首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Although significant progress has been made in protein quantification using mass spectrometry during recent years, absolute protein quantification in complex biological systems remains a challenging task in proteomics. The use of stable isotope-labeled standard peptide is the most commonly used strategy for absolute quantification, but it might not be suitable in all instances. Here we report an alternative strategy that employs a stable isotope-labeled intact protein as an internal standard to absolutely quantify the alcohol dehydrogenase (ADH) expression level in a human liver sample. In combination with a new targeted proteomics approach employing the method of multiple reaction monitoring (MRM), we precisely and quantitatively measured the absolute protein expression level of an ADH isoenzyme, ADH1C1, in human liver. Isotope-labeled protein standards are predicted to be particularly useful for measurement of highly homologous isoenzymes such as ADHs where multiple signature peptides can be examined by MRM in a single experiment.  相似文献   

2.
Accurate quantification of pure peptides and proteins is essential for biotechnology, clinical chemistry, proteomics, and systems biology. The reference method to quantify peptides and proteins is amino acid analysis (AAA). This consists of an acidic hydrolysis followed by chromatographic separation and spectrophotometric detection of amino acids. Although widely used, this method displays some limitations, in particular the need for large amounts of starting material. Driven by the need to quantify isotope-dilution standards used for absolute quantitative proteomics, particularly stable isotope-labeled (SIL) peptides and PSAQ proteins, we developed a new AAA assay (AAA-MS). This method requires neither derivatization nor chromatographic separation of amino acids. It is based on rapid microwave-assisted acidic hydrolysis followed by high-resolution mass spectrometry analysis of amino acids. Quantification is performed by comparing MS signals from labeled amino acids (SIL peptide- and PSAQ-derived) with those of unlabeled amino acids originating from co-hydrolyzed NIST standard reference materials. For both SIL peptides and PSAQ standards, AAA-MS quantification results were consistent with classical AAA measurements. Compared to AAA assay, AAA-MS was much faster and was 100-fold more sensitive for peptide and protein quantification. Finally, thanks to the development of a labeled protein standard, we also extended AAA-MS analysis to the quantification of unlabeled proteins.  相似文献   

3.
4.
The main goal of many proteomics experiments is an accurate and rapid quantification and identification of regulated proteins in complex biological samples. The bottleneck in quantitative proteomics remains the availability of efficient software to evaluate and quantify the tremendous amount of mass spectral data acquired during a proteomics project. A new software suite, ICPLQuant, has been developed to accurately quantify isotope‐coded protein label (ICPL)‐labeled peptides on the MS level during LC‐MALDI and peptide mass fingerprint experiments. The tool is able to generate a list of differentially regulated peptide precursors for subsequent MS/MS experiments, minimizing time‐consuming acquisition and interpretation of MS/MS data. ICPLQuant is based on two independent units. Unit 1 performs ICPL multiplex detection and quantification and proposes peptides to be identified by MS/MS. Unit 2 combines MASCOT MS/MS protein identification with the quantitative data and produces a protein/peptide list with all the relevant information accessible for further data mining. The accuracy of quantification, selection of peptides for MS/MS‐identification and the automated output of a protein list of regulated proteins are demonstrated by the comparative analysis of four different mixtures of three proteins (Ovalbumin, Horseradish Peroxidase and Rabbit Albumin) spiked into the complex protein background of the DGPF Proteome Marker.  相似文献   

5.
Tandem MS (MS2) quantification using the series of N‐ and C‐terminal fragment ion pairs generated from isobaric‐labelled peptides was recently considered an accurate strategy in quantitative proteomics. However, the presence of multiplexed terminal fragment ion in MS2 spectra may reduce the efficiency of peptide identification, resulting in lower identification scores or even incorrect assignments. To address this issue, we developed a quantitative software tool, denoted isobaric tandem MS quantification (ITMSQ), to improve N‐ and C‐terminal fragment ion pairs based isobaric MS2 quantification. A spectrum splitting module was designed to separate the MS2 spectra from different samples, increasing the accuracy of both identification and quantification. ITMSQ offers a convenient interface through which parameters can be changed along with the labelling method, and the result files and all of the intermediate files can be exported. We performed an analysis of in vivo terminal amino acid labelling labelled HeLa samples and found that the numbers of quantified proteins and peptides increased by 13.64 and 27.52% after spectrum splitting, respectively. In conclusion, ITMSQ provides an accurate and reliable quantitative solutionfor N‐ and C‐terminal fragment ion pairs based isobaric MS2 quantitative methods.  相似文献   

