首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Spatial heterogeneity in nematode population densities presents an obstacle to the precise determination of infestation levels. Three field plots were intensively sampled for soybean cyst nematode (Heterodera glycines Ich.) cysts before and after spring cultivation to quantify the spatial attributes of the population. Population density strata were detected running parallel to plant rows. Highest population densities before cultivation were found in the plant row and the middle furrow, Population density in the plant row averaged 26% higher and 4% lower than the whole-plot mean before and after cultivation, respectively. Cysts containing fewer than 25 eggs were not stratified, indicating that most were produced before the previous season. Sample population counts were fit to the negative binomial distribution model before cultivation, but distributions differed among plots. The Neyman type A and negative binomial distributions both fit the data after cultivation disturbed the soil. Population clusters 1-3 m long were detected in plant beds before cultivation. Heterogeneity in population density increased with plant row length after cultivation. Optimum plot length for minimal spatial heterogeneity in four-row mechanically tended field plots was estimated at 6 m after trimming plot ends.  相似文献   

2.
A FORTRAN computer program was developed to simulate nematode soil sampling strategies consisting of various numbers of samples per field, with each sample consisting of various numbers of soil cores. The program assumes that the nematode species involved fit a negative binomial distribution. Required input data are estimates of the mean and k values, the number of samples per field and cores per sample in the strategy to be investigated, and the number of times the simulation is to be replicated. Output consists of simulated values of the relative deviation from the mean and standard error to mean ratio, both averaged over all replications. The program was used to compare 150 simulated sampling strategies for Meloidogyne incognita, involving all combinations of two mean values (2.0 and 10.0 la.rvae/10 cm³ soil), three k values (1.35, 0.544, and 0.294), five different numbers of samples per field (1, 2, 4. 10, 20), and five different numbers of cores per sample (1, 2, 4, 10, 20). Simulations resulting from different mean values were similar, but best results were obtained with higher k values and 20 cores per sample. Relatively few 20-core samples were needed to obtain average deviations from the mean of 20-25%.  相似文献   

3.
Spatial distributions of several species of plant-parasitic nematodes were determined in each of three fallow vegetable fields and in smaller subunits of those fields. Goodness of fit to each of several theoretical distributions was tested hy means of a X² test. Distributions for most species showed good agreement with a negative binomial model. An exception occurred with Crictmemella sp., which showed a better fit to the Neyman Type A distribution. For nematodes distributed according to the negative binomial model, the number of cores per composite sample needed to achieve specified relative errors was calculated. For a given nematode species, such as Quinisulcius actus (Allen) Siddiqi or Meloidogyne incognita (Kofoid &White) Chitwood, the k values for the negative binomial distribution increased as field size decreased, with the result that fewer cores were needed to achieve the same level of precision in a smaller field. Best results were achieved when the single sample was used to estimate populations in fields of 0.25-0.45 ha in size. When using only a single composite sample to estimate mixed populations of the nematodes studied here in a field of that size, approximately 22 cores per composite sample would be needed to estimate all population means within a standard error to mean ratio of 25%. Considerably, more cores were needed to maintain a given level of precision in fields of 1.0 ha or greater, and it may be necessary to subdivide larger unils (ca. 1.5 ha and up) for accurate sampling.  相似文献   

4.
A data base representing nematode counts and soil weight from 1,936 individual soil cores taken from a 7-ha alfalfa field was used to investigate sample optimization for five plant-parasitic nematodes: Meloidogyne arenaria, Pratylenchus minyus, Merlinius brevidens, Helicotylenchus digonicus, and Paratrichodorus minor. Sample plans were evaluated by the accuracy and reliability of their estimation of the population and by the cost of collecting, processing, and counting the samples. Interactive FORTRAN programs were constructed to simulate four collecting patterns: random; division of the field into square sub-units (cells); and division of the field into rectangular sub-traits (strips) running in two directions. Depending on the pattern, sample numbers varied from 1 to 25 with each sample representing from 1 to 50 cores. Each pattern, sample, and core combination was replicated 50 times. Strip stratification north/south was the most optimal sampling pattern in this field because it isolated a streak of fine-textured soil. The mathematical optimmn was not found because of data range limitations. When practical economic time constraints (5 hr to collect, process, and count nematode samples) are placed on the optimization process, all species estimates deviate no more than 25 % from the true mean. If accuracy constraints are placed on the process (no more than 15% deviation from true field mean), all species except Merlinius required less than 5 hr to complete the sample process.  相似文献   

