首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
From the fall of 1968 through the summer of 1973, a Georgia cotton field with a lengthy history of the Cotton Stunt Disease Complex was sampled for the presence of plant parasitic nematodes. Although Meloidogyne incognita was recovered on all sampling dates, concomitant populations of Hoplolaimus columbus were not recovered until the spring of 1970. During the succeeding four growing seasons, the population density and horizontal distribution of H. columbus increased, and H. columbus replaced M. incognita as the predominant phytopathogenie species. A second Georgia cotton field containing concomitant populations of H. columbus and M. incognita was observed from the fall of 1971 through the summer of 1973. In this case the horizontal distribution of both species remained relatively constant and the population density of H. columbus increased steadily. In both locations, the presence of either H. columbus or M. incognita significantly inhibited the presence of the concomitant species. In general, however, the initial spring or final fall population densities of H. columbus or M. incognita had no significant influence on the population density of the concomitant species, The data are also discussed in relation to the biological significance of H. columbus in the southeastern coastal plain.  相似文献   

2.
The effects of Meloidogyne incognita on the Big Jim, Jalapeno, and New Mexico No. 6 chile (Capsicum annuum) cultivars were investigated in microplots for two growing seasons. All three cultivars were susceptible to M. incognita and reacted similarly to different initial populations of this nematode. Severe stunting and yield suppressions occurred at all initial M. incognita densities tested ranging from 385 to 4,230 eggs and larvae/500 cm³ soil. Regression analysis of the microplot data from a sandy loam soil showed yield losses of 31% for the 1978 season and 25% for the 1979 season for the three cultivars for each 10-fold increase in the initial population of M. incognita.  相似文献   

3.
Phenamiphos applied at 6.7 kg ai/ha through a solid set or a center pivot irrigation system with 28 mm of water effectively controlled root-knot nematodes, Meloidogyne incognita, and resulted in greater snap bean growth and yields irrespective of growing season, tillage method, or cover crop system. The percentage yield increases attributed to this method of M. incognita control over nontreated controls were 45% in the spring crop, and 90% and 409% in the fall crops following winter rye and fallow, respectively. Root galling was not affected by tillage systems or cover crop, but disk tillage resulted in over 50% reduction in bean yield compared with yields from the subsoil-bed tillage system.  相似文献   

4.
Thirty populations of Meloidogyne of diverse geographic origin representing 10 nominal species and various reproductive, cytological, and physiological forms known to exist in the genus were examined to determine their enzymatic relationships. The 184 bands resolved in the study of 27 enzymes were considered as independent characters. Pair-wise comparisons of populations were performed in all possible combinations to estimate the enzymatic distances (ED) and coefficients of similarity (S). A phylogenetic tree was constructed. The apomictic species M. arenaria, M. microcephala, M. javanica, and M. incognita shared a common lineage. M. arenaria was highly polytypic, whereas conspecific populations of M. javanica and M. incognita were largely monomorphic. The mitotic and meiotic forms of M. hapla were very similar (S = 0.93), suggesting that the apomictic race B evolved only recently from the meiotic race A. The five remaining meiotic species (M. chitwoodi, M. graminicola, M. graminis, M. microtyla, and M. naasi - each represented