6.
MS‐based proteomics has emerged as a powerful tool in biological studies. The shotgun proteomics strategy, in which proteolytic peptides are analyzed in data‐dependent mode, enables a detection of the most comprehensive proteome (>10 000 proteins from whole‐cell lysate). The quantitative proteomics uses stable isotopes or label‐free method to measure relative protein abundance. The isotope labeling strategies are more precise and accurate compared to label‐free methods, but labeling procedures are complicated and expensive, and the sample number and types are also limited. Sequential window acquisition of all theoretical mass spectra (SWATH) is a recently developed technique, in which data‐independent acquisition is coupled with peptide spectral library match. In principle SWATH method is able to do label‐free quantification in an MRM‐like manner, which has higher quantification accuracy and precision. Previous data have demonstrated that SWATH can be used to quantify less complex systems, such as spiked‐in peptide mixture or protein complex. Our study first time assessed the quantification performance of SWATH method on proteome scale using a complex mouse‐cell lysate sample. In total 3600 proteins got identified and quantified without sample prefractionation. The SWATH method shows outstanding quantification precision, whereas the quantification accuracy becomes less perfect when protein abundances differ greatly. However, this inaccuracy does not prevent discovering biological correlates, because the measured signal intensities had linear relationship to the sample loading amounts; thus the SWATH method can predict precisely the significance of a protein. Our results prove that SWATH can provide precise label‐free quantification on proteome scale.  相似文献   

7.
Precise protein quantification is essential in comparative proteomics. Currently, quantification bias is inevitable when using proteotypic peptide‐based quantitative proteomics strategy for the differences in peptides measurability. To improve quantification accuracy, we proposed an “empirical rule for linearly correlated peptide selection (ERLPS)” in quantitative proteomics in our previous work. However, a systematic evaluation on general application of ERLPS in quantitative proteomics under diverse experimental conditions needs to be conducted. In this study, the practice workflow of ERLPS was explicitly illustrated; different experimental variables, such as, different MS systems, sample complexities, sample preparations, elution gradients, matrix effects, loading amounts, and other factors were comprehensively investigated to evaluate the applicability, reproducibility, and transferability of ERPLS. The results demonstrated that ERLPS was highly reproducible and transferable within appropriate loading amounts and linearly correlated response peptides should be selected for each specific experiment. ERLPS was used to proteome samples from yeast to mouse and human, and in quantitative methods from label‐free to O18/O16‐labeled and SILAC analysis, and enabled accurate measurements for all proteotypic peptide‐based quantitative proteomics over a large dynamic range.  相似文献   

8.
Stable isotope-labeled proteotypic peptides are used as surrogate standards for absolute quantification of proteins in proteomics. However, a stable isotope-labeled peptide has to be synthesized, at relatively high cost, for each protein to be quantified. To multiplex protein quantification, we developed a method in which gene design de novo is used to create and express artificial proteins (QconCATs) comprising a concatenation of proteotypic peptides. This permits absolute quantification of multiple proteins in a single experiment. This complete study was constructed to define the nature, sources of error, and statistical behavior of a QconCAT analysis. The QconCAT protein was designed to contain one tryptic peptide from 20 proteins present in the soluble fraction of chicken skeletal muscle. Optimized DNA sequences encoding these peptides were concatenated and inserted into a vector for high level expression in Escherichia coli. The protein was expressed in a minimal medium containing amino acids selectively labeled with stable isotopes, creating an equimolar series of uniformly labeled proteotypic peptides. The labeled QconCAT protein, purified by affinity chromatography and quantified, was added to a homogenized muscle preparation in a known amount prior to proteolytic digestion with trypsin. As anticipated, the QconCAT was completely digested at a rate far higher than the analyte proteins, confirming the applicability of such artificial proteins for multiplexed quantification. The nature of the technical variance was assessed and compared with the biological variance in a complete study. Alternative ionization and mass spectrometric approaches were investigated, particularly LC-ESI-TOF MS and MALDI-TOF MS, for analysis of proteins and tryptic peptides. QconCATs offer a new and efficient approach to precise and simultaneous absolute quantification of multiple proteins, subproteomes, or even entire proteomes.  相似文献   