5.
Nematode population densities in field plots were estimated by collecting samples consisting of 12 soil cores. Plots encompassed a variety of plant hosts and sampling dates, and provided data on the population densities of seven species of plant-parasitic nematodes. Three separate samples were collected per plot on each sampling date to obtain estimates of the mean and variance of numbers for each species. For each nematode species, these estimates were used to derive the Taylor''s Power Law regression over plots having identical hosts and sampling dates. For some nematode species, comparisons of regression equations among different sampling dates on the same host revealed similarities in values of a and b from Taylor''s Power Law. Parameters of Taylor''s Power Law relationships were used to develop sampling plans and to obtain estimates of sample precision. Precision estimates from specific and general sampling plans are illustrated for Belonolaimus longicaudatus.  相似文献   

6.
The first phase of this study involved repeated samplings of five fields using composite samples of 10, 20, 40, and 80 soil cores, to determine the precision of nematode assays. The second phase focused on randomly selecting two and four 2-ha subunits (data on Meloidogyne spp.) of 24 fields ranging from 6 to 40 ha and computing the precision of estimated means for these numbers ofsubunits versus the general field mean (based on all 2-ha subunits). Average numbers of nematodes from most samples containing Meloidogyne spp., Heterodera glycines, Helicotylenchus dihystera, Scutellonema brachyurum, and (or) Hoplolaimus galeatus were within 50% of the overall means. Coefficient of variation (CV) values were generally lower for 40 cores than for 10, 20, and 80 cores per sample. When data for all nematodes and fields were combined, this value was lowest for 40 and 80 cores. The CV values were higher for Meloidogyne spp. than for H. glycines. Means of two samplings increased the probability of obtaining numbers nearer the mean for that field than numbers from a single composite sample. For the second phase, population estimates of Meloidogyne spp. based on four 2-ha subunits generally were closer to field means than were those for two subunits. Sampling precision with these subunits diminished greatly in large fields with variable soils and (or) mixed cropping histories. Either two or four subunits gave population estimates within 3-20% of the field mean in most instances. The mean man hours required for sampling ca. 2-ha parcels of 4-20-ha fields was 0.54 hours.  相似文献   

7.
Golden nematode, Globodera rostochiensis (GN) population decline under resistant potatoes was related to cyst distance from plants 23 cm apart in rows 92 cm apart. GN decline, determined by sampling an infested field planted to the resistant cultivar ''Yankee Chipper'', was 81.8% in cores 11.5 cm from plants within rows. Decline was 27.4% at 23 cm from plants between rows and 36.6% at 46 cm. Population decline of juveniles in cysts added to soil in bags was 90.3% for cysts 11.5 cm from plants within rows planted to the resistant cultivar ''Rosa''. Decline between rows was 83.5, 76.9, and 60.4% at 11.5, 23.0, and 46.0 cm from plants, respectively. Maximum decline within for rows 30.5, 46.0, 61.0, and 92.0 cm apart, respectively. Decline under fallow was 43.5%, signif- which peaked 7 weeks AE. There was no effect of soil depth on population decline at any sampling position. Decreasing row spacing resulted in 79.9, 74.2, 73.4, and 66.1% GN population decline for rows 30.5, 46.0, 61.0, and 92.0 cm apart, respectively. Decline under fallow was 43.5%, significantly less than under potatoes. Potato root weight between rows was negatively correlated with row spacing and positively correlated with GN population decline.  相似文献   

8.
In two studies to estimate sampling requirements for entomogenous nematodes in the field, highest persistence of Heterorhabditis bacteriophora after application occurred beneath the canopies of mature citrus trees. Nematode persistence declined with distance from the center-line of the tree row toward the row-middles. Immediately after nematode application to soil, 32 samples (15 cm deep, 2.5-cm diameter) beneath a single tree were required to derive 95% confidence intervals that were within 40% of mean nematode population density. The estimated probability of measuring the mean density within 40%, using 32 samples, declined to 88% at 2 days post-application and to 76% at 7 days. The persistence in soil of Steinernema carpocapsae, S. riobravis, and two formulations containing H. bacteriophora and their efficacy against the larvae of Diaprepes abbreviatus were compared in a grove of 4-year-old citrus trees. Within 6 days, the recovered population densities of all nematodes declined to <5% of levels on day 0. The recovery of H. bacteriophora during the first 2 weeks was lower than that of the other two species. Steinemema riobravis and both formulations of H. bacteriophora reduced recovery of D. abbreviatus by more than 90% and 50%, respectively. Steinernema carpocapsae did not affect population levels of the insect.  相似文献   

