首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The winter photosynthetic activity (quantified by net CO(2) assimilation rates and chlorophyll (Chl) a fluorescence parameters) of 20 plant species (including two lichens and two mosses) of a Hungarian temperate semi-desert sand grassland was determined on one occasion per year in 1984, 1989 and 1994. Throughout winter, the overwintering green shoots, leaves or thalli were regularly exposed to below zero temperatures at night and daytime temperatures of 0-5 degrees C. In situ tissue temperature varied between -2.1 and +6.9 degrees C and the photosynthetic photon flux density (PPFD) between 137 and 351 micromol m(-2)s(-1). Under these conditions 18 of the grassland species exhibited photosynthetic CO(2) uptake (range: vascular plants ca. 0.2-3.8 micromol m(-2)s(-1), cryptogams 0.3-2.79 micromol kg(-1)s(-1)) and values of 0.9-5.1 of the Chl fluorescence decrease ratio R(Fd). In 1984, Festuca vaginata and Sedum sexangulare had net CO(2) assimilation at leaf temperatures of -0.85 to -1.2 degrees C. In 1989, all species except Cladonia furcata showed net CO(2) assimilation at tissue temperatures of 0 to +3.3 degrees C, with the highest rates observed in Poa bulbosa and F. vaginata. The latter showed a net CO(2) assimilation saturation at a PPFD of 600 micromol m(-2)s(-1) and a temperature optimum between +5 and +18 degrees C. At the 1994 measurements, the photosynthetic rates were higher at higher tissue water contents. The two mosses and lichens had a net photosynthesis (range: 1.1-2.79 micromol CO(2)kg(-1)s(-1)) at 2 degrees C tissue temperature and at 4-5 degrees C air temperature. Ca. 80% of the vascular grassland plant species maintained a positive C-balance during the coldest periods of winter, with photosynthetic rates of 1.5-3.8 micromol CO(2)m(-2)s(-1). In an extremely warm beginning March of the relatively warm winter of 2006/2007, the dicotyledonous plants had much higher CO(2) assimilation rates on a Chl (range 6-14.9 micromol g(-1)Chl s(-1)) and on a dry weight basis (9-48 micromol kg(-1)dw s(-1)) than in the cold winter of 1994. However, the assimilation rates of the three investigated cryptogams (Tortula and two Cladonia) and the two grasses Festuca and Poa were not affected by this increase. The results indicate that the photosynthetic activity of temperate semi-desert sand grassland species can help somewhat in slowing the general CO(2) rise in winter and function as a potential carbon sink of the investigated semi-desert Hungarian grassland species.  相似文献   

2.
We investigated the effect of temperature and irradiance on leaf respiration (R, non-photorespiratory mitochondrial CO(2) release) of snow gum (Eucalyptus pauciflora Sieb. ex Spreng). Seedlings were hydroponically grown under constant 20 degrees C, controlled-environment conditions. Measurements of R (using the Laisk method) and photosynthesis (at 37 Pa CO(2)) were made at several irradiances (0-2,000 micromol photons m(-2) s(-1)) and temperatures (6 degrees C-30 degrees C). At 15 degrees C to 30 degrees C, substantial inhibition of R occurred at 12 micromol photons m(-2) s(-1), with maximum inhibition occurring at 100 to 200 micromol photons m(-2) s(-1). Higher irradiance had little additional effect on R at these moderate temperatures. The irradiance necessary to maximally inhibit R at 6 degrees C to 10 degrees C was lower than that at 15 degrees C to 30 degrees C. Moreover, although R was inhibited by low irradiance at 6 degrees C to 10 degrees C, it recovered with progressive increases in irradiance. The temperature sensitivity of R was greater in darkness than under bright light. At 30 degrees C and high irradiance, light-inhibited rates of R represented 2% of gross CO(2) uptake (v(c)), whereas photorespiratory CO(2) release was approximately 20% of v(c). If light had not inhibited leaf respiration at 30 degrees C and high irradiance, R would have represented 11% of v(c). Variations in light inhibition of R can therefore have a substantial impact on the proportion of photosynthesis that is respired. We conclude that the rate of R in the light is highly variable, being dependent on irradiance and temperature.  相似文献   