9.
Virtually all mass spectrometric-based methods for quantitative proteomics are at the peptide level, whether label-mediated or label-free. Absolute quantification in particular is based on the measurement of limit peptides, defined as those peptides that cannot be further fragmented by the protease in use. Complete release of analyte and (stable isotope labelled) standard ensures that the most reliable quantification data are recovered, especially when the standard peptides are in a different primary sequence context, such as sometimes occurs in the QconCAT methodology. Moreover, in label-free methods, incomplete digestion would diminish the ion current attributable to limit peptides and lead to artifactually low quantification data. It follows that an essential requirement for peptide-based absolute quantification in proteomics is complete and consistent proteolysis to limit peptides. In this paper we describe strategies to assess completeness of proteolysis and discuss the potential for variance in digestion efficiency to compromise the ensuing quantification data. We examine the potential for kinetically favoured routes of proteolysis, particularly at the last stages of the digestion, to direct products into ‘dead-end’ mis-cleaved products.  相似文献   

10.
Stable isotope labeling is at present one of the most powerful methods in quantitative proteomics. Stable isotope labeling has been performed at both the protein as well as the peptide level using either metabolic or chemical labeling. Here, we present a straightforward and cost-effective triplex quantification method that is based on stable isotope dimethyl labeling at the peptide level. Herein, all proteolytic peptides are chemically labeled at their alpha- and epsilon-amino groups. We use three different isotopomers of formaldehyde to enable the parallel analysis of three different samples. These labels provide a minimum of 4 Da mass difference between peaks in the generated peptide triplets. The method was evaluated based on the quantitative analysis of a cell lysate, using a typical "shotgun" proteomics experiment. While peptide complexity was increased by introducing three labels, still more than 1300 proteins could be identified using 60 microg of starting material, whereby more than 600 proteins could be quantified using at least four peptides per protein. The triplex labeling was further utilized to distinguish specific from aspecific cAMP binding proteins in a chemical proteomics experiment using immobilized cAMP. Thereby, differences in abundance ratio of more than two orders of magnitude could be quantified.  相似文献   

11.
There is a great interest in reliable ways to obtain absolute protein abundances at a proteome‐wide scale. To this end, label‐free LC‐MS/MS quantification methods have been proposed where all identified proteins are assigned an estimated abundance. Several variants of this quantification approach have been presented, based on either the number of spectral counts per protein or MS1 peak intensities. Equipped with several datasets representing real biological environments, containing a high number of accurately quantified reference proteins, we evaluate five popular low‐cost and easily implemented quantification methods (Absolute Protein Expression, Exponentially Modified Protein Abundance Index, Intensity‐Based Absolute Quantification Index, Top3, and MeanInt). Our results demonstrate considerably improved abundance estimates upon implementing accurately quantified reference proteins; that is, using spiked in stable isotope labeled standard peptides or a standard protein mix, to generate a properly calibrated quantification model. We show that only the Top3 method is directly proportional to protein abundance over the full quantification range and is the preferred method in the absence of reference protein measurements. Additionally, we demonstrate that spectral count based quantification methods are associated with higher errors than MS1 peak intensity based methods. Furthermore, we investigate the impact of miscleaved, modified, and shared peptides as well as protein size and the number of employed reference proteins on quantification accuracy.  相似文献   

