首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The photocycle of the photoactive yellow protein (PYP) isolated from Ectothiorhodospira halophila was analyzed by flash photolysis with absorption detection at low excitation photon densities and by temperature-dependent laser-induced optoacoustic spectroscopy (LIOAS). The quantum yield for the bleaching recovery of PYP, assumed to be identical to that for the phototransformation of PYP (pG), to the red-shifted intermediate, pR, was phi R = 0.35 +/- 0.05, much lower than the value of 0.64 reported in the literature. With this value and the LIOAS data, an energy content for pR of 120 kJ/mol was obtained, approximately 50% lower than for excited pG. Concomitant with the photochemical process, a volume contraction of 14 ml/photoconverted mol was observed, comparable with the contraction (11 ml/mol) determined for the bacteriorhodopsin monomer. The contraction in both cases is interpreted to arise from a protein reorganization around a phototransformed chromophore with a dipole moment different from that of the initial state. The deviations from linearity of the LIOAS data at photon densities > 0.3 photons per molecule are explained by absorption by pG and pR during the laser pulse duration (i.e., a four-level system, pG, pR, and their respective excited states). The data can be fitted either by a simple saturation process or by a photochromic equilibrium between pG and pR, similar to that established between the parent chromoprotein and the first intermediate(s) in other biological photoreceptors. This nonlinearity has important consequences for the interpretation of the data obtained from in vitro studies with powerful lasers.  相似文献   

2.
A Pauli master equation is formulated and solved to describe the fluorescence quantum yield, phi, and the fluorescence temporal decay curves. F(t), obtained in picosecond laser excitation experiments of photosynthetic systems. It is assumed that the lowering of phi with increasing pulse intensity is due to bimolecular singlet exciton annihilation processes which compete with the monomolecular exciton decay processes; Poisson statistics are taken into account. Calculated curves of phi as a function of the number of photon hits per domain are compared with experimental data, and it is concluded that these domains contain at least two to four connected photosynthetic units (depending on the temperature), where each photosynthetic unit is assumed to contain approximately 300 pigment molecules. It is shown that under conditions of high excitation intensities, the fluorescence decays approximately according to the (time)1/2 law.  相似文献   

3.
The transfer of excitation energy between phycobiliproteins in isolated phycobilisomes has been observed on a picosecond time scale. The photon density of the excitation pulse has been carefully varied so as to control the level of exciton interactions induced in the pigment bed. The 530 nm light pulse is absorbed predominantly by B-phycoerythrin, and the fluorescence of this component rises within the pulse duration and shows a mean 1/e decay time of 70 ps. The main emission band, centred at 672 nm, is due to allophycocyanin and is prominent because of the absence of energy transfer to chlorophyll. Energy transfer to this pigment from B-phycoerythrin via R-phycocyanin produces a risetime of 120 ps to the fluorescence maximum. The lifetime of the allophycocyanin fluorescence is found to be about 4 ns using excitation pulses of low photon densities (10(13) photons.cm-2), but decreases to about 2 ns at higher photon densities. The relative quantum yield of the allophycocyanin fluorescence decreases almost 10 fold over the range of laser pulse intensities, 10(13)--10(16) photons-cm-2. Fluorescence quenching by exciton-exciton annihilation is only observed in allophycocyanin and could be a consequence of the long lifetime of the single exciton in this pigment.  相似文献   

4.
Due to the increased use of quantum dots (QDs) in diverse laser microscopies, it is interesting to study the excitation pump power and excitation wavelength dependence of QD-based energy transfer (ET) processes. The ET in QD conjugates with phthalocyanines (Pcs) was studied with femtosecond time-resolved pump-probe spectroscopy upon one- and two-photon excitation. At the used excitation wavelengths only the QDs are excited and become the energy donors. Due to the matched spectral overlap of QD photoluminescence and Pc absorption, the ET occurs on a picosecond time scale. The ET process shows strong pump power dependence whereby an increase in excitation power results in multiple QD excitations and in shorter excited state lifetimes on the QDs due to Auger relaxation. As a result, high excitation pump power leads also to an accelerated ET to the acceptor molecules from the initially multiply excited states of the QDs. Excited state quenching studies as function of pump power suggest that ET occurs mainly from the lowest one-exciton state (n = 1) and only to a minor extent from the multiply excited states (n > 1). For the short-lived, multiply excited states the ET competes inefficiently with Auger recombinations and energy transfer efficiencies of phi(ET)(n=1>) approximately 20%, phi(ET)(n=2>) approximately 7%, phi(ET)(n=3>) < or = 2% were obtained. Also after two-photon excitation the ET efficiency is highest from the one-exciton state. The experimentally determined ET efficiencies were compared with theoretical ET efficiencies upon multiple excitations. In both cases the ET efficiency decreases with the increase in excitation pump power.  相似文献   