3.
Water supplemented with 10% or 20% (v/v) of Zarrouk medium was used to cultivate Spirulina platensis in closed and open bioreactors under controlled conditions (30 degrees C, 32.5 micromol m(-2) s(-1), 12 h light/dark photoperiod) and in a greenhouse (9.4 to 46 degrees C, up to 2800 micromol m(-2) s(-1), variable day length photoperiod) using different initial biomass concentrations (X0) in the extreme south of Brazil (32.05 degrees S, 52.11 degrees W). Under controlled conditions the maximum specific growth rate (micromax) was 0.102 d(-1), the biomass doubling time (t(d)) was 6.8 d, the maximum dry biomass concentration (Xmax) was 1.94 g L(-1) and the maximum productivity (Pmax) was 0.059 g L(-)1 d(-1), while the corresponding values in the greenhouse experiments were micromax = 0.322 d(-1), t(d) = 2.2 d, Xmax = 1.73 g L(-1) and Pmax = 0.112 g L(-1) d(-1). Under controlled conditions the highest values for these parameters occurred when X0 = 0.15 g L(-1), while in the greenhouse X0 = 0.4 g L(-1) produced the highest values. These results show that the cultivation of S. platensis in greenhouses in the extreme south of Brazil is technically viable and that the S. platensis inoculum and the concentration of Zarrouk medium can be combined in such a way as to obtain growth and productivity parameters comparable, or superior, to those occurring in bioreactors under controlled conditions of temperature, illuminance and photoperiod.  相似文献   

4.
Macrophytic marine red algae are a unique source of novel and bioactive terpenoids, including halogenated monoterpenes. Biomass and halogenated monoterpene production by regenerated microplantlet suspension cultures derived from the red alga Ochtodes secundiramea were studied within a perfusion airlift photobioreactor. Photobioreactor cultivations were carried out at 26 degrees C, 140 microE m(-2)s(-1) light intensity, 0.3 air L(-1) culture min(-1) aeration (3500 ppm CO(2)), and ESS/seawater medium perfusion rate of 0.2 L medium L(-1) culture d(-1). Macronutrient concentrations in the perfusion medium were adjusted to provide nitrate delivery rates of 0.0063, 0.077, and 0.74 mmol L(-1) d(-1) at a fixed N:P ratio of 19:1. Growth was maximized at the highest nutrient delivery rate, where 10 g dry biomass L(-1) culture was achieved after 30 days of cultivation. GC-MS analysis of dichloromethane extracts from cell biomass revealed that O. secundiramea microplantlets produced myrcene, three acyclic halogenated monoterpenes (10-bromomyrcene, 10-bromo-7-chloromyrcene, 3,10-dibromomyrcene), and one cyclic halogenated monoterpene (6-bromo-1,2,8-trichloro-3,4-ochtodene). 10E-bromomyrcene levels were much higher than those of its isomer 10Z-bromomyrcene, demonstrating stereoselective halogenation. Maximum yields of 10E-bromomyrcene and 6-bromo-1,2,8-trichloro-3,4-ochtodene were 15 and 13 micromol/g dry cell mass, respectively. Increasing the rate of nutrient delivery increased the accumulation of myrcene and 10-bromomyrcene during the first 14 days in culture. Furthermore, the yield selectivity toward higher halogenated monoterpenes increased as the rate of nutrient delivery decreased. From this data, a biogenic scheme was proposed where cyclic and acyclic halogenated monoterpenes are derived from sequential halogenation of myrcene, their common precursor.  相似文献   

