) at Neiguan-Jianshi acupoints through an opioid mechanism inhibits the cardiovascular pressor response induced by mechanical stimulation of the stomach. Because nociceptin also may regulate cardiovascular activity through its action in the brain stem, we hypothesized that this neuromodulator serves a role in the EA-related inhibitory effect. Blood pressure in ventilated male Sprague-Dawley rats (400-600 g) anesthetized by ketamine and alpha-chloralose was measured during balloon inflation of the stomach. Gastric distension with 6-8 ml of air induced consistent pressor reflexes of 26 +/- 1 mmHg that could be repeated every 10 min for 100 min. When nociceptin (10 nM) was microinjected into the rostral ventrolateral medulla (rVLM), the pressor response induced by gastric distension was inhibited by 68 +/- 6%. Thirty minutes of EA also decreased the reflex response by 75 +/- 11%; microinjection of saline into the rVLM did not alter the inhibitory effect of EA. In contrast, microinjection of a nociceptin receptor antagonist into the rVLM promptly reversed the EA response. Pretreatment with the opioid receptor antagonist naloxone did not influence the EA-like inhibitory effect of nociceptin on the distension-induced pressor reflex (22 +/- 1 to 8 +/- 2 mmHg). Furthermore, a mu-opioid receptor agonist microinjected into the rVLM after microinjection of a nociceptin receptor antagonist during EA promptly reversed the nociceptin receptor antagonist-related inhibition of the EA effect. Thus, in addition to the classical opioid system, nociceptin, through opioid receptor-like-1 receptor stimulation in the rVLM, participates in the modulatory influence of EA on reflex-induced increases in blood pressure.  相似文献   

2.
This study investigated the efficacy of magnetic stimulation on the reflex cardiovascular responses induced by gastric distension in anesthetized rats and compared these responses to those influenced by electroacupuncture (EA). Unilateral magnetic stimulation (30% intensity, 2 Hz) at the Jianshi-Neiguan acupoints (pericardial meridian, P 5-6) overlying the median nerve on the forelimb for 24 min significantly decreased the reflex pressor response by 32%. This effect was noticeable by 20 min of magnetic stimulation and continued for 24 min. Median nerve denervation abolished the inhibitory effect of magnetic stimulation, indicating the importance of somatic afferent input. Unilateral EA (0.3-0.5 mA, 2 Hz) at P 5-6 using similar durations of stimulation similarly inhibited the response (35%). The inhibitory effects of EA occurred earlier and were marginally longer (20 min) than magnetic stimulation. Magnetic stimulation at Guangming-Xuanzhong acupoints (gallbladder meridian, GB 37-39) overlying the superficial peroneal nerve on the hindlimb did not attenuate the reflex. Intravenous naloxone immediately after termination of magnetic stimulation reversed inhibition of the cardiovascular reflex, suggesting involvement of the opioid system. Also, intrathecal injection of delta- and kappa-opioid receptors antagonists, ICI174,864 (n=7) and nor-binaltorphimine (n=6) immediately after termination of magnetic stimulation reversed inhibition of the cardiovascular reflex. In contrast, the mu-opioid antagonist CTOP (n=7) failed to alter the cardiovascular reflex. The endogenous neurotransmitters for delta- and kappa-opioid receptors, enkephalins and dynorphin but not beta-endorphin, therefore appear to play significant roles in the spinal cord in mediating magnetic stimulation-induced modulation of cardiovascular reflex responses.  相似文献   

3.
The present study was designed to investigate brain stem responses to manual acupuncture (MA) and electroacupuncture (EA) at different frequencies at pericardial P (5-6) acupoints located over the median nerve. Activity of premotor sympathetic cardiovascular neurons in the rostral ventral lateral medulla (rVLM) was recorded during stimulation of visceral and somatic afferents in ventilated anesthetized rats. We stimulated either the splanchnic nerve at 2 Hz (0.1-0.4 mA, 0.5 ms) or the median nerve for 30 s at 2, 10, 20, 40, or 100 Hz using EA (0.3-0.5 mA, 0.5 ms) or at approximately 2 Hz with MA. Twelve of 18 cells responsive to splanchnic and median nerve stimulation could be antidromically driven from the intermediolateral columns of the thoracic spinal cord, T2-T4, indicating that they were premotor sympathetic neurons. All 18 neurons received baroreceptor input, providing evidence of their cardiovascular sympathoexcitatory function. Evoked responses during stimulation of the splanchnic nerve were inhibited by 49 +/- 6% (n = 7) with EA and by 46 +/- 4% (n = 6) with MA, indicating that the extent of inhibitory effects of the two modalities were similar. Inhibition lasted for 20 min after termination of EA or MA. Cardiovascular premotor rVLM neurons responded to 2-Hz electrical stimulation at P 5-6 and to a lesser extent to 10-, 20-, 40-, and 100-Hz stimulation (53 +/- 10, 16 +/- 2, 8 +/- 2, 2 +/- 1, and 0 +/- 0 impulses/30 stimulations, n = 7). These results indicate that rVLM premotor sympathetic cardiovascular neurons that receive convergent input from the splanchnic and median nerves during low-frequency EA and MA are inhibited similarly for prolonged periods by low-frequency MA and EA.  相似文献   