5.
The absolute action spectrum of Escherichia coli DNA photolyase was determined in vitro. In vivo the photoreactivation cross-section (epsilon phi) is 2.4 X 10(4) M-1 cm-1 suggesting that the quantum yield (phi) is about 1.0 if one assumes that the enzyme has the same spectral properties (e.g. epsilon 384 = 1.8 X 10(4) M-1 cm-1) in vivo as those of the enzyme purified to homogeneity. The relative action spectrum of the pure enzyme (blue enzyme that contains FAD neutral semiquinone radical) agrees with the relative action spectrum for photoreactivation of E. coli, having lambda max = 384 nm. However, the absolute action spectrum of the blue enzyme yields a photoreactivation cross-section (epsilon phi = 1.2 X 10(3) at 384 nm) that is 20-fold lower than the in vivo values indicative of an apparent lower quantum yield (phi approximately equal to 0.07) in vitro. Reducing the enzyme with dithionite results in reduction of the flavin semiquinone and a concomitant 12-15-fold increase in the quantum yield. These results suggest that the flavin cofactor of the enzyme is fully reduced in vivo and that, upon absorption of a single photon in the 300-500 nm range, the photolyase chromophore (which consists of reduced FAD plus the second chromophore) donates an electron to the pyrimidine dimer causing its reversal to two pyrimidines. The reduced chromophore is regenerated at the end of the photochemical step thus enabling the enzyme to act catalytically.+  相似文献   

6.
Two-photon excitation, time-resolved fluorescence microscopy was used to investigate the fluorescence quenching mechanisms in aggregates of light-harvesting chlorophyll a/b pigment protein complexes of photosystem II from green plants (LHCII). Time-gated microscopy images show the presence of large heterogeneity in fluorescence lifetimes not only for different LHCII aggregates, but also within a single aggregate. Thus, the fluorescence decay traces obtained from macroscopic measurements reflect an average over a large distribution of local fluorescence kinetics. This opens the possibility to resolve spatially different structural/functional units in chloroplasts and other heterogeneous photosynthetic systems in vivo, and gives the opportunity to investigate individually the excited states dynamics of each unit. We show that the lifetime distribution is sensitive to the concentration of quenchers contained in the system. Triplets, which are generated at high pulse repetition rates of excitation (>1 MHz), preferentially quench domains with initially shorter fluorescence lifetimes. This proves our previous prediction from singlet-singlet annihilation investigations (Barzda, V., V. Gulbinas, R. Kananavicius, V. Cervinskas, H. van Amerongen, R. van Grondelle, and L. Valkunas. 2001. Biophys. J. 80:2409-2421) that shorter fluorescence lifetimes originate from larger domains in LHCII aggregates. We found that singlet-singlet annihilation has a strong effect in time-resolved fluorescence microscopy of connective systems and has to be taken into consideration. Despite that, clear differences in fluorescence decays can be detected that can also qualitatively be understood.  相似文献   