5.
Dietary carbohydrate restriction (CR) presents a challenge to glucose homeostasis. Despite the popularity of CR diets, little is known regarding the metabolic effects of CR. The purpose of this study was to examine changes in whole body carbohydrate oxidation, glucose availability, endogenous glucose production, and peripheral glucose uptake after dietary CR, without the confounding influence of a negative energy balance. Postabsorptive rates of glucose appearance in plasma (R(a); i.e., endogenous glucose production) and disappearance from plasma (R(d); i.e., glucose uptake) were measured using isotope dilution methods after a conventional diet [60% carbohydrate (CHO), 30% fat, and 10% protein; kcals = 1.3 x resting energy expenditure (REE)] and after 2 days and 7 days of CR (5% CHO, 60% fat, and 35% protein; kcals = 1.3 x REE) in eight subjects (means +/- SE; 29 +/- 4 yr; BMI 24 +/- 1 kg/m(2)) during a 9-day hospital visit. Postabsorptive plasma glucose concentration was reduced (P = 0.01) after 2 days but returned to prediet levels the next day and remained at euglycemic levels throughout the diet (5.1 +/- 0.2, 4.3 +/- 0.3, and 4.8 +/- 0.4 mmol/l for prediet, 2 days and 7 days, respectively). Glucose R(a) and glucose R(d) were reduced to below prediet levels (9.8 +/- 0.6 micromol x kg(-1) x min(-1)) after 2 days of CR (7.9 +/- 0.3 micromol x kg(-1) x min(-1)) and remained suppressed after 7 days (8.3 +/- 0.4 micromol x kg(-1) x min(-1); both P < 0.001). A greater suppression in carbohydrate oxidation, compared with the reduction in glucose R(d), led to an increased (all P 相似文献   

6.
Development times and survivorship of immature shore flies and longevity and reproduction of adult shore flies, Scatella tenuicosta Collin, reared on algae-infested filter paper, were studied at three temperatures (constant 20, 26, and 28.5 degrees C) through life table analysis. The development time for each individual life stage and the total time from egg to adult decreased with increasing temperature. Duration of the third (ultimate) larval instar ranged from 3.3 +/- 0.09 d at 20 degrees C to 1.4 +/- 0.04 d at 28.5 degrees C and was 1.7-1.9 times longer than the approximately equal first and second instars. Development of male and female shore flies from egg to adult needed an average of 14.5 +/- 0.13, 8.2 +/- 0.05, and 7.0 +/- 0.04 d at 20, 26, and 28.5 degrees C, respectively, and needed an estimated 154.4 +/- 1.2 thermal units (degree days). At these respective temperatures, adult females lived 21.8 +/- 2.2, 19.9 +/- 2.4, and 15.0 +/- 1.4 d and produced 379 +/- 62, 710 +/- 119, and 477 +/- 83 eggs during oviposition periods of 14.3 +/- 2.1, 15.0 +/- 2.2, and 10.8 +/- 1.4 d; daily lifetime egg production averaged 16.3 +/- 2.3, 33.5 +/- 3.8, and 29.7 +/- 3.5. Developmental stage-specific mortality was relatively low for all life stages at all temperatures, with maximum percent mortalities of 5.7% occurring in both the egg stage and in the third instar. The highest net reproductive rate (R(o)) was obtained for insects reared at 26 degrees C and was 329.6. The intrinsic rate of natural increase (r(m)) was highest at 28.5 degrees C and was 0.430. Generation time and doubling time of the population were shortest at 28.5 degrees C and were 12.4 and 1.6 d, respectively. Results suggested that 26 degrees C was near optimum for reproduction.  相似文献   