4.
The periaqueductal gray (PAG) is an important integrative region in the regulation of autonomic outflow and cardiovascular function and may serve as a regulatory center as part of a long-loop pathway during somatic afferent stimulation with acupuncture. Because the ventrolateral PAG (vlPAG) provides input to the rostral ventrolateral medulla (rVLM), an important area for electroacupuncture (EA) regulation of sympathetic outflow, we hypothesized that the vlPAG plays a role in the EA-related modulation of rVLM premotor sympathetic neurons activated during visceral afferent stimulation and autonomic excitatory reflexes. Cats were anesthetized and ventilated, and heart rate and mean blood pressure were monitored. Stimulation of the splanchnic nerve by a pledget of filter paper soaked in bradykinin (BK, 10 mug/ml) every 10 min on the gallbladder induced consistent cardiovascular reflex responses. Bilateral stimulation with EA at acupoints over the pericardial meridian (P5-6) situated over the median nerve reduced the increases in blood pressure from 34 +/- 3 to 18 +/- 5 mmHg for a period of time that lasted for 60 min or more. Unilateral inactivation of neuronal activity in the vlPAG with 50-75 nl of kainic acid (KA, 1 mM) restored the blood pressure responses from 18 +/- 3 to 36 +/- 5 mmHg during BK-induced gallbladder stimulation, an effect that lasted for 30 min. In the absence of EA, unilateral microinjection of the excitatory amino acid dl-homocysteic acid (DLH, 4 nM) in the vlPAG mimicked the effect of EA and reduced the reflex blood pressure responses from 35 +/- 6 to 14 +/- 5 mmHg. Responses of 21 cardiovascular sympathoexcitatory rVLM neurons, including 12 that were identified as premotor neurons, paralleled the cardiovascular responses. Thus splanchnic nerve-evoked neuronal discharge of 32 +/- 4 spikes/30 stimuli in six neurons was reduced to 10 +/- 2 spikes/30 stimuli by EA, which was restored rapidly to 28 +/- 4 spikes/30 stimuli by unilateral injection of 50 nl KA into the vlPAG. Conversely, 50 nl of DLH in the vlPAG reduced the number of action potentials of 5 rVLM neurons from 30 +/- 4 to 18 +/- 4 spikes/30 stimuli. We conclude that the inhibitory influence of EA involves vlPAG stimulation, which, in turn, inhibits rVLM neurons in the EA-related attenuation of the cardiovascular excitatory response during visceral afferent stimulation.  相似文献   

5.
Visceral sympathoexcitatory reflexes induced by stimulation of the gallbladder with bradykinin (BK) are attenuated by electroacupuncture (EA) at Neiguan-Jianshi (P5-6) acupoints located over the median nerve. Previous studies have shown that neurons in the rostral ventrolateral medulla (rVLM) receive convergent input from visceral organs and somatic nerves (activated by EA). Glutamate (Glu), an important excitatory neurotransmitter in the rVLM, processes visceral sympathoexcitatory cardiovascular reflexes. In the present study, we determined the relation between EA-mediated opioidergic modulation of visceral cardiovascular responses and Glu. Reflex cardiovascular responses were evoked by application of BK to the gallbladder before and after EA in anesthetized cats. Glu concentrations ([Glu]) were measured by HPLC from samples collected by microdialysis probe(s) inserted unilaterally or bilaterally into the rVLM. BK-induced reflex responses and [Glu] were attenuated by 45% and 70%, respectively, after 30 min of EA (n = 6). EA alone did not change [Glu] in the rVLM (n = 6, P > 0.05). However, microdialysis of naloxone (100 mM) into the rVLM reversed EA-related inhibition of blood pressure and [Glu] (n = 5). Immunohistochemical visualization showed that delta-opioid receptors colocalized with, and were in close apposition to, vesicular Glu transporter 3- and c-Fos-double-labeled perikarya and processes of rVLM neurons after gallbladder stimulation with BK. These data suggest that EA attenuates BK-induced visceral sympathoexcitatory reflexes through opioid-mediated inhibition of Glu's action in the rVLM.  相似文献   