9.
Two years of giant star grass, Cynodon nlemluensis var. nlemfuensis, in a field plot markedly reduced the incidence of the root-knot nematodes. Tomato planted following the grass showed very little or no root galling and the yield was thrice that of tomato planted on an adjacent field plot previously cropped to tomato. Replicated greenhouse experiments indicated that six varieties of Cynodon were resistant to root-knot nematode but it took up to 6 months of grass growth to appreciably lower the nematode population. The nematodes were eliminated from the soil by all the six grass varieties after 18 months.  相似文献   

10.
The southern root-knot nematode (Meloidogyne incognita) is a major parasite of cotton in the U.S., and management tactics for this nematode attempt to minimize population levels. We compared three post-harvest practices for their ability to reduce nematode population levels in the field, thereby reducing initial nematode population for the next year's crop. The three practices tested were: 1) chemical defoliation before harvest plus cutting cotton stalks after harvest, 2) chemical defoliation plus applying a herbicide to kill plants prior to cutting the stalks, and 3) chemical defoliation without cutting stalks. Experiments were conducted in both the greenhouse and in the field. The greenhouse experiments demonstrated that M. incognita reproduction (measured as egg counts and root gall rating indices) was significantly greater when stalks were not cut. Cutting stalks plus applying herbicide to kill cotton roots did not significantly reduce nematode reproduction compared to cutting stalks alone. In field experiments, cutting stalks reduced egg populations and root galling compared to defoliation without stalk cutting. In a greenhouse bioassay which used soil from the field plots, plants grown in soil from the defoliation only treatment had greater root gall ratings and egg counts than in the stalk cutting plus herbicide treatment. Therefore, we conclude that cutting cotton stalks immediately after harvest effectively reduces M. incognita reproduction, and may lead to a lower initial population density of this nematode in the following year.  相似文献   

11.
A biometrical method, using x-y plots of measurements of normaUy-distributed bivariate characters to construct a 95% equal-frequency ellipse representing 95% o f the specimens within its boundary, is presented. Comparisons of ellipses of four populations of Belonolaimus longicaudatus Rau show mean stylet lengths are relatively stable compared to mean tail lengths and there is greater styler length variability in short stylet forms. The extent of variability and regression between the populations can be seen by superimposing the bivariate means and orienting the longitudinal axes o f the ellipses. To compare ellipses the 95% binomial distribution is used to determine whether a sample population is significantly different from the model. The method is useful for graphic representation of morphological relationships within a nematode population, its relationship to other populations or species and to estimate environmental, ecological and genetic effects upon population morphology.  相似文献   

12.
The parameters of Taylor''s Power Law (s² = amb) relating variance (s²) to mean population level (m) were acceptably stable in different fields with similar cropping systems. Values of both a and b parameters varied with nematode species. The value of a was a function of sample size (number of cores) and was characterized for each species. The value of b was stable across sample size and reflective of the life history strategy of the species. The relationship between the economic threshold and sampling intensity required to allow management decisions, with specified levels of risk, indicated the need for improved sampling technology.  相似文献   

13.
Rates of development of stem nematode (Ditylenchus dipsaci) in white clover (Trifolium repens) seedlings were found to be linearly related to temperature. Basal developmental temperature (Tb) was 3 °C, and the thermal constant (S) for development of gravid adult females from freshly laid eggs was 270 accumulated day-degrees above the Tb. Only 12% at 20 °C and 4% at 4 °C of the gravid female nematodes inoculated into seedling axils successfully penetrated seedling epidermis. These nematodes slowly migrated within the seedling and after a lag of 5 days at 20 °C started to lay eggs. The maximal rate of egg production was temperature-dependent, being 0.8 and 3.1 eggs female⁻¹ day⁻¹ at 10 and 20 °C, respectively. Nematodes emigrated rapidly from infested stolons when they were immersed in water, with rates being highest at 25 °C and lowest at 4 °C. The sensitivity to temperature of many of the parameters that govern nematode population dynamics indicates that climatic changes will have a marked effect upon this host-parasite system. A study of infested stolons from the field indicated that nematode numbers increased up to 3,000 or more before tissue senesence, triggered by nematode damage, caused a mass emigration of nematodes from the stolon.  相似文献   