7.
The role of growth temperature and growth irradiance on the regulation of the stoichiometry and function of the photosynthetic apparatus was examined in the cyanobacterium Plectonema boryanum UTEX 485 by comparing mid-log phase cultures grown at either 29 degrees C/150 micromol m(-2) s(-1), 29 degrees C/750 micromol m(-2) s(-1), 15 degrees C/150 micromol m(-2) s(-1), or 15 degrees C/10 micromol m(-2) s(-1). Cultures grown at 29 degrees C/750 micromol m(-2) s(-1) were structurally and functionally similar to those grown at 15 degrees C/150 micromol m(-2) s(-1), whereas cultures grown at 29 degrees C/150 micromol m(-2) s(-1) were structurally and functionally similar to those grown at 15 degrees C/10 micromol m(-2) s(-1). The stoichiometry of specific components of the photosynthetic apparatus, such as the ratio of photosystem (PS) I to PSII, phycobilisome size and the relative abundance of the cytochrome b(6)/f complex, the plastoquinone pool size, and the NAD(P)H dehydrogenase complex were regulated by both growth temperature and growth irradiance in a similar manner. This indicates that temperature and irradiance may share a common sensing/signaling pathway to regulate the stoichiometry and function of the photosynthetic apparatus in P. boryanum. In contrast, the accumulation of neither the D1 polypeptide of PSII, the large subunit of Rubisco, nor the CF(1) alpha-subunit appeared to be regulated by the same mechanism. Measurements of P700 photooxidation in vivo in the presence and absence of inhibitors of photosynthetic electron transport coupled with immunoblots of the NAD(P)H dehydrogenase complex in cells grown at either 29 degrees C/750 micromol m(-2) s(-1) or 15 degrees C/150 micromol m(-2) s(-1) are consistent with an increased flow of respiratory electrons into the photosynthetic intersystem electron transport chain maintaining P700 in a reduced state relative to cells grown at either 29 degrees C/150 micromol m(-2) s(-1) or 15 degrees C/10 micromol m(-2) s(-1). These results are discussed in terms of acclimation to excitation pressure imposed by either low growth temperature or high growth irradiance.  相似文献   

8.
持续常温弱光(25℃/18℃,l00umol m-2 s-1)、低温弱光(12℃/12℃,100 umol m-2 s-1和7℃/7℃,l00μmolm-2s-1)均导致黄瓜生长减慢或停滞、叶绿素含量、气孔导度和净光合速率、光合电子传递速率下降以及胞间CO2浓度上升.常温弱光和12℃弱光处理对光系统II的最大光化学效率Fv/Fm无显著影响,而7℃弱光处理导致Fv/Fm的可逆性下降.常温弱光和7℃、12℃弱光处理均导致了光化学反应速率的降低以及天线热耗散和反应中心过剩能量的增加.在胁迫后,12℃弱光0比7℃弱光更有利于植株光合功能的恢复.  相似文献   

9.
We have evaluated the effects of short-term changes in incident irradiance and temperature on oxygenic photosynthesis and oxygen consumption in a hypersaline cyanobacterial mat from the Ebro Delta, Spain, in which Microcoleus chthonoplastes was the dominant phototrophic organism. The mat was incubated in the laboratory at 15, 20, 25 and 30 degrees C at incident irradiances ranging from 0 to 1,000 micromol photons m(-2) s(-1). Oxygen microsensors were used to measure steady-state oxygen profiles and the rates of gross photosynthesis, which allowed the calculation of areal gross photosynthesis, areal net oxygen production, and oxygen consumption in the aphotic layer of the mat. The lowest surface irradiance that resulted in detectable rates of gross photosynthesis increased with increasing temperature from 50 micromol photons m(-2) s(-1) at 15 degrees C to 500 micromol photons m(-2) s(-1) at 30 degrees C. These threshold irradiances were also apparent from the areal rates of net oxygen production and point to the shift of M. chthonoplastes from anoxygenic to oxygenic photosynthesis and stimulation of sulphide production and oxidation rates at elevated temperatures. The rate of net oxygen production per unit area of mat at maximum irradiance, J0, did not change with temperature, whereas, JZphot, the flux of oxygen across the lower boundary of the euphotic zone increased linearly with temperature. The rate of oxygen consumption per volume of aphotic mat increased with temperature. This increase occurred in darkness, but was strongly enhanced at high irradiances, probably as a consequence of increased rates of photosynthate exudation, stimulating respiratory processes in the mat. The compensation irradiance (Ec) marking the change of the mat from a heterotrophic to an autotrophic community, increased exponentially in this range of temperatures.  相似文献   