6.
Electroacupuncture (EA) at P5-P6 acupoints overlying the median nerve reduces premotor sympathetic cardiovascular neuronal activity in the rostral ventral lateral medulla (rVLM) and visceral reflex pressor responses. In previous studies, we have noted different durations of influence of EA comparing P5-P6 and S36-S37 acupoints, suggesting that point specificity may exist. The purpose of this study was to evaluate the influence of stimulating P5-P6 (overlying the median nerve), LI4-L7 (overlying branches of the median nerve and the superficial radial nerve), LI6-LI7 (overlying the superficial radial nerve), LI10-LI11 (overlying the deep radial nerves), S36-S37 (overlying the deep peroneal nerves), or K1-B67 (overlying terminal branches of the tibial nerves) specific acupoints, overlying deep and superficial somatic nerves, on the excitatory cardiovascular reflex and rVLM responses evoked by stimulation of chemosensitive receptors in the cat's gallbladder with bradykinin (BK) or direct splanchnic nerve (SN) stimulation. We observed point-specific differences in magnitude and duration of EA inhibition between P5-P6 or LI10-LI11 and LI4-L7 or S36-S37 in responses to 30-min stimulation with low-frequency, low-current EA. EA at LI6-LI7 and K1-B67 acupoints as well as direct stimulation of the superficial radial nerve did not cause any cardiovascular or rVLM neuronal effects. Cardiovascular neurons in the rVLM, a subset of which were classified as premotor sympathetic cells, responded to brief (30 s) stimulation of the SN as well as acupoints P5-P6, LI10-LI11, LI4-L7, S36-S37, LI6-LI7, or K1-B67, or underlying somatic pathways in a fashion similar to the reflex responses. In fact, we observed a significant linear relationship (r(2) = 0.71) between the evoked rVLM response and reflex change in mean arterial blood pressure. In addition, EA stimulation at P5-P6 and LI4-L7 decreased rVLM neuronal activity by 41 and 12%, respectively, for >1 h, demonstrating that prolonged input into the medulla during stimulation of somatic nerves, depending on the degree of convergence, leads to more or less inhibition of activity of these cardiovascular neurons. Thus EA at acupoints overlying deep and superficial somatic nerves leads to point-specific effects on cardiovascular reflex responses. In a similar manner, sympathetic cardiovascular rVLM neurons that respond to both visceral (reflex) and somatic (EA) nerve stimulation manifest graded responses during stimulation of specific acupoints, suggesting that this medullary region plays a role in site-specific inhibition of cardiovascular reflex responses by acupuncture.  相似文献   

7.
Electroacupuncture (EA) causes prolonged suppression of reflex elevations in blood pressure for 1-2 h in anesthetized preparations. A long-loop pathway involving the arcuate nucleus (ARC), ventrolateral periaqueductal gray, and rostral ventrolateral medulla (rVLM) is involved in sympathoinhibitory cardiovascular EA effects. However, the mechanisms and locations of the prolonged EA inhibition are unknown. We hypothesized that this effect is mediated through a long-loop pathway involving opioid, nociceptin, and gamma-aminobutyric acid (GABA) receptor activation in the rVLM. In anesthetized, ventilated cats application of bradykinin to the gallbladder every 10 min induced consistent reflex increases in blood pressure. Bilateral EA stimulation at the cardiovascular acupoints P5-6 overlying the median nerves reduced the reflex responses for at least 80 min. Bilateral blockade with kynurenic acid in the ARC 60 min after onset of EA inhibition reversed the cardiovascular response, suggesting a role for the ARC in the long-loop pathway during the prolonged inhibitory response. Unilateral microinjection with either an opioid or a GABA(A) antagonist in rVLM 50-60 min after the beginning of the EA response reversed EA inhibition of the cardiovascular excitatory reflex. Gabazine also reversed EA inhibition of cardiovascular premotor sympathetic rVLM neurons. Conversely, microinjection of a nociceptin/orphanin FQ peptide antagonist did not affect the prolonged inhibitory effect. Thus the ARC, an important component in the long-loop pathway in the EA cardiovascular response, is required for prolonged suppression of reflex cardiovascular excitatory responses by EA. Furthermore, in the rVLM, opioids and GABA, but not nociceptin, participate in the long-term EA-related inhibition of sympathoexcitatory cardiovascular responses.  相似文献   