14.
The pathogenicity of two populations of the northern root-knot nematode, Meloidogyne hapla Chitwood, population 1 (P1) from alfalfa and population 2 (P2) from sainfoin, was studied on both alfalfa and sainfoin for 25 weeks. Alfalfa and sainfoin plants inoculated with P2 had significantly (P ≤ 0.05) higher mortality than plants inoculated with P1. Plant stands over all weeks for the uninoculated control, P1, and P2 were 90.5, 78.5, and 64.0% for alfalfa and 84.5, 51.0, and 41.0% for sainfoin, respectively. The increased virulence of P2 was again shown when means of plant species were combined (inoculation × week of count interaction). Plants inoculated with P2 had significantly higher mortality than either those inoculated with P1 or the uninoculated control beginning at week 7 and continuing through week 25. Plant stands over species at 25 weeks for the uninoculated control, P1, and P2 were 82.5, 29.0, and 18.0%, respectively. Sainfoin was significantly more susceptible to either population than alfalfa (plant species × week of count interaction). Separation between species first occurred after week 7 and continued until week 25. Percentages of plants remaining for alfalfa and sainfoin were 61.5 and 25.0 after 25 weeks. Significantly higher reproduction occurred in the alfalfa plants remaining after 25 weeks in P2 than in P1. Mean number of eggs per root system were 60,371 for P1 and 104,438 for P2, a difference of 42%. The results of this study indicate a need for breeders to adequately sample nematode populations present in the intended area of cultivar use and to design screening procedures to account for population pathogenicity variability.  相似文献   

15.
Aerial images were obtained on 22 July 1999 and 4 August 2000 from five cotton sites infested with Meloidogyne incognita. Images contained three broad bands representing the green (500-600 nm), red (600-700 nm), and near-infrared (700-900 nm) spectrum. Soil samples were collected and assayed for nematodes in the fall at these sites. Sampling locations were identified from images, by locating the coordinates of a wide range of light intensity (measured as a digital number) for each single band, and combinations of bands. There was no single band or band combination in which reflectance consistently predicted M. incognita density. In all 10 site-year combinations, the minimum number of samples necessary to estimate M. incognita density within 25% of the population mean was greater when sampling by reflectance-based classes (3 to 4 per site) than sampling based on the entire site as one unit. Two sites were sampled at multiple times during the growing season. At these sites, there was no single time during the growing season optimal to take images for nematode sampling. Aerial infrared photography conducted during the growing season could not be used to accurately determine fall population densities of M. incognita.  相似文献   

16.
Rotylenchulus reniformis is rapidly becoming the most economically important pest associated with cotton in the southeastern United States. Incentive programs have been implemented to support sampling of production fields to determine the presence and abundance of R. reniformis. These sampling programs have dramatically increased the number of soils samples submitted to nematology laboratories during autumn. The large numbers of samples overwhelm most labs and require placement in cold storage until extraction. Therefore, the objective of this study was to examine the length of time soils infested with R. reniformis can be stored before nematode extraction without compromising the accuracy of estimates of population densities. A sandy loam and a silty loam were the two cotton production soils used in this study. Rotylenchulus reniformis numbers decreased 61%during the first 180 days of storage in both soils. Rotylenchulus reniformis numbers from the initial sampling through 180 days decreased as a linear function. The decline of R. reniformis numbers during storage was estimated as 0.28% of the population lost daily from the maximum population through 180 days. The diminution of nematode numbers from 180 through 1,080 days in storage continued, but at a slower rate. Numbers of R. reniformis declined to less than 89%, 93%, and 99% of the initial population within 360, 720, and 1,080 days, respectively, of storage. The reduction of R. reniformis numbers over 180 days can be adjusted, allowing a more accurate estimation of R. reniformis levels in soil samples stored at 4 °C.  相似文献   