10.
Colonies of Pocillopora damicornis from Kaneohe Bay and colonies of Pocillopora meandrina from a thermal outfall site and a control site at Kahe were exposed to three different temperatures (29, 32 and 33 degrees C) in outdoor aquaria on running water tables for five days. Samples (n=3) were taken from each treatment at 0800, 1200 and 1600 h. ELISAs using catalase antibodies and ferric reducing/antioxidant potential (FRAP) assays were run on the samples to determine how antioxidant levels changed throughout the experiment. Light levels during the experiment were highest in the morning ( approximately 1000-1500 micromol quanta m(-2) s(-1)) and decreased to 25-60 micromol quanta m(-2) s(-1) by 1100 h and remained low until sunset. Antioxidant concentrations were highest in the morning for P. damicornis from Kaneohe and P. meandrina outfall samples. There was no significant change through the day for P. meandrina samples from the control site. The difference in response between the outfall samples and the control samples suggests that P. meandrina has acclimated to elevated temperatures found at the outfall site.  相似文献   

11.
Colonies of the massive stony coral Faviafavus were exposed to different flow speeds and levels of light, and to the addition of zooplankton prey. The relative importance of each factor in controlling polyp expansion behavior was tested. The coral polyps fully expanded when they were exposed to low light intensity (0-40 micromol m(-2) s(-1)) and high flow speed (15 cm s(-1)), regardless of prey presence. They also partially expanded under low and medium light (40-80 micromol m(-2) s(-1)) at medium flow speed (10 cm s(-1)). The corals expanded their polyps only when they were exposed to light levels below compensation irradiance (Icom: light level at which photosynthesis = respiration), which was determined to be about 107 +/- 24 micromol m(-2) s. The results presented here indicate that high flow, low light, and the presence of planktonic prey induce coral expansion. There is a hierarchy of response to these stimuli, in which light level and flow speed are dominant over prey presence. Coral response to these three factors is probably due to the relative importance of gas exchange and zooplankton prey.  相似文献   

12.
Hao XY  Han X  Li P  Yang HB  Lin ED 《应用生态学报》2011,22(10):2776-2780
利用FACE系统在大田条件下通过盆栽试验研究了大气CO2浓度升高[CO2浓度平均为(550+60) μmol·mo1-1]对绿豆叶片光合生理和叶绿素荧光参数的影响.结果表明:与对照[ CO2浓度平均为(389+40) μmol·mol-1左右]相比,大气CO2浓度升高使花荚期绿豆叶片净光合速率(Pn)和胞间CO2浓度(Ci)分别升高11.7%和9.8%,气孔导度(Gs)和蒸腾速率(Tr)分别下降32.0%和24.6%,水分利用效率(WUE)提高83.5%;在蕾期,CO2浓度升高对绿豆叶片叶绿素初始荧光(Fo)、最大荧光(Fm)、可变荧光(Fv)、Fv/Fm和Fv/Fo没有显著影响;在鼓粒期,CO2浓度升高使绿豆叶片Fo增加19.1%,Fm和Fv分别下降9.0%和14.3%,Fv/Fo和Fv/Fm分别下降25.8%和6.2%.表明大气CO2浓度升高可能使绿豆生长后期光系统Ⅱ反应中心结构受到破坏,叶片的光合能力下降.  相似文献   

13.
以“津春4号”黄瓜为试材,通过测定黄瓜叶片叶绿素荧光快速诱导动力学曲线和对820 nm光的吸收曲线,结合叶绿素荧光淬灭分析,研究低温光胁迫(4℃,200 μmol·m-2·s-1)6 h后,黄瓜叶片在常温(25℃)不同光强(0、15、200μmol·m-2·s-1)下PS Ⅰ和PS Ⅱ活性的恢复,以及恢复过程中PS Ⅰ与PS Ⅱ的相互作用.结果表明:低温光胁迫6h后,PS Ⅰ和PS Ⅱ发生不同程度的光抑制.在常温恢复阶段,PS Ⅱ活性快速恢复且对光强不敏感;PS Ⅰ活性在弱光下(15 μmol·m-2·s-1)快速恢复,在较强光(200 μmol·m-2·s-1)下恢复较慢.在低温光抑制恢复过程中,常温下PS Ⅱ活性恢复较快可能导致PS Ⅱ向PS Ⅰ的线性电子传递过快,进而抑制PS Ⅰ的活性恢复.因此,在进行黄瓜抗冷性育种时,不应该仅追求较高的PS Ⅱ抗性和较快的PS Ⅱ恢复速度,还应该注意两个光系统活性的协调.在生产中,应当在低温逆境发生及其之后较长一段时间内采取措施降低叶表面光照强度,以利于对植株光合机构的保护和光合活性的恢复.  相似文献   