8.
Despite the use of acupuncture to treat a number of heart diseases, little is known about the mechanisms that underlie its actions. Therefore, we examined the influence of acupuncture on sympathoexcitatory cardiovascular responses to gastric distension in anesthetized Sprague-Dawley rats. Thirty minutes of low-current, low-frequency, (0.3-0.5 mA, 2 Hz) electroacupuncture (EA), at P 5-6, S 36-37, and H 6-7 overlying the median, deep peroneal, and ulnar nerves significantly decreased reflex pressor responses by 40, 39, and 44%, respectively. In contrast, sham acupuncture involving needle insertion without stimulation at P 5-6 or 30 min of EA at LI 6-7 acupoints overlying the superficial radial nerve did not attenuate the reflex. Similarly, EA at P 5-6 using 40- or 100-Hz stimulation frequencies did not inhibit the reflex. Compared with EA at P 5-6, EA at two sets of acupoints, including P 5-6 and S 36-37, did not lead to larger inhibition of the reflex. Two minutes of manual acupuncture (MA; 2 Hz) at P 5-6 every 10 min for 30 min inhibited the reflex cardiovascular pressor response by 33%, a value not significantly different from 2-Hz EA at P 5-6. Single-unit afferent activity was not different between electrical stimulation (ES) and manual stimulation. However, 2-Hz ES activated more somatic afferents than 10- or 20-Hz ES. These data suggest that, although the location of acupoint stimulation and the frequency of stimulation determine the extent of influence of EA, there is little difference between low-frequency EA and MA at P 5-6. Furthermore, simultaneous stimulation using two acupoints that independently exert strong effects did not lead to an additive or a facilitative interaction. The similarity of the responses to EA and MA and the lack of cardiovascular response to high-frequency EA appear to be largely a function of somatic afferent responses.  相似文献   

9.
A number of studies have demonstrated an important role for nitric oxide (NO) in central and peripheral neural modulation of sympathetic activity. To assess the interaction and integrative effects of NO release and sympathetic reflex actions, we investigated the influence of inhibition of NO on cardiac-cardiovascular reflexes. In anesthetized, sinoaortic-denervated and vagotomized cats, transient reflex increases in arterial blood pressure (BP) were induced by application of bradykinin (BK, 0.1-10 microg/ml) to the epicardial surface of the heart. The nonspecific NO synthase (NOS) inhibitor NG-monomethyl-L-arginine (L-NMMA, 10 mg/kg iv) was then administered and stimulation was repeated. L-NMMA increased baseline mean arterial pressure (MAP) from 129 +/- 8 to 152 +/- 9 mmHg and enhanced the change in MAP in response to BK from 32 +/- 3 to 39 +/- 5 mmHg (n = 9, P < 0.05). Pulse pressure was significantly enhanced during the reflex response from 6 +/- 4 to 27 +/- 6 mmHg after L-NMMA injection due to relatively greater potentiation of the rise in systolic BP. Both the increase in baseline BP and the enhanced pressor reflex were reversed by L-arginine (30 mg/kg iv). Because L-NMMA can inhibit both brain and endothelial NOS, the effects of 7-nitroindazole (7-NI, 25 mg/kg ip), a selective brain NOS inhibitor, on the BK-induced cardiac-cardiovascular pressor reflex also were examined. In contrast to L-NMMA, we observed significant reduction of the pressor response to BK from 37 +/- 5 to 18 +/- 3 mmHg 30 min after the administration of 7-NI (n = 9, P < 0.05), an effect that was reversed by L-arginine (300 mg/kg iv, n = 7). In a vehicle control group for 7-NI (10 ml of peanut oil ip), the pressor response to BK remained unchanged (n = 6, P > 0.05). In conclusion, neuronal NOS facilitates, whereas endothelial NOS modulates, the excitatory cardiovascular reflex elicited by chemical stimulation of sympathetic cardiac afferents.  相似文献   