7.
The increase in the solvent polarity induces a significant shift of the long-wavelength absorption band of the thioflavin T (ThT) to the shorter wavelengths. This is due to the fact that the positive charge of the ThT molecule (Z = +1e) is unequally and very differently distributed between the benzthiazole and aminobenzene rings in the ground and excited states. Therefore, ThT ground state is stabilized by the orientational interactions of the polar solvent dipoles with the positively charged ThT fragments, whereas the configuration of the solvation shell of the ThT molecule in the excited Franck-Condon state is likely far from being equilibrium. ThT absorption spectrum has the shortest (412 nm) and the longest (450 nm) wavelengths in water and in water being incorporated to the amyloid fibrils, respectively. Intriguingly, the position of the ThT fluorescence spectrum depends on the polarity of solvent to a significantly lesser degree than its absorption spectrum: being excited at 440 nm, ThT has emission with maxima at 493 and 478 nm in water and fibrils, respectively. This can be due to the fact that, in the excited state, the rotational oscillations of the ThT fragments relative to each other prevent establishing equilibrium with the solvent and fluorescence occurs from the partially equilibrium excited stated to the partially equilibrium ground state. For the fibril-incorporated ThT, the maximum of the fluorescence excitation spectrum coincides with the maximum of the long wavelength absorption band (450 nm), whereas for ThT in aqueous and alcohol solutions, additional short-wavelength bands of fluorescence and fluorescence excitation spectra were described (Naiki et al. Anal. Biochem. 1989, 177, 244-249; Le Vine Methods Enzymol. 1999, 309, 274-284). These bands could result either from some fluorescent admixtures (including free benzthiazole and aminobenzene) or from the specific ThT conformers in which benzthiazole and aminobenzene rings, being oriented at phi angle close to 90 or 270 degrees, serve as independent chromophores. On the basis of the results of the quantum-chemical calculations, it is proposed that at phi = 90 degrees (270 degrees), the relatively low barrier (only 700 cm-1) of the internal rotation of the benzthiazole and aminobenzene rings relative to each other gives rise to a subpopulation of ThT molecules possessing a violated system of the pi-conjugated bonds of the benzthiazole and aminobenzene rings.  相似文献   

8.
The efficiency and specificity of RNA-protein cross-linking in the 30S subunit of Escherichia coli ribosomes, induced by low-intensity (10(15) photons cm-2 s-1, 254 nm) and high-intensity [(1.6-6.8) X 10(24) photons cm-2 s-1, 266 nm, pulse duration 10(-8) s] ultraviolet radiation, are studied. Under the former conditions proteins S4, S7 and S9/S11, and under the latter conditions these proteins together with S3, S18 and S20, are cross-linked to 16S RNA. Biphotonic processes operate in the latter case. In the presence of 2-mercaptoethanol cross-linking occurs either directly, via a higher excited state or via activated intermediates with life-times less than 25 ns. Cross-links thus formed are specific, i.e. they are formed between regions of macromolecules which are in contact in the native (non-disturbed) complex prior to excitation. The efficiency of cross-linking (per photon absorbed) is 20-100 times higher upon two-step excitation as compared with single-step excitation and an analysable number of cross-links are produced in a single pulse. Only base U-1239 of 16S RNA is cross-linked to protein S7 by low-intensity radiation, whereas the adjacent base, G-1240 is also involved in laser-induced cross-linking. A transition from the former to the latter conditions allows one to reduce the duration of irradiation from several minutes to several nanoseconds.  相似文献   

9.
The aim of this paper is to review and discuss the results obtained by fluorescence and absorption spectroscopy of bacterial chromatophores excited with picosecond pulses of varying power and intensity. It was inferred that spectral and kinetic characteristics depend essentially on the intensity, the repetition rate of the picosecond excitation pulses as well as on the optical density of the samples used. Taking the different experimental conditions properly into account, most of the discrepancies between the fluorescence and absorption measurements can be solved. At high pulse repetition rate (>106 Hz), even at moderate excitation intensities (1010–1011 photons/cm2 per pulse), relatively long-lived triplet states start accumulating in the system. These are efficient (as compared to the reaction centers) quenchers of mobile singlet excitations due to singlet-triplet annihilation. The singlet-triplet annihilation rate constant in Rhodospirillum rubrum was determined to be equal to 10-9 cm3 s-1. At fluences >1012 photons/cm2 per pulse singlet-singlet annihilation must be taken into account. Furthermore, in the case of high pulse repetition rates, triplet-triplet annihilation must be considered as well. From an analysis of experimental data it was inferred that the singlet-singlet annihilation process is probably migration-limited. If this is the case, one has to conclude that the rate of excitation decay in light-harvesting antenna at low pumping intensities is limited by the efficiency of excitation trapping by the reaction center. The influence of annihilation processes on spectral changes is also discussed as is the potential of a local heating caused by annihilation processes. The manifestation of spectral inhomogeneity of light-harvesting antenna in picosecond fluorescence and absorption kinetics is analyzed.Abbreviations LHA light-harvesting antenna - RC reaction center  相似文献   