14.
We report here on efforts to show that a combination of native wetland plant species might perform better than a monoculture in wetlands designed for arsenic remediation by supplementing weaknesses. Carex stricta and Spartina pectinata were used in hydroponic experiments. (i) Arsenic uptake was first assessed at two ages via exposure to control or arsenic-laden solutions (0 or 1.5 mg As L(-1) as Na2HAsO4) for two weeks. Age had no significant effect on arsenic concentrations in roots, but translocation factors were greater in older plants of C. stricta and S. pectinata (0.45 and 0.07, respectively) than in younger plants (0.10 and 0.01, respectively). (ii) Seasonal effects were assessed by determining uptake kinetics for both species in conditions representative of spring temperatures (15/5 degrees C) and light regimes (1050 micromol m(-2) s(-1), 13 h day(-1)) and summer temperatures (28/17 degrees C) and light regimes (1300 micromol m(-2) s(-1), 15 h day(-1)). Both species had comparable rates of arsenic uptake into roots in summer conditions (44.0 and 46.5 mg As kg(-1) dry wt. h(-1) in C. stricta and S. pectinata, respectively), but C. stricta had a higher maximum net influx rate in spring conditions (24.5 versus 10.4 mg As kg(-1) dry wt. h(-1)).  相似文献   

15.
The differences in pigment levels and photosynthetic activity of green sun and shade leaves of ginkgo (Ginkgo biloba L.) and beech (Fagus sylvatica L.) are described. Sun leaves of both tree species possessed higher levels in chlorophylls (Chl) and carotenoids on a leaf area basis, higher values for the ratio Chl a/b and lower values for the ratio Chl/carotenoids (a+b)/(x+c) in comparison to shade leaves. The higher photosynthetic rates P(N) of sun leaves (ginkgo 5.4+/-0.9 and beech 8.5+/-2.1 micromol m(-2)s(-1)) were also reflected by higher values for the Chl fluorescence decrease ratios R(F)(d) 690 and R(F)(d) 735. In contrast, the shade leaves had lower P(N) rates (ginkgo 2.4+/-0.3 and beech 1.8+/-1.2 micromol m(-2)s(-1)). In both tree species the stomatal conductance G(s) was significantly higher in sun (range: 70-19 1 mmol m(-2)s(-1)) as compared to shade leaves (range: 5-55 mmol m(-2)s(-1)). In fact, at saturating light conditions there existed a close correlation between G(s) values and P(N) rates. Differences between sun and shade leaves also existed in several other Chl fluorescence ratios (F(v)/F(m), F(v)/F(o), and the stress adaptation index Ap). The results clearly demonstrate that the fan-shaped gymnosperm ginkgo leaves show the same high and low irradiance adaptation response as the angiosperm beech leaves.  相似文献   