10.
We have shown that the modulatory effect of electroacupuncture (EA) on the blood pressure (BP) response induced by visceral organ stimulation is related to inhibition of cardiovascular neurons in the rostral ventrolateral medulla (rVLM) through a mechanism that involves opioids. This effect is long lasting and may involve a long-loop neural supraspinal pathway, including the arcuate nucleus (ARC), which is an important site of opioid neurotransmitter synthesis. Therefore, we evaluated the role of the hypothalamic ARC and its interaction with the midbrain ventrolateral periaqueductal gray (vlPAG) in the EA-BP response. The gallbladder of alpha-chloralose-anesthetized cats was stimulated to test for the influence of EA on splanchnic afferent-induced cardiovascular reflexes. Electrodes were placed around the splanchnic nerve (SN), and acupuncture needles were applied at P5-6 acupoints overlying the median nerve (MN). Electrophysiological recordings showed that spontaneous activity of ARC and vlPAG neurons was low (1.3 +/- 0.5 and 2.0 +/- 0.5 spikes/s, respectively). We observed a gradation of responses of ARC neurons to the stimulation of different acupoints, ranging from uniform responses of all neurons during stimulation of the P5-6, LI4-11, H5-6, and St2-G2 located over deep nerves to fewer responses during stimulation of LI6-7 and G37-39 located over superficial nerves. Microinjection of the excitatory amino acid dl-homocysteic acid (DLH 4 nM, 50 nl) into the ARC augmented the responses of vlPAG neurons, whereas microinjection of kainic acid (KA 1 mM, 50 nl) to deactivate neurons in the ARC decreased vlPAG responses to SN stimulation. Thirty minutes of EA at P5-6 increased the SN-evoked discharge of vlPAG neurons (7.0 +/- 1.2 to 14.3 +/- 3.0 spikes/30 stimuli), a response that was blocked by microinjection of KA into the ARC. Microinjection of DLH into the ARC, like EA, inhibited (30 min) the reflex increase in BP induced by application of bradykinin (BK) to the gallbladder, whereas microinjection of KA into the ARC blocked the inhibitory influence of EA at P5-6 on the BK-induced BP response. These results suggest that excitatory projections from the ARC to the vlPAG are essential to the EA inhibition of the reflex increase in BP induced by SN or gallbladder visceral afferent stimulation.  相似文献   

11.
Vanilloid type 1 (VR-1) receptors are stimulated by capsaicin and hydrogen ions, the latter being a by-product of muscular contraction. We tested the hypothesis that activation of VR-1 receptors during static contraction contributes to the exercise pressor reflex. We established a dose of iodoresinaferatoxin (IRTX), a VR-1 receptor antagonist, that blocked the pressor response to capsaicin injected into the arterial supply of muscle. Specifically, in eight decerebrated cats, we compared pressor responses to capsaicin (10 mug) injected into the right popliteal artery, which was subsequently injected with IRTX (100 mug), with those to capsaicin injected into the left popliteal artery, which was not injected with IRTX. The pressor response to capsaicin injected into the right popliteal artery averaged 49 +/- 9 mmHg before IRTX and 9 +/- 2 mmHg after IRTX (P < 0.05). In contrast, the pressor response to capsaicin injected into the left popliteal artery averaged 46 +/- 10 mmHg "before" and 43 +/- 6 mmHg "after" (P > 0.05). We next determined whether VR-1 receptors mediated the pressor response to contraction of the triceps surae. During contraction without circulatory occlusion, the pressor response before IRTX (100 mug) averaged 26 +/- 3 mmHg, whereas it averaged 22 +/- 3 mmHg (P > 0.05) after IRTX (n = 8). In addition, during contraction with occlusion, the pressor responses averaged 35 +/- 3 mmHg before IRTX injection and 49 +/- 7 mmHg after IRTX injection (n = 7). We conclude that VR-1 receptors play little role in evoking the exercise pressor reflex.  相似文献   

12.
Using gonadally intact female cats, we showed previously that estrogen, applied topically to the spinal cord, attenuated the exercise pressor reflex. Although the mechanism by which estrogen exerted its attenuating effect is unknown, this steroid hormone has been shown to influence spinal opioid pathways, which in turn have been implicated in the regulation of the exercise pressor reflex. These findings prompted us to test the hypothesis that opioids mediate the attenuating effect of estrogen on the exercise pressor reflex in both gonadally intact female and ovariectomized cats. We therefore applied 200 microl of 17beta-estradiol (0.01 microg/ml) with and without the addition of 1,000 microg naloxone, a mu- and delta-opioid antagonist, to a spinal well covering the L6-S1 spinal cord in decerebrated female cats that were either gonadally intact or ovariectomized. The exercise pressor reflex was evoked by electrical stimulation of the L7 or S1 ventral root, a maneuver that caused the hindlimb muscles to contract statically. We found that, in gonadally intact cats, the attenuating effect of estrogen was more pronounced than that in ovariectomized cats. We also found that, in gonadally intact female cats, naloxone partly reversed the attenuation of the pressor response to static contraction caused by spinal estrogen application. For example, in intact cats, the pressor response to contraction before estrogen application averaged 39 +/- 4 mmHg (n = 10), whereas the pressor response 60 min afterward averaged only 18 +/- 4 mmHg (P < 0.05). In contrast, the pressor response to contraction before estrogen and naloxone application averaged 33 +/- 5 mmHg (n = 11), whereas afterward it averaged 27 +/- 6 mmHg (P < 0.05). In ovariectomized cats, naloxone was less effective in reversing the attenuating effect of estrogen on the exercise pressor reflex.  相似文献   