10.
The fluorescence quantum yield in spinach chloroplasts at room temperature has been studied utilizing a 0.5-4.0 mus duration dye laser flash of varying intensities as an excitation source. The yield (phi) and carotenoid triplet concentration were monitored both during and following the laser flash. The triplet concentration was monitored by transient absorption spectoscopy at 515 nm, while the yield phi following the laser was probed with a low intensity xenon flash. The fluorescence is quenched by factors of up to 10-12, depending on the intensity of the flash and the time interval following the onset of the flash. This quenching is attributed to a quencher Q whose concentration is denoted by Q. The relative instantaneous concentration of Q was calculated from phi utilizing the Stern-Volmer equation, and its buildup and decay kinetics were compared to those of carotenoid triplets. At high flash intensities (greater than 10(16) photon . cm-2) the decay kinetics of Q are slower than those of the carotenoid triplets, while at lower flash intensities they are similar. Q is sensitive to oxygen and it is proposed that Q, at the higher intensities, is a trapped chlorophyll triplet. This hypothesis accounts well for the continuing rise of the carotenoid triplet concentration for 1-2 mus after the cessation of the laser pulse by a slow detrapping mechanism, and the subsequent capture of the triplet energy by carotenoid molecules. At the maximum laser intensities, the carotenoid triplet concentration is about one per 100 chlorophyll molecules. The maximum chlorophyll ion concentration generated by the laser pulses was estimated to be below 0.8 ions/100 chlorophyll molecules. None of the observations described here were altered when a picosecond pulse laser train was substituted for the microsecond pulse. A simple kinetic model describing the generation of singlets and triplets (by intersystem crossing), and their subsequent interaction leading to fluorescence quenching, accounts well for the observations. The two coupled differential equations describing the time dependent evolution of singlet and triplet excited states are solved numerically. Using a single-triplet bimolecular rate constant of gammast = 10(-8) cm3 . s-1, the following observations can be accounted for: (1) the rapid initial drop in phi and its subsequent levelling off with increasing time during the laser pulse, (2) the buildup of the triplets during the pulse, and (3) the integrated yield of triplets per pulse as a function of the energy of the flash.  相似文献   

11.
The word "biophotons" is used to denote a permanent spontaneous photon emission from all living systems. It displays a few up to some hundred photons/(s x cm2) within the spectral range from at least 260 to 800 nm. It is closely linked to delayed luminescence (DL) of biological tissues which describes the long term and ultra weak reemission of photons after exposure to light illumination. During relaxation DL turns continuously into the steady state biophoton emission, where both, DL and biophoton emission exhibit mode coupling over the entire spectrum and a Poissonian photo count distribution. DL is representing excited states of the biophoton field. The physical properties indicate that biophotons originate from fully coherent and sometimes even squeezed states. The physical analysis provides thermodynamic and quantum optical interpretation, in order to understand the biological impacts of biophotons. Biological phenomena like intracellular and intercellular communication, cell growth and differentiation, interactions among biological systems (like "Gestaltbildung" or swarming), and microbial infections can be understood in terms of biophotons. "Biophotonics", the corresponding field of applications, provide a new powerful tool for assessing the quality of food (like freshness and shelf life), microbial infections, environmental influences and for substantiating medical diagnosis and therapy.  相似文献   

12.
Singlet-singlet annihilation experiments have been performed on trimeric and aggregated light-harvesting complex II (LHCII) using picosecond spectroscopy to study spatial equilibration times in LHCII preparations, complementing the large amount of data on spectral equilibration available in literature. The annihilation kinetics for trimers can well be described by a statistical approach, and an annihilation rate of (24 ps)(-1) is obtained. In contrast, the annihilation kinetics for aggregates can well be described by a kinetic approach over many hundreds of picoseconds, and it is shown that there is no clear distinction between inter- and intratrimer transfer of excitation energy. With this approach, an annihilation rate of (16 ps)(-1) is obtained after normalization of the annihilation rate per trimer. It is shown that the spatial equilibration in trimeric LHCII between chlorophyll a molecules occurs on a time scale that is an order of magnitude longer than in Photosystem I-core, after correcting for the different number of chlorophyll a molecules in both systems. The slow transfer in LHCII is possibly an important factor in determining excitation trapping in Photosystem II, because it contributes significantly to the overall trapping time.  相似文献   