16.
The analysis and interpretation of A/C(i) curves (net CO(2) assimilation rate, A, versus calculated substomatal CO(2) concentration, C(i)) is dependent upon a number of underlying assumptions. The influence of the C(i) value at which the A/C(i) curve switches between the Rubisco- and electron transport-limited portions of the curve was examined on A/C(i) curve parameter estimates, as well as the effect of mesophyll CO(2) conductance (g(m)) values on estimates of the maximum rate of Rubisco-mediated carboxylation (V(cmax)). Based on an analysis using 19 woody species from the Pacific Northwest, significant variation occurred in the C(i) value where the Rubisco- and electron transport-limited portions of the curve intersect (C(i_t)), ranging from 20 Pa to 152 Pa and averaging c. 71 Pa and 37 Pa for conifer and broadleaf species, respectively. Significant effects on estimated A/C(i) parameters (e.g. V(cmax)) may arise when preliminary estimates of C(i_t), necessary for the multiple regression analyses, are set either too high or too low. However, when the appropriate threshold is used, a significant relationship between A/C(i) and chlorophyll fluorescence estimates of carboxylation is achieved. The use of the V(cmax) parameter to describe accurately the Rubisco activity from the A/C(i) curve analysis is also dependent upon the assumption that C(i) is approximately equal to chloroplast CO(2) concentrations (C(c)). If leaf mesophyll conductance is low, C(c) will be much lower than C(i) and will result in an underestimation of V(cmax) from A/C(i) curves. A large range of mesophyll conductance (g(m)) values was observed across the 19 species (0.005+/-0.002 to 0.189+/-0.011 mol m(-2) s(-1) for Tsuga heterophylla and Quercus garryana, respectively) and, on average, g(m) was 1.9 times lower for the conifer species (0.058+/-0.017 mol m(-2) s(-1) for conifers versus 0.112+/-0.020 mol m(-2) s(-1) for broadleaves). When this mesophyll limitation was accounted for in V(cmax) estimates, considerable variation still existed between species, but the difference in V(cmax) between conifer and broadleaf species was reduced from c. 11 micromol m(-2) s(-1) to 4 micromol m(-2) s(-1). For example, A/C(i) curve estimates of V(cmax) were 31.2+/-6.2 and 42.2+/-4.4 micromol m(-2) s(-1), and A/C(c) curve estimates were 41.2+/-7.1 micromol m(-2) s(-1) and 45.0+/-4.8 micromol m(-2) s(-1), for the conifer and broadleaf species, respectively.  相似文献   

17.
遮荫条件下绞股蓝光合作用特点的研究   总被引:14,自引:2,他引:12  
在夏季遮荫条件下栽培绞股蓝的净光合速率日变化呈现不典型的双峰曲线,第1峰值出现在11:00时,达13.8μmolCO2·m^-2·S^-1日净光合速率达到176.97μmol CO2·m^-2,是强光下栽培的3.1倍;净光合速率和光量子通量密度呈正相关,相对湿度对净光合速率的影响小.强光下栽培绞股蓝。光合作用“午休”现象明显,净光合速率日变化呈现双峰曲线,第1峰值出现在10:00时,为3.0μmol CO2·m^-2·s^-1.第2峰值出现在14:00时,为1.25μmol CO2·m^-2·s^-1;相对湿度与净光合速率成正相关,对净光合速率的影响大.当光量子通量超过700μmol·m^-2·s^-1时,净光合速率与光量子通量密度呈负相关.在影响该植物蒸腾速率的诸多因子中,蒸腾速率和气孔导度之间的相关性最为显著.因此绞股蓝属于高度耐荫而怕光的植物.人工栽培应重点考虑光照因子.  相似文献   

18.
AIMS: beta-d-fructofuranosidase fructohydrolase (FFH, EC 3.2.1.26) is an enzyme which hydrolyses the alpha-1,4 glycosidic bonds of sucrose and releases monosaccharides. The present study deals with the kinetics of improved extracellular FFH production by Saccharomyces cerevisiae in batch culture. MATERIALS AND RESULTS: Strains of S. cerevisiae can show increased FFH activity when grown on chemically defined medium. In the present study, wild-culture S. cerevisiae GCB-IV was mutated by treatment with ethyl methane sulfonate (EMS). Among six yeast mutants, EMS-II was found to be the highest FFH-producing strain (51.46 +/- 2.4 U ml(-1)). Maximum FFH production (78.46 +/- 3.2 U ml(-1)) was obtained 48 h after incubation by this 2-deoxy-d-glucose (2dg)-resistant mutant (76.20 mg ml(-1) protein). The optimal concentration of sucrose, incubation period and initial pH were 30.0 g l(-1), 28 degrees C and 6.5, respectively. The mutant EMS-II showed improvement in FFH production when 5.0 g l(-1) urea was added as a sole nitrogen source into SAPY medium. Values for Q(p) (1.802 +/- 0.2 U ml(-1) h(-1)) and Y(p/s) (3.460 +/- 1.1 U g(-1)) of EMS-II were significantly improved over the other yeast strains. CONCLUSION: The E(a) value (40.28 +/- 3.5 kJ mol(-1)) of EMS-II was significant (P 相似文献   

19.
Dynamics of nitric oxide release in the cardiovascular system   总被引:5,自引:0,他引:5  
The endothelium plays a critical role in maintaining vascular tone by releasing nitric oxide (NO). Endothelium derived NO diffuses to smooth muscles, triggering their relaxation. The dynamic of NO production is a determining factor in signal transduction. The present studies were designed to elucidate dynamics of NO release from normal and dysfunctional endothelium. The nanosensors (diameter 100-300 nm) exhibiting a response time better than 100 micros and detection limit of 1.0 x 10(-9) mol L(-1) were used for in vitro monitoring of NO release from single endothelial cells from the iliac artery of normotensive (WKY) rats, hypertensive (SHR) rats, and normal and cholesterolemic rabbits. Also, the dynamics and distribution of NO in left ventricular wall of rabbit heart were measured. The rate of NO release was much higher (1200 +/- 50 nmol L(-1) s(-1)) for WKY than for SHR (460 +/- 10 nmol L(-1) s(-1)). Also, the peak NO concentration was about three times higher for WKY than SHR. Similar decrease in the dynamics of NO release was observed for cholesterolemic rabbits. The dynamics of NO release changed dramatically along the wall of rabbit aorta, being highest (0.86 +/- 0.12 micromol L(-1)) for the ascending aorta, and lowest for the iliac aorta (0.48 +/- 0.15 micromol L(-1)). The distribution of NO in the left ventricular wall of rabbit heart was not uniform and varied from 1.23 +/- 0.20 micromol L(-1) (center) to 0.90 +/- 0.15 micromol L(-1) (apex). Both, the maximal concentration and the dynamics of NO release can be useful diagnostic tools in estimating the level of endothelial dysfunction and cardiovascular system efficiency.  相似文献   

20.
In the present study, we tested the hypothesis that intrinsic differences in ATP consumption rate per cross bridge exist across rat diaphragm muscle (Dia(m)) fibers expressing different myosin heavy chain (MHC) isoforms. During maximum Ca(2+) activation (pCa 4.0) of single, Triton X-permeabilized Dia(m) fibers, isometric ATP consumption rate was determined by using an NADH-linked fluorometric technique. The MHC concentration in single Dia(m) fibers was determined by densitometric analysis of SDS-PAGE gels and comparison to a standard curve of known MHC concentrations. Isometric ATP consumption rate varied across Dia(m) fibers expressing different MHC isoforms, being highest in fibers expressing MHC(2X) (1.14 +/- 0.08 nmol. mm(-3). s(-1)) and/or MHC(2B) (1.33 +/- 0.08 nmol. mm(-3). s(-1)), followed by fibers expressing MHC(2A) (0.77 +/- 0.11 nmol. mm(-3). s(-1)) and MHC(Slow) (0.46 +/- 0.03 nmol. mm(-3). s(-1)). These differences in ATP consumption rate also persisted when it was normalized for MHC concentration in single Dia(m) fibers. Normalized ATP consumption rate for MHC concentration varied across Dia(m) fibers expressing different MHC isoforms, being highest in fibers expressing MHC(2X) (2.02 +/- 0.19 s(-1)) and/or MHC(2B) (2.64 +/- 0.15 s(-1)), followed by fibers expressing MHC(2A) (1.57 +/- 0.16 s(-1)) and MHC(Slow) (0.77 +/- 0.05 s(-1)). On the basis of these results, we conclude that there are intrinsic differences in ATP consumption rate per cross bridge in Dia(m) fibers expressing MHC isoforms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号