13.
We investigated the contribution of tetrodotoxin (TTX)-resistant sodium channels to the augmented exercise pressor reflex observed in decerebrated rats with femoral artery ligation. The pressor responses to static contraction, to tendon stretch, and to electrical stimulation of the tibial nerve were compared before and after blocking TTX-sensitive sodium channels on the L3-L6 dorsal roots of rats whose hindlimbs were freely perfused and rats whose femoral arteries were ligated 72 h before the start of the experiment. In the freely perfused group (n=9), pressor (Δ22±4 mmHg) and cardioaccelerator (Δ32±6 beats/min) responses to contraction were attenuated by 1 μM TTX (Δ4±1 mmHg, P<0.05 and Δ17±4 beats/min, P<0.05, respectively). In the 72 h ligated group (n=9), the augmented pressor response to contraction (32±4 mmHg) was also attenuated by 1 μM TTX (Δ8±2 mmHg, P<0.05). The cardioaccelerator response to contraction was not significantly attenuated in these rats. In addition, TTX suppressed the pressor response to tendon stretch in both groups of rats. Electrical stimulation of the tibial nerve evoked similar pressor responses between the two groups (freely perfused: Δ74±9 mmHg and 72 h ligated: Δ78±5 mmHg). TTX attenuated the pressor response to the tibial nerve stimulation by about one-half in both groups. Application of the TTX-resistant sodium channel blocker A-803467 (1 μM) with TTX (1 μM) did not block the pressor response to tibial nerve stimulation to any greater extent than did application of TTX (1 μM) alone. Although the contribution of TTX-resistant sodium channels to the augmented exercise pressor reflex may be slightly increased in rats with chronic femoral artery ligation, TTX-resistant sodium channels on dorsal roots do not play a major role in the augmented exercise pressor reflex.  相似文献   

14.
It has been suggested that the midbrain periaqueductal gray (PAG) is a neural integrating site for the interaction between the muscle pressor reflex and the arterial baroreceptor reflex. The underlying mechanisms are poorly understood. The purpose of this study was to examine the roles of GABA and nitric oxide (NO) in modulating the PAG integration of both reflexes. To activate muscle afferents, static contraction of the triceps surae muscle was evoked by electrical stimulation of the L7 and S1 ventral roots of 18 anesthetized cats. In the first group of experiments (n = 6), the pressor response to muscle contraction was attenuated by bilateral microinjection of muscimol (a GABA receptor agonist) into the lateral PAG [change in mean arterial pressure (DeltaMAP) = 24 +/- 5 vs. 46 +/- 8 mmHg in control]. Conversely, the pressor response was significantly augmented by 0.1 mM bicuculline, a GABAA receptor antagonist (DeltaMAP = 65 +/- 10 mmHg). In addition, the effect of GABAA receptor blockade on the reflex response was significantly blunted after sinoaortic denervation and vagotomy (n = 4). In the second group of experiments (n = 8), the pressor response to contraction was significantly attenuated by microinjection of L-arginine into the lateral PAG (DeltaMAP = 26 +/- 4 mmHg after L-arginine injection vs. 45 +/- 7 mmHg in control). The effect of NO attenuation was antagonized by bicuculline and was reduced after denervation. These data demonstrate that GABA and NO within the PAG modulate the pressor response to muscle contraction and that NO attenuation of the muscle pressor reflex is mediated via arterial baroreflex-engaged GABA increase. The results suggest that the PAG plays an important role in modulating cardiovascular responses when muscle afferents are activated.  相似文献   

15.
Attenuating effects of intrathecal clonidine on the exercise pressor reflex   总被引:1,自引:0,他引:1  
We tested the hypothesis that intrathecal injection of clonidine, an alpha 2-adrenergic agonist, attenuated the reflex cardiovascular and ventilatory responses to static muscular contraction in cats. Before clonidine (1 microgram in 0.2 ml), contraction-induced reflex increases (n = 10) in mean arterial pressure and ventilation averaged 25 +/- 3 mmHg and 359 +/- 105 ml/min, respectively, whereas after clonidine these increases averaged 8 +/- 4 mmHg and 200 +/- 114 ml/min, respectively (P less than 0.05). Clonidine had no effect on the heart rate response to contraction. Intrathecal injection of yohimbine (10 micrograms; n = 5), an alpha 2-adrenergic antagonist, but not prazosin (10 micrograms; n = 3), an alpha 1-adrenergic antagonist, prevented the attenuating effects of clonidine on the reflex pressor and ventilatory responses to contraction. Our findings were not due to the spread of clonidine to the medulla, because the reflex pressor and ventilatory responses to contraction were not attenuated by injection of clonidine (1 microgram) onto the medulla (n = 3). In addition, our findings were not due to a clonidine-induced withdrawal of sympathetic outflow, because intrathecal injection of clonidine (1 microgram) did not attenuate increases in arterial pressure and ventilation evoked by high-intensity electrical stimulation of the cut central end of the sciatic nerve (n = 5). Furthermore, our findings were not due to a local anesthetic action of clonidine, because application of this agent to the dorsal roots had no effect on the discharge of group IV muscle afferents. We conclude that stimulation of alpha 2-adrenergic receptors in the spinal cord attenuates the reflex pressor and ventilatory responses to static contraction.  相似文献   