13.
Bovine heart mitochondrial cytochrome c oxidase (cytochrome aa3) (EC 1.9.3.1) has been demonstrated to occur in several forms when the redox centers in the protein are thought to be fully oxidized. We report here the results of extensive EPR studies at 3, 8.9, 9.2, 9.4, 15 and 34 GHz on the resting state, the alternative resting state (with g = 12 at 9 GHz) and pulsed state (with g = 5 signal at 9 GHz). Theoretical consideration is given to all binary spin-coupling possibilities under the constraint that the iron atoms are either ferric or ferrous and the copper atoms are either cupric or cuprous. We conclude that the g = 12 signal can arise from any spin system with S greater than 1 and D = 0.15 cm-1. The g = 5 signals originate from an excited, integer-spin system with D = 0.035 cm-1, which is approximately 7 cm-1 above the ground state (not observed in EPR). It is pointed out that in interpretations of data and elaboration of suitable models in this field, the implications of spin-coupling should be considered in a comprehensive and not in a selective way. At 3 GHz, EPR spectra of CuA in the resting, pulsed and anaerobically oxidized states show that this center is identical in its EPR for all three states.  相似文献   

14.
Gulbinas V  Karpicz R  Garab G  Valkunas L 《Biochemistry》2006,45(31):9559-9565
Evidence of nonequilibrium local heating in transient spectra of LHCII, the main light-harvesting complex of plants, was studied by using various excitation intensities over a wide temperature range, from 10 K to room temperature. No obvious manifestation of local heating was found at room temperature, whereas at 10 K, the local heating effect is discernible when more than 10 excitons per LHCII trimer per pulse are generated. Under these conditions, a major part of the excitation energy is converted into heat as a result of exciton-exciton annihilation. Initially, the heat energy is allocated on chlorophyll a molecules, reaching hundreds of degrees at the highest excitation intensities, which correspond to almost 100 excitons per trimer generated by a single excitation pulse. The decay of the nonequilibrium temperature is characterized well by two exponentials. The initial phase of cooling, which is most likely caused by the spreading of heat over the protein, corresponds to a characteristic time constant of approximately 20 ps. Later, the cooling rate decelerates to approximately 200 ps and is related to heat transfer to the solvent.  相似文献   

15.
Resonance Raman spectra of the soluble-domain of a membrane-bound hydrogenase from Desulfovibrio vulgaris Miyazaki F were recorded in different oxidation states. In the oxidized state, the Raman band due to the totally symmetric stretching mode of the iron-sulfur cluster was observed at 341 cm-1, which was attributed to the 3Fe-4S cluster. In the hydrogen-reduced state, only a weak and broad band was observed in its vicinity. During the process of reoxidation, a Raman band assignable to the 4Fe-4S cluster was observed at 333 cm-1 in the first step. Then, the band at 341 cm-1 became stronger and eventually dominated the spectrum. Corresponding changes were observed in the visible absorption spectra of the same sample. It was concluded from these observations that this hydrogenase has both 3Fe-4S and 4Fe-4S clusters and takes on at least three oxidation states, namely, oxidized, intermediate, and hydrogen-reduced ones.  相似文献   

16.
This paper extends the concept of entangled vector vortex beams as a form of Majorana‐like photons. Majorana photon quasi particles are introduced and attributed to a class of entangled vector beams and show higher transmission. These photons and the antiphotons are identical. A Majorana photon has within itself both right and left handed twists. These majorana beams travel at speeds other than speed of light, c in free space. Light transmission of Majorana photon vortex beams with orbital angular momentum (OAM) are investigated in a mouse brain at different local regions showing enhanced transmission and properties of being entangled. This work is new interpretation of our past paper of mixed photon beam states. The transmission change observed with Majorana structured light other than linear polarization is attributed to the nonseparable and mixed nature of radial and azimuthal polarizations with OAM and the handedness of the light passing through chiral brain media. These mixed nonhomogeneous beams are entangled in OAM and polarization. Majorana photons may play an important role in the future for quantum and optical computing and sub and super luminal speeds due to its traversal wave vector, k.  相似文献   