12.
Stable isotope labeling (SIL) methods coupled with nanoscale liquid chromatography and high resolution tandem mass spectrometry are increasingly useful for elucidation of the proteome-wide differences between multiple biological samples. Development of more effective programs for the sensitive identification of peptide pairs and accurate measurement of the relative peptide/protein abundance are essential for quantitative proteomic analysis. We developed and evaluated the performance of a new program, termed UNiquant, for analyzing quantitative proteomics data using stable isotope labeling. UNiquant was compared with two other programs, MaxQuant and Mascot Distiller, using SILAC-labeled complex proteome mixtures having either known or unknown heavy/light ratios. For the SILAC-labeled Jeko-1 cell proteome digests with known heavy/light ratios (H/L = 1:1, 1:5, and 1:10), UNiquant quantified a similar number of peptide pairs as MaxQuant for the H/L = 1:1 and 1:5 mixtures. In addition, UNiquant quantified significantly more peptides than MaxQuant and Mascot Distiller in the H/L = 1:10 mixtures. UNiquant accurately measured relative peptide/protein abundance without the need for postmeasurement normalization of peptide ratios, which is required by the other programs.  相似文献   

13.
Mass spectrometry, specifically the analysis of complex peptide mixtures by liquid chromatography and tandem mass spectrometry (shotgun proteomics) has been at the centre of proteomics research for the past decade. To overcome some of the fundamental limitations of the approach, including its limited sensitivity and high degree of redundancy, new proteomic workflows are being developed. Among these, targeting methods in which specific peptides are selectively isolated, identified and quantified are particularly promising. Here we summarize recent incremental advances in shotgun proteomic methods and outline emerging targeted workflows. The development of the target-driven approaches with their ability to detect and quantify identical, non-redundant sets of proteins in multiple repeat analyses will be crucially important for the application of proteomics to biomarker discovery and validation, and to systems biology research.  相似文献   

14.
Mass spectrometry has served as a major tool for the discipline of proteomics to catalogue proteins in an unprecedented scale. With chemical and metabolic techniques for stable isotope labeling developed over the past decade, it is now routinely used as a method for relative quantification to provide valuable information on alteration of protein abundance in a proteome-wide scale. More recently, absolute or stoichiometric quantification of proteome is becoming feasible, in particular, with the development of strategies with isotope-labeled standards composed of concatenated peptides. On the other hand, remarkable progress has been also made in label-free quantification methods based on the number of identified peptides. Here we review these mass spectrometry-based approaches for absolute quantification of proteome and discuss their implications.Key Words: Quantitative proteomics, mass spectrometry, absolute quantification, stable isotope labeling, label-free.  相似文献   

15.
Transformation of engineered Escherichia coli into a robust microbial factory is contingent on precise control of metabolism. Yet, the throughput of omics technologies used to characterize cell components has lagged far behind our ability to engineer novel strains. To expand the utility of quantitative proteomics for metabolic engineering, we validated and optimized targeted proteomics methods for over 400 proteins from more than 20 major pathways in E. coli metabolism. Complementing these methods, we constructed a series of synthetic genes to produce concatenated peptides (QconCAT) for absolute quantification of the proteins and made them available through the Addgene plasmid repository (www.addgene.org). To facilitate high sample throughput, we developed a fast, analytical-flow chromatography method using a 5.5-min gradient (10 min total run time). Overall this toolkit provides an invaluable resource for metabolic engineering by increasing sample throughput, minimizing development time and providing peptide standards for absolute quantification of E. coli proteins.  相似文献   

16.
Over the past decade, a number of endogenous peptides and endogenous peptide analogs have been employed in therapeutics and as diagnostic markers. The use of peptides as standards for the absolute quantification of proteins has become commonly accepted. Consequently, the requirement for standard peptides traceable to the International System of Units with low associated measurement uncertainty, and for accurate methods of peptide quantification, has increased. Here we describe a method of peptide quantification involving microwave-assisted acid hydrolysis followed by gas chromatography–mass spectrometry that enables traceable quantification of a peptide by exact matching isotope dilution mass spectrometry where the total hydrolysis time required is only 3 h. A solution of angiotensin I was quantified using this method, and the results were in agreement with those obtained previously using an oven hydrolysis liquid chromatography–tandem mass spectrometry method.  相似文献   

17.
In various areas of research, proteomics and particularly the quantification of proteins and peptides renders a useful addition to biochemical experiments. The range of possible applications varies from supervision of concentration changes of relevant proteins during biogenesis to differential proteomics approaches, distinguishing, for instance, healthy and diseased states. Furthermore, mass spectrometry-based peptide quantification yields the possibility of using highly sensitive bottom-up approaches for determination of protein regulations as well as multiplexing capability. Thereby, changes in protein abundances may be linked to specific cellular states bearing the opportunity to reveal marker proteins for several diseases.  相似文献   

18.
定量蛋白质组学已经成为组学领域研究的热点之一.相关实验技术和计算方法的不断创新极大地促进了定量蛋白质组学的飞速发展.常用的定量蛋白质组学策略按照是否需要稳定同位素标记可以分为无标定量和有标定量两大类.每类策略又产生了众多定量方法和工具,它们一方面推动了定量蛋白质组学的深入发展;另一方面,也在实验策略与技术的发展过程中不断更新.因此对这些定量实验策略和方法进行系统总结和归纳将有助于定量蛋白质组学的研究.本文主要从方法学角度全面归纳了目前定量蛋白质组学研究的相关策略和算法,详述了无标定量和有标定量的具体算法流程并比较了各自特点,还对以研究蛋白质绝对丰度为目标的绝对定量算法进行了总结,列举了常用的定量软件和工具,最后概述了定量结果的质量控制方法,对定量蛋白质组学方法发展的前景进行了展望.  相似文献   

19.
Proteomic profiling by MALDI‐TOF MS presents various advantages (speed of analysis, ease of use, relatively low cost, sensitivity, tolerance against detergents and contaminants, and possibility of automation) and is being currently used in many applications (e.g. peptide/protein identification and quantification, biomarker discovery, and imaging MS). Earlier studies by many groups indicated that moderate reproducibility in relative peptide quantification is a major limitation of MALDI‐TOF MS. In the present work, we examined and demonstrate a clear effect, in cases apparently random, of sample dilution in complex samples (urine) on the relative quantification of peptides by MALDI‐TOF MS. Results indicate that in urine relative abundance of peptides cannot be assessed with confidence based on a single MALDI‐TOF MS spectrum. To account for this issue, we developed and propose a novel method of determining the relative abundance of peptides, taking into account that peptides have individual linear quantification ranges in relation to sample dilution. We developed an algorithm that calculates the range of dilutions at which each peptide responds in a linear manner and normalizes the received peptide intensity values accordingly. This concept was successfully applied to a set of urine samples from patients diagnosed with diabetes presenting normoalbuminuria (controls) and macroalbuminuria (cases).  相似文献   

20.
Amine-reactive isobaric tagging reagents such as iTRAQ (isobaric tags for relative and absolute quantitation) have recently become increasing popular for relative protein quantification, cell expression profiling, and biomarker discovery. This is due mainly to the possibility of simultaneously identifying and quantifying multiple samples. The principles of iTRAQ may also be applied to absolute protein quantification with the use of synthetic peptides as standards. The prerequisites that must be fulfilled to perform absolute quantification of proteins by iTRAQ have been investigated and are described here. Three samples of somatropin were quantified using iTRAQ and synthetic peptides as standards, corresponding to a portion of the protein sequence. The results were compared with those obtained by quantification of the same protein solutions using double exact matching isotope dilution mass spectrometry (IDMS). To obtain reliable results, the appropriate standard peptides needed to be selected carefully and enzymatic digestion needed to be optimized to ensure complete release of the peptides from the protein. The kinetics and efficiency of the iTRAQ derivatization reaction of the standard peptides and digested proteins with isobaric tagging reagents were studied using a mixture of seven synthetic peptides and their corresponding labeled peptides. The implications of incomplete derivatization are also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号