16.
Neiguan (PC-6) is a traditional acupoint in each forearm and overlies the trunk of the median nerve. Previous studies show that electroacupuncture (EA) at the Neiguan acupoint could improve not only myocardial ischemic dysfunction by inducing a depressor response but also recover hemorrhagic hypotension by inducing a pressor response. However, their physiological mechanisms are not yet elucidated. We investigated the pressor effect of Neiguan EA and its mechanism by focusing on left ventricular (LV) performance in a canine hemorrhagic hypotension model. We hemorrhaged 36 anesthetized and thoracotomized mongrel dogs and decreased LV end-systolic pressure (ESP) to approximately 70 mmHg (35% decrease). We obtained LV pressure-volume (P-V) data with a micromanometer catheter and a conductance catheter. One-hour Neiguan EA significantly recovered the decreased ESP, end-diastolic volume, and stroke volume by 32 +/- 13%, 27 +/- 13%, and 39 +/- 17%, respectively (P < 0.05), without changing heart rate and the slope of the end-systolic P-V relation. Neiguan EA inhibited a hemorrhage-induced increase in plasma catecholamines. However, vecuronium (neuromuscular blocking agent) administration abolished the antihypotension effect of Neiguan EA. Furthermore, Neiguan EA was much more effective than a nonacupoint thigh EA. We conclude that Neiguan EA achieved the antihypotension effect by improving LV filling of the hemorrhage-depressed LV performance despite the inhibition of the hemorrhage-increased plasma catecholamines. This pressor effect seemed to accompany an increased venous return by Neiguan EA-increased vasomotor tone and muscle pump. This study demonstrated a scientific basis for the therapeutic efficacy of acupuncture in the treatment of hemorrhagic hypotension and shock.  相似文献   

17.
The purpose of this study was to determine whether isometric handgrip (IHG) training reduces arterial pressure and whether reductions in muscle sympathetic nerve activity (MSNA) mediate this drop in arterial pressure. Normotensive subjects were assigned to training (n = 9), sham training (n = 7), or control (n = 8) groups. The training protocol consisted of four 3-min bouts of IHG exercise at 30% of maximal voluntary contraction (MVC) separated by 5-min rest periods. Training was performed four times per week for 5 wk. Subjects' resting arterial pressure and heart rate were measured three times on 3 consecutive days before and after training, with resting MSNA (peroneal nerve) recorded on the third day. Additionally, subjects performed IHG exercise at 30% of MVC to fatigue followed by muscle ischemia. In the trained group, resting diastolic (67 +/- 1 to 62 +/- 1 mmHg) and mean arterial pressure (86 +/- 1 to 82 +/- 1 mmHg) significantly decreased, whereas systolic arterial pressure (116 +/- 3 to 113 +/- 2 mmHg), heart rate (67 +/- 4 to 66 +/- 4 beats/min), and MSNA (14 +/- 2 to 15 +/- 2 bursts/min) did not significantly change following training. MSNA and cardiovascular responses to exercise and postexercise muscle ischemia were unchanged by training. There were no significant changes in any variables for the sham training and control groups. The results indicate that IHG training is an effective nonpharmacological intervention in lowering arterial pressure.  相似文献   