17.
A degree-day model was derived to predict egg hatch for Criconemella xenoplax. Eggs collected from gravid females were incubated in distilled water at constant temperatures of 10-35 C. Sixty-six percent of all eggs hatched between 13 and 32 C, and 42% hatched at 10 C. All eggs aborted above 32.5 C. Between 25 and 32 C, 8.5 ± 0.5 days were required for egg hatch. Degree-day requirement for egg hatch at 10-30 C was estimated to be 154 ± 5 with a base of 9.03 ± 0.04 C. This base of 9 C was adopted in studies of the relationship between degree-days and nematode population increase on Prunus seedlings grown 9-11 weeks in a greenhouse. Degree-day accumulations were based upon daily averages from maximum and minimum air temperatures. Ratios of final to initial population densities exhibited an exponential pattern in relation to degree-day accumulations with proportionate doubling increment of 0.100 ± 0.049 every 139 ± 8 degree-days. These results provide a means of predicting nematode population increase under greenhouse conditions and a basis for choosing sampling intervals when evaluating nematode multiplication.  相似文献   

18.
The possible impact of Rotylenchulus reniformis below plow depth was evaluated by measuring the vertical distribution of R. reniformis and soil texture in 20 symptomatic fields on 17 farms across six states. The mean nematode population density per field, 0 to 122 cm deep, ranged from 0.4 to 63 nematodes/g soil, and in 15 fields more than half of the R. reniformis present were below 30.5 cm, which is the greatest depth usually plowed by farmers or sampled by consultants. In 11 fields measured, root density was greatest in the top 15 cm of soil; however, roots consistently penetrated 92 to 122 cm deep by midseason, and in five fields in Texas and Louisiana the ratio of nematodes to root-length density within soil increased with depth. Repeated sampling during the year in Texas indicated that up to 20% of the nematodes in soil below 60 cm in the fall survived the winter. Differences between Baermann funnel and sugar flotation extraction methods were not important when compared with field-to-field differences in nematode populations and field-specific vertical distribution patterns. The results support the interpretation that R. reniformis below plow depth can significantly impact diagnosis and treatment of cotton fields infested with R. reniformis.  相似文献   

19.
The effect of various edaphic factors on Meloidogyne incognita population densities and cotton yield were evaluated from 2001 to 2003 in a commercial cotton field in southeastern Arkansas. The 6.07-ha field was subdivided into 512 plots (30.5 m × 3.9 m), and each plot was sampled for M. incognita prior to fumigation (Ppre), at planting (Pi), at peak bloom (Pm) and at harvest (Pf) each year. Soil texture (percent sand fraction) and the pre-plant soil fertility levels each year were determined from each plot. To ensure that a range of nematode population densities was available for study, 1,3-dichloropropene was applied in strips (3.9-m wide) at rates of 14.1, 29.2 and 42.2 liter/ha (128 plots each) each year 2 wk prior to planting. Data were evaluated using both stepwise and multiple regression analyses to determine relationships among edaphic factors, nematode population densities and yield. Although Pi and the percent sand fraction of the soil were the most important factors in explaining the variation in cotton yield, regression models only accounted for <26% of the variation in yield. When the same data were evaluated on a more homogeneous large-scale platform based on similar geographic locations, soil types and nematicide treatments, regression models that included both Pi and sand content explained 65%, 86% and 83% of the variability in yield for 2001, 2002 and 2003, respectively. Prediction profiles of the combined effects also demonstrated that damage potential for M. incognita on cotton in this study varied by soil texture.  相似文献   

20.
Prompt tillage after crop harvest was investigated as a cultural control for the tobacco cyst nematode, Globodera tabacum tabacum, on stalk-cut broadleaf cigar wrapper tobacco. Stalk stumps and roots remaining after harvest were destroyed by tilling immediately or from 2 to 6 wk after harvest in field experiments over 4 yr. Cyst nematode Pf/Pi ratios ranged from 0.65 to 1.62 when plants were tilled immediately after harvest and 1.13 to 5.88 when tillage was delayed. Nematode population development was monitored by inoculating plants in pots placed in fields with J2 in eggs and sampling over time (8 to 18 wk). Three generations per year were observed, and G. t. tabacum generation time was as short as 6 wk for each generation. Destroying stalks and root systems remaining after harvesting stalk-cut broadleaf cigar wrapper tobacco removes the host to preclude development of nematodes at the end of the second and entire third generation. Early tillage resulted in consistently lower tobacco cyst nematode populations than allowing viable roots to remain in fields for an additional 8 to 18 wk. This management tactic reduces the need for nematicide application to slow nematode population increases over time and can reduce losses due to infection by G. t. tabacum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号