首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hard carbon (HC) is the state‐of‐the‐art anode material for sodium‐ion batteries (SIBs). However, its performance has been plagued by the limited initial Coulombic efficiency (ICE) and mediocre rate performance. Here, experimental and theoretical studies are combined to demonstrate the application of lithium‐pretreated HC (LPHC) as high‐performance anode materials for SIBs by manipulating the solid electrolyte interphase in tetraglyme (TEGDME)‐based electrolyte. The LPHC in TEGDME can 1) deliver > 92% ICE and ≈220 mAh g?1 specific capacity, twice of the capacity (≈100 mAh g?1) in carbonate electrolyte; 2) achieve > 85% capacity retention over 1000 cycles at 1000 mA g?1 current density (4 C rate, 1 C = 250 mA g?1) with a specific capacity of ≈150 mAh g?1, ≈15 times of the capacity (10 mAh g?1) in carbonate. The full cell of Na3V2(PO4)3‐LPHC in TEGDME demonstrated close to theoretical specific capacity of ≈98 mAh g?1 based on Na3V2(PO4)3 cathode, ≈2.5 times of the value (≈40 mAh g?1) with nontreated HC. This work provides new perception on the anode development for SIBs.  相似文献   

2.
The design and fabrication of high‐performance all‐plastic batteries is essentially important to achieve future flexible electronics. A major challenge in this field is the lack of stable and reliable soft organic electrodes with satisfactory performance. Here, a novel all‐plastic‐electrode based Li‐ion battery with a single flexible bi‐functional ladderized heterocyclic poly(quinone), (C6O2S2)n, as both cathode and anode is demonstrated. Benefiting from its unique ladder‐like quinone and dithioether structure, the as‐prepared polymer cathode shows a high energy density of 624 Wh kg?1 (vs lithium anode) and a stable battery life of 1000 cycles. Moreover, the as‐fabricated symmetric full‐battery delivers a large capacity of 249 mAh g?1 (at 20 mA g?1), a good capacity retention of 119 mAh g?1 after 250 cycles (at 1.0 A g?1) and a noteworthy energy density up to 276 Wh kg?1. The superior performance of poly(2,3‐dithiino‐1,4‐benzoquinone)‐based electrode rivals most of the state‐of‐the‐art demonstrations on organic‐based metal‐ion shuttling batteries. The study provides an effective strategy to develop stable bi‐functional electrode materials toward the next‐generation of high performance all‐plastic batteries.  相似文献   

3.
SnS2 nanoplatelet electrodes can offer an exceptionally high pseudocapacitance in an organic Na+ ion electrolyte system, but their underlying mechanisms are still largely unexplored, hindering the practical applications of pseudocapacitive SnS2 anodes in Na‐ion batteries (SIBs) and Na hybrid capacitors (SHCs). Herein, SnS2 nanoplatelets are grown directly on SnO2/C composites to synthesize SnS2/graphene‐carbon nanotube aerogel (SnS2/GCA) by pressurized sulfidation where the original morphology of carbon framework is preserved. The composite electrode possessing a large surface area delivers a remarkable specific capacity of 600.3 mA h g?1 at 0.2 A g?1 and 304.8 mA h g?1 at an ultrahigh current density of 10 A g?1 in SIBs. SHCs comprising a SnS2/GCA composite anode and an activated carbon cathode present exceptional energy densities of 108.3 and 26.9 W h kg?1 at power densities of 130 and 6053 W kg?1, respectively. The in situ transmission electron microscopy and the density functional theory calculations reveal that the excellent pseudocapacitance originates from the combination of Na adsorption on the surface/Sn edge of SnS2 nanoplatelets and ultrafast Na+ ion intercalation into the SnS2 layers.  相似文献   

4.
Sodium‐ion capacitors (SICs) are emerging energy storage devices with high energy, high power, and durable life. Sn is a promising anode material for lithium storage, but the poor conductivity of the a‐NaSn phase upon sodaition hinders its implementation in SICs. Herein, a superior Sn‐based anode material consisting of plum pudding‐like Co2P/Sn yolk encapsulated with nitrogen‐doped carbon nanobox (Co2P/Sn@NC) for high‐performance SICs is reported. The 8–10 nm metallic nanoparticles produced in situ are uniformly dispersed in the amorphous Sn matrix serving as conductive fillers to facilitate electron transfer in spite of the formation of electrically resistive a‐NaSn phase during cycling. Meanwhile, the carbon shell buffers the large expansion of active Sn and provides a stable electrode–electrolyte interface. Owing to these merits, the yolk–shell Co2P/Sn@NC demonstrates a large capacity of 394 mA h g?1 at 100 mA g?1, high rate capability of 168 mA h g?1 at 5000 mA g?1, and excellent cyclability with 87% capacity retention after 10 000 cycles. By integrating the Co2P/Sn@NC anode with a peanut shell‐derived carbon cathode in the SIC, high energy densities of 112.3 and 43.7 Wh kg?1 at power densities of 100 and 10 000 W kg?1 are achieved.  相似文献   

5.
Pseudocapacitance is a Faradaic process that involves surface or near surface redox reactions. Increasing the pseudocapacitive contribution is one of the most effective means to improve the rate performance of electrode materials. In this study, graphene oxide is used as a template to in situ synthesize burr globule‐like FeSe2/graphene hybrid (B‐FeSe2/G) using a facile one‐step hydrothermal method. Structural characterization demonstrates that graphene layers not only wrap the surfaces of FeSe2 particles, but also stretch into the interior of these particles, as a result of which the unique nano‐microsphere structure is successfully established. When serving as anode material for Na‐ion batteries, B‐FeSe2/G hybrid displays high electrochemical performance in the voltage range of 0.5–2.9 V. The B‐FeSe2/G hybrid has high reversible capacity of 521.6 mAh·g?1 at 1.0 A g?1. Meanwhile, after 400 cycles, high discharge capacity of 496.3 mAh g?1 is obtained at a rate of 2.5 A g?1, with a high columbic efficiency of 96.6% and less than 1.0% loss of discharge capacity. Even at the ultrahigh rate of 10 A g?1, a specific capacity of 316.8 mAh g?1 can be achieved. Kinetic analyses reveal that the excellent performance of the B‐FeSe2/G hybrid is largely attributed to the high pseudocapacitive contribution induced by the special nano‐micro structure.  相似文献   

6.
Potassium‐ion hybrid capacitors (PIHCs), elaborately integrate the advantages of high output power as well as long lifespan of supercapacitors and the high energy density of batteries, and exhibit great possibilities for the future generations of energy storage devices. The critical next step for future implementation lies in exploring a high‐rate battery‐type anode with an ultra‐stable structure to match the capacitor‐type cathode. Herein, a “dual‐carbon” is constructed, in which a three‐dimensional nitrogen‐doped microporous carbon polyhedron (NMCP) derived from metal‐organic frameworks is tightly wrapped by two‐dimensional reduced graphene oxide (NMCP@rGO). Benefiting from the synergistic effect of the inner NMCP and outer rGO, the NMCP@rGO exhibits a superior K‐ion storage capability with a high reversible capacity of 386 mAh g?1 at 0.05 A g?1 and ultra‐long cycle stability with a capacity of 151.4 mAh g?1 after 6000 cycles at 5.0 A g?1. As expected, the as‐assembled PIHCs with a working voltage as high as 4.2 V present a high energy/power density (63.6 Wh kg?1 at 19 091 W kg?1) and excellent capacity retention of 84.7% after 12 000 cycles. This rational construction of advanced PIHCs with excellent performance opens a new avenue for further application and development.  相似文献   

7.
A hybrid supercapacitor with high energy and power densities is reported. It comprises a composite anode of anatase TiO2 and reduced graphene oxide and an activated carbon cathode in a non‐aqueous electrolyte. While intercalation compounds can provide high energy typically at the expense of power, the anatase TiO2 nanoparticles are able to sustain both high energy and power in the hybrid supercapacitor. At a voltage range from 1.0 to 3.0 V, 42 W h kg?1 of energy is achieved at 800 W kg?1. Even at a 4‐s charge/discharge rate, an energy density as high as 8.9 W h kg?1 can be retained. The high energy and power of this hybrid supercapacitor bridges the gap between conventional batteries with high energy and low power and supercapacitors with high power and low energy.  相似文献   

8.
Na‐ion capacitors have attracted extensive interest due to the combination of the merits of high energy density of batteries and high power density as well as long cycle life of capacitors. Here, a novel Na‐ion capacitor, utilizing TiO2@CNT@C nanorods as an intercalation‐type anode and biomass‐derived carbon with high surface area as an ion adsorption cathode in an organic electrolyte, is reported. The advanced architecture of TiO2@CNT@C nanorods, prepared by electrospinning method, demonstrates excellent cyclic stability and outstanding rate capability in half cells. The contribution of extrinsic pseudocapacitance affects the rate capability to a large extent, which is identified by kinetics analysis. A key finding is that ion/electron transfer dynamics of TiO2@CNT@C could be effectively enhanced due to the addition of multiwalled carbon nanotubes. Also, the biomass‐derived carbon with high surface area displays high specific capacity and excellent rate capability. Owing to the merits of structures and excellent performances of both anode and cathode materials, the assembled Na‐ion capacitors provide an exceptionally high energy density (81.2 W h kg?1) and high power density (12 400 W kg?1) within 1.0–4.0 V. Meanwhile, the Na‐ion capacitors achieve 85.3% capacity retention after 5000 cycles tested at 1 A g?1.  相似文献   

9.
Potassium‐ion hybrid capacitors (PIHCs) hold the advantages of high‐energy density of batteries and high‐power output of supercapacitors and thus present great promise for the next generation of electrochemical energy storage devices. One of the most crucial tasks for developing a high‐performance PIHCs is to explore a favorable anode material with capability to balance the kinetics mismatch between battery‐type anodes and capacitor‐type cathode. Herein, a reliable route for fabricating sulfur and nitrogen codoped 3D porous carbon nanosheets (S‐N‐PCNs) is reported. Systematic characterizations coupled with kinetics analysis indicate that the doped heteroatoms of sulfur and nitrogen and the amplified graphite interlayer can provide ample structural defects and redox active sites that are beneficial for improving pseudocapacitive activity, enabling fast kinetics toward efficient potassium‐ion storage. The S‐N‐PCNs are demonstrated to exhibit superior potassium storage capability with a high capacity of 107 mAh g?1 at 20 A g?1 and long cycle stability. The as‐developed PIHCs present impressive electrochemical performance with an operating voltage as high as 4.0 V, an energy density of 187 Wh kg?1, a power density of 5136 W kg?1, and a capacity retention of 86.4% after 3000 cycles.  相似文献   

10.
Transition metal nitrides are promising energy storage materials in regard to good metallic conductivity and high theoretical specific capacity, but their cycling stability is impeded by the huge volume change caused by the conversion reaction mechanism. Here, a simple strategy to produce an intercalation pseudocapacitive‐type vanadium nitride (VN) by one‐step ammonification of V2C MXene for sodium‐ion batteries is reported. Profiting from a distinctive layered structure pillared by Al atoms in the layer spacing, it delivers a high capacity of 372 mA h g?1 at 50 mA g?1 and a desirable rate performance. More importantly, it shows remarkably long cycling stability over 7500 cycles without capacity attenuation at 500 mA g?1. As expected, it is found that the intercalation pseudocapacitance plays an important role in the excellent performance, by using in situ X‐ray diffraction and ex situ X‐ray absorption structure characterization. Even more remarkable, are the high energy and power density of the sodium‐ion capacitor after coupling with a carbon‐based cathode. The hybrid device possesses an energy density of 78.43 Wh kg?1 at power density of 260 W kg?1. The results clearly show that such a unique‐layered VN with outstanding Na storage capability is an excellent new material for energy storage systems.  相似文献   

11.
In this work, an ether‐based electrolyte is adopted instead of conventional ester‐based electrolyte for an Sb2O3‐based anode and its enhancement mechanism is unveiled for K‐ion storage. The anode is fabricated by anchoring Sb2O3 onto reduced graphene oxide (Sb2O3‐RGO) and it exhibits better electrochemical performance using an ether‐based electrolyte than that using a conventional ester‐based electrolyte. By optimizing the concentration of the electrolyte, the Sb2O3‐RGO composite delivers a reversible specific capacity of 309 mAh g?1 after 100 cycles at 100 mA g?1. A high specific capacity of 201 mAh g?1 still remains after 3300 cycles (111 days) at 500 mA g?1 with almost no decay, exhibiting a longer cycle life compared with other metallic oxides. In order to further reveal the intrinsic mechanism, the energy changes for K atom migrating from surface into the sublayer of Sb2O3 are explored by density functional theory calculations. According to the result, the battery using the ether‐based electrolyte exhibits a lower energy change and migration barrier than those using other electrolytes for K‐ion, which is helpful to improve the K‐ion storage performance. It is believed that the work can provide deep understanding and new insight to enhance electrochemical performance using ether‐based electrolytes for KIBs.  相似文献   

12.
Energy‐storage technology is moving beyond lithium batteries to sodium as a result of its high abundance and low cost. However, this sensible transition requires the discovery of high‐rate and long‐lifespan anode materials, which remains a significant challenge. Here, the facile synthesis of an amorphous Sn2P2O7/reduced graphene oxide nanocomposite and its sodium storage performance between 0.01 and 3.0 V are reported for the first time. This hybrid electrode delivers a high specific capacity of 480 mA h g?1 at a current density of 50 mA g?1 and superior rate performance of 250 and 165 mA h g?1 at 2 and 10 A g?1, respectively. Strikingly, this anode can sustain 15 000 cycles while retaining over 70% of the initial capacity. Quantitative kinetic analysis reveals that the sodium storage is governed by pseudocapacitance, particularly at high current rates. A full cell with sodium super ionic conductor (NASICON)‐structured Na3V2(PO4)2F3 and Na3V2(PO4)3 as cathodes exhibits a high energy density of over 140 W h kg?1 and a power density of nearly 9000 W kg?1 as well as stability over 1000 cycles. This exceptional performance suggests that the present system is a promising power source for promoting the substantial use of low‐cost energy storage systems.  相似文献   

13.
Metal phosphides are promising anode candidates for sodium‐ion batteries (SIBs) due to their high specific capacity and low operating potential but suffer from poor cycling stability caused by huge volume expansion and poor solid‐state ion transfer rate. Herein, a new strategy to grow a new class of mesoporous metal phosphide nanoarrays on carbon felt (CF) as binder‐free anodes for SIBs is reported. The resultant integrated electrodes demonstrate excellent cycling life up to 1000 times (>90% retention rate) and high rate capability of 535 mAh g?1 at a current density of 4 A g?1. Detailed characterization reveals that the synergistic effect of unique mesoporous structure for accommodating huge volume expansion during sodiation/desodiation process, ultrasmall primary particle size (≈10 nm) for providing larger electrode/electrolyte contact area and shorter ion diffusion distance, and 3D conductive networks for facilitating the electrochemical reaction, leads to the extraordinary battery performance. Remarkably, a full SIB using the new CoP4/CF anode and a Na3V2(PO4)2F3 cathode delivers an average operating voltage of ≈3.0 V, a reversible capacity of 553 mAh g?1, and very high energy density of ≈280 Wh kg?1 for SIBs. A flexible SIB with outstanding mechanical strength based on this binder‐free new anode is also demonstrated.  相似文献   

14.
Layered double hydroxides (LDHs) are promising cathode materials for supercapacitors because of the enhanced flow efficiency of ions in the interlayers. However, the limited active sites and monotonous metal species further hinder the improvement of the capacity performance. Herein, cobalt sulfide quantum dots (Co9S8‐QDs) are effectively created and embedded within the interlayer of metal‐organic‐frameworks‐derived ternary metal LDH nanosheets based on in situ selective vulcanization of Co on carbon fibers. The hybrid CF@NiCoZn‐LDH/Co9S8‐QD retains the lamellar structure of the ternary metal LDH very well, inheriting low transfer impedance of interlayer ions. Significantly, the selectively generated Co9S8‐QDs expose more abundant active sites, effectively improving the electrochemical properties, such as capacitive performance, electronic conductivity, and cycling stability. Due to the synergistic relationship, the hybrid material delivers an ultrahigh electrochemical capacity of 350.6 mAh g?1 (2504 F g?1) at 1 A g?1. Furthermore, hybrid supercapacitors fabricated with CF@NiCoZn‐LDH/Co9S8‐QD and carbon nanosheets modified by single‐walled carbon nanotubes display an outstanding energy density of 56.4 Wh kg?1 at a power density of 875 W kg?1, with an excellent capacity retention of 95.3% after 8000 charge–discharge cycles. Therefore, constructing hybrid electrode materials by in situ‐created QDs in multimetallic LDHs is promising.  相似文献   

15.
A novel sodium hybrid capacitor (NHC) is constructed with an intercalation‐type sodium material [carbon coated‐Na3V2(PO4)3, C‐NVP] and high surface area‐activated carbon derived from an eco‐friendly resource cinnamon sticks (CDCs) in an organic electrolyte. This novel NHC possesses a combination of high energy and high power density, along with remarkable electrochemical stability. In addition, the C‐NVP/CDC system outperforms present, well‐established lithium hybrid capacitor systems in all areas, and can thus be added to the list of candidates for future electric vehicles. A careful optimization of mass balance between electrode materials enables the C‐NVP/CDC cell to exhibit extraordinary capacitance performance. This novel NHC produces an energy density of 118 Wh kg?1 at a specific power of 95 W kg?1 and retains an energy density of 60 Wh kg?1 with high specific power of 850 W kg?1. Furthermore, a discharge capacitance of 53 F g?1 is obtained from the C‐NVP/CDC cell at a 1 mA cm?2 current density, along with 95% capacitance retention, even after 10 000 cycles. The sluggish kinetics of the Na ion battery system is successfully overcome by developing a stable, high‐performing NHC system.  相似文献   

16.
The symmetric batteries with an electrode material possessing dual cathodic and anodic properties are regarded as an ideal battery configuration because of their distinctive advantages over the asymmetric batteries in terms of fabrication process, cost, and safety concerns. However, the development of high‐performance symmetric batteries is highly challenging due to the limited availability of suitable symmetric electrode materials with such properties of highly reversible capacity. Herein, a triple‐hollow‐shell structured V2O5 (THS‐V2O5) symmetric electrode material with a reversible capacity of >400 mAh g?1 between 1.5 and 4.0 V and >600 mAh g?1 between 0.1 and 3.0 V, respectively, when used as the cathode and anode, is reported. The THS‐V2O5 electrodes assembled symmetric full lithium‐ion battery (LIB) exhibits a reversible capacity of ≈290 mAh g?1 between 2 and 4.0 V, the best performed symmetric energy storage systems reported to date. The unique triple‐shell structured electrode makes the symmetric LIB possessing very high initial coulombic efficiency (94.2%), outstanding cycling stability (with 94% capacity retained after 1000 cycles), and excellent rate performance (over 140 mAh g?1 at 1000 mA g?1). The demonstrated approach in this work leaps forward the symmetric LIB performance and paves a way to develop high‐performance symmetric battery electrode materials.  相似文献   

17.
Sodium ion batteries (SIBs) have drawn significant attention owing to their low cost and inherent safety. However, the absence of suitable anode materials with high rate capability and long cycling stability is the major challenge for the practical application of SIBs. Herein, an efficient anode material consisting of uniform hollow iron sulfide polyhedrons with cobalt doping and graphene wrapping (named as CoFeS@rGO) is developed for high‐rate and long‐life SIBs. The graphene‐encapsulated hollow composite assures fast and continuous electron transportation, high Na+ ion accessibility, and strong structural integrity, showing an extremely small volume expansion of only 14.9% upon sodiation and negligible volume contraction during the desodiation. The CoFeS@rGO electrode exhibits high specific capacity (661.9 mAh g?1 at 100 mA g?1), excellent rate capability (449.4 mAh g?1 at 5000 mA g?1), and long cycle life (84.8% capacity retention after 1500 cycles at 1000 mA g?1). In situ X‐ray diffraction and selected‐area electron diffraction patterns show that this novel CoFeS@rGO electrode is based on a reversible conversion reaction. More importantly, when coupled with a Na3V2(PO4)3/C cathode, the sodium ion full battery delivers a superexcellent rate capability (496.8 mAh g?1 at 2000 mA g?1) and ≈96.5% capacity retention over 200 cycles at 500 mA g?1 in the 1.0–3.5 V window. This work indicates that the rationally designed anode material is highly applicable for the next generation SIBs with high‐rate capability and long‐term cyclability.  相似文献   

18.
With the rapidly growing demand for low‐cost and safe energy storage, the advanced battery concepts have triggered strong interests beyond the state‐of‐the‐art Li‐ion batteries (LIBs). Herein, a novel hybrid Li/Na‐ion full battery (HLNIB) composed of the high‐energy and lithium‐free Na3V2(PO4)2O2F (NVPOF) cathode and commercial graphite anode mesophase carbon micro beads is for the first time designed. The assembled HLNIBs exhibit two high working voltage at about 4.05 and 3.69 V with a specific capacity of 112.7 mA h g?1. Its energy density can reach up to 328 W h kg?1 calculated from the total mass of both cathode and anode materials. Moreover, the HLNIBs show outstanding high‐rate capability, long‐term cycle life, and excellent low‐temperature performance. In addition, the reaction kinetics and Li/Na‐insertion/extraction mechanism into/out NVPOF is preliminarily investigated by the galvanostatic intermittent titration technique and ex situ X‐ray diffraction. This work provides a new and profound direction to develop advanced hybrid batteries.  相似文献   

19.
Aqueous batteries are facing big challenges in the context of low working voltages and energy density, which are dictated by the narrow electrochemical window of aqueous electrolytes and low specific capacities of traditional intercalation‐type electrodes, even though they usually represent high safety, low cost, and simple maintenance. For the first time, this work demonstrates a record high‐energy‐density (1503 Wh kg?1 calculated from the cathode active material) aqueous battery system that derives from a novel electrolyte design to expand the electrochemical window of electrolyte to 3 V and two high‐specific‐capacity electrode reactions. An acid‐alkaline dual electrolyte separated by an ion‐selective membrane enables two dissolution/deposition electrode redox reactions of MnO2/Mn2+ and Zn/Zn(OH)42? with theoretical specific capacities of 616 and 820 mAh g?1, respectively. The newly proposed Zn–Mn2+ aqueous battery shows a high Coulombic efficiency of 98.4% and cycling stability of 97.5% of discharge capacity retention for 1500 cycles. Furthermore, in the flow battery based on Zn–Mn2+ pairs, more excellent stability of 99.5% of discharge capacity retention for 6000 cycles is achieved due to greatly improved reversibility of the Zn anode. This work provides a new path for the development of novel aqueous batteries with high voltage and energy density.  相似文献   

20.
The lithium (Li) metal battery (LMB) is one of the most promising candidates for next‐generation energy storage systems. However, it is still a significant challenge to operate LMBs with high voltage cathodes under high rate conditions. In this work, an LMB using a nickel‐rich layered cathode of LiNi0.76Mn0.14Co0.10O2 (NMC76) and an optimized electrolyte [0.6 m lithium bis(trifluoromethanesulfonyl)imide + 0.4 m lithium bis(oxalato)borate + 0.05 m LiPF6 dissolved in ethylene carbonate and ethyl methyl carbonate (4:6 by weight)] demonstrates excellent stability at a high charge cutoff voltage of 4.5 V. Remarkably, these Li||NMC76 cells can deliver a high discharge capacity of >220 mA h g?1 (846 W h kg?1) and retain more than 80% capacity after 1000 cycles at high charge/discharge current rates of 2C/2C (1C = 200 mA g?1). This excellent electrochemical performance can be attributed to the greatly enhanced structural/interfacial stability of both the Ni‐rich NMC76 cathode material and the Li metal anode using the optimized electrolyte.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号