18.
In humans, the pressor and muscle sympathetic nerve responses to static exercise are less in women than in men. The difference has been attributed to the effect of estrogen on the exercise pressor reflex. Estrogen receptors are abundant in areas of the dorsal horn receiving input from group III and IV muscle afferents, which comprise the sensory limb of the exercise pressor reflex arc. These findings prompted us to investigate the effect of estrogen on the spinal pathway of the exercise pressor reflex arc. Previously, we found that the threshold concentration of 17beta-estradiol needed to attenuate the exercise pressor reflex in male decerebrate cats was 10 microg/ml (Schmitt PM and Kaufman MP. J Appl Physiol 94: 1431-1436, 2003). The threshold concentration for female cats, however, is not known. Consequently, we applied 17beta-estradiol to a well covering the L6-S1 spinal cord in decerebrate female cats. The exercise pressor reflex was evoked by electrical stimulation of the L7 or S1 ventral root, a maneuver that caused the hindlimb muscles to contract statically. We found that the pressor response to contraction averaged 38 +/- 7 mmHg before the application of 17beta-estradiol (0.01 microg/ml) to the spinal cord, whereas it averaged only 23 +/- 4 mmHg 30 min after application (P < 0.05). Recovery of the pressor response to contraction was not obtained for 2 h after application of 17beta-estradiol. Application of 17beta-estradiol in a dose of 0.001 microg/ml had no effect on the exercise pressor reflex (n = 5). We conclude that the concentration of 17beta-estradiol required to attenuate the exercise pressor reflex is 1,000 times more dilute in female cats than that needed to attenuate this reflex in male cats.  相似文献   

19.
In humans, multiparity (repeated pregnancy) is associated with increased risk of cardiovascular disease. In rats, multiparity increases the pressor response to phenylephrine and to acute stress, due in part to changes in tone of the splanchnic arterial vasculature. Given that the venous system also changes during pregnancy, we studied the effects of multiparity on venous tone and compliance. Cardiovascular responses to volume loading (2 ml/100 g body wt), and mean circulatory filling pressure (MCFP, an index of venomotor tone) were measured in conscious, repeatedly bred (RB), and age-matched virgin rats. In addition, passive compliance and venous reactivity of isolated mesenteric veins were measured by pressure myography. There was a greater increase in mean arterial pressure after volume loading in RB rats (+7.2 +/- 2.5 mmHg, n = 8) than virgin rats (-1.4 +/- 1.7 mmHg, n = 7) (P < 0.05). The increase in MCFP in response to norepinephrine (NE) was also greater in RB rats [half maximal effective dose (ED(50)) 3.1 +/- 0.5 nmol.kg(-1).min(-1), n = 6] than virgins (ED(50): 12.1 +/- 2.7 nmol.kg(-1).min(-1), n = 6) (P < 0.05). Pressure-induced changes in passive diameter were lower in isolated mesenteric veins from RB rats (29.3 +/- 1.8 microm/mmHg, n = 6) than from virgins (36.9 +/- 1.3 microm/mmHg, n = 6) (P < 0.05). Venous reactivity to NE in isolated veins was also greater in RB rats (EC(50): 2.68 +/- 0.37x10(-8) M, n = 5) than virgins (EC(50): 4.67 +/- 0.93 x 10(-8) M, n = 8). We conclude that repeated pregnancy induces a long-term reduction in splanchnic venous compliance and augments splanchnic venous reactivity and sympathetic tonic control of total body venous tone. This compromises the ability of the capacitance (venous) system to accommodate volume overloads and to buffer changes in cardiac preload.  相似文献   

20.
Bradykinin (BK) is a peptide known to activate afferent nerve fibers from the kidney and elicit reflex changes in the cardiovascular system. The present study was specifically designed to test the hypothesis that bradykinin B2 receptors mediated the pressor responses elicited during intrarenal bradykinin administration. Pulsed Doppler flow probes were positioned around the left renal artery to measure renal blood flow (RBF). A catheter, to permit selective intrarenal administration of BK, was advanced into the proximal left renal artery. The femoral artery was cannulated to measure mean arterial pressure (MAP). MAP, heart rate (HR), and RBF were recorded from conscious unrestrained rats while five-point cumulative dose-response curves during an intrarenal infusion of BK (5-80 microg x kg(-1) x min(-1)) were constructed. Intrarenal infusion of BK elicited dose-dependent increases in MAP (maximum pressor response, 26+/-3 mmHg), accompanied by a significant tachycardia (130+/-18 beats/min) and a 28% increase in RBF. Ganglionic blockade abolished the BK-induced increases in MAP (maximum response, -6+/-5 mmHg), HR (maximum response 31+/-14 beats/min), and RBF (maximum response, 7+/-2%). Selective intrarenal B2-receptor blockade with HOE-140 (50 microg/kg intrarenal bolus) abolished the increases in MAP and HR observed during intrarenal infusion of BK (maximum MAP response, -2+/-3 mmHg; maximum HR response, 15+/-11 beats/min). Similarly, the increases in RBF were prevented after HOE-140 treatment. In fact, after HOE-140, intrarenal BK produced a significant decrease in RBF (22%) at the highest dose of BK. Results from this study show that the cardiovascular responses elicited by intrarenal BK are mediated predominantly via a B2-receptor mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号