17.
Using the twisted conformations of the chromophores for visual pigments and intermediates which were theoretically determined in the previous paper, energy surfaces of the pigment at - 190 degrees C were obtained as functions of the torsional angles theta 9-10 and theta 11-12 or of the torsional angles theta 9-10 and theta 13-14. In these calculations, the existence of specific reaction paths between rhodopsin (R) and bathorhodopsin (B), between isorhodopsin I (I) and bathorhodopsin, and between isorhodopsin II (I') and bathorhodopsin were assumed. It was shown that the total energy surfaces of the excited states had minima C1 at theta 9-10 approximately -10 degrees and theta 11-12 approximately -80 degrees, C2 at theta 9-10 approximately -85 degrees and theta 11-12 approximately -5 degrees, and C3 at theta 9-10 approximately -0 degree and theta 13-14 approximately -90 degrees. These minima are considered to correspond to the thermally barrierless common states as denoted by Rosenfeld et al. Using the total energy surfaces in the ground and excited states, the molecular mechanism of the photoisomerization reaction was suggested. Quantum yields for the photoconversions among R, I, I' and B were related to the rates of vibrational relaxations, radiationless transitions and thermal excitations. Some discussion was made of the temperature effect on the quantum yield. Similar calculations of the energy surfaces were also made at other temperatures where lumirhodopsin or metarhodopsin I is stable. Relative energy levels of the pigments and the intermediates were discussed.  相似文献   

18.
The fluorescence induction and other fluorescence properties of spinach chloroplasts at room temperature were probed utilizing two 30-ps wide laser pulses (530 nm) spaced Δt (s) apart in time (Δt = 5–110 ns). The energy of the first pulse (P1) was varied (1012–1016 photons · cm−2), while the energy of the second (probe) pulse (P2) was held constant (5 · 1013 photons · cm−2). A gated (10 ns) optical multichannel analyzer-spectrograph system allowed for the detection of the fluorescence generated either by P1 alone, or by P2 alone (preceded by P1). The dominant effect observed for the fluorescence yield generated by P1 alone is the usual singlet-singlet exciton annihilation which gives rise to a decrease in the yield at high energies. However, when the fluorescence yield of dark-adapted chloroplasts is measured utilizing P2 (preceded by pulse P1) an increase in this yield is observed. The magnitude of this increase depends on Δt, and is characterized by a time constant of 28 ± 4 ns. This rise in the fluorescence yield is attributed to a reduction of the oxidized (by P1) reaction center P-680+ by a primary donor. At high pulse energies (P1 = 4 · 1014 photons · cm−2) the magnitude of this fluorescence induction is diminished by another quenching effect which is attributed to triplet excited states generated by intense P1 pulses. Assuming that the P1 pulse energy dependence of the fluorescence yield rise reflects the closing of the reaction centers, it is estimated that about 3–4 photon hits per reaction center are required to close completely the reaction centers, and that there are 185–210 chlorophyll molecules per Photosystem II reaction center.  相似文献   

19.
phi(f)-value analysis is one of the most common methods to characterize the structure of protein folding transition states. It compares the effects of mutations on the folding kinetics with the respective effects on equilibrium stability. The interpretation of the results usually focuses on a few unusual phi(f)-values, which are either particularly high or which are larger than 1 or smaller than 0. These mutations are believed to affect the most important regions for the folding process. A major uncertainty in experimental phi(f)-values is introduced by the commonly used analysis of only a single mutant at various positions in a protein (two-point analysis). To test the reliability of two-point phi(f)-values we used reference data from three positions in two different proteins at which multiple mutations have been introduced. The results show that two-point phi(f)-values are highly inaccurate if the difference in stability between two variants is less than 7 kJ/mol, corresponding to a 20-fold difference in equilibrium constant. Comparison with reported phi(f)-values for 11 proteins shows that most unusual phi(f)-values are observed in mutants which show changes in protein stability that are too small to allow a reliable analysis. The results argue against specific nucleation sites in protein folding and give a picture of transition states as distorted native states for the major part of a protein or for large substructures.  相似文献   

20.
A comprehensive understanding of the factors governing the efficiency of metallophthalocyanine-based photothermal sensitizers requires the knowledge of their excited-state dynamics. This can only be properly gained when the nature and energy of the excited states (often spectroscopically silent) lying between the photogenerated state and the ground state are known. Here the excited state deactivation mechanism of two very promising metallophthalocyanine-based photothermal sensitizers, NiPc(OBu)(8) and NiNc(OBu)(8), is reviewed. It is shown that time dependent density functional theory (TDDFT) methods are capable to provide reliable information on the nature and energies of the low-lying excited states along the relaxation pathways. TDDFT calculations and ultrafast experiments consistently show that benzoannulation of the Pc ring modifies the photodeactivation mechanism of the photogenerated S(1)(pi,pi*) state by inducing substantial changes in the relative energies of the excited states lying between the S(1)(pi,pi*) state and the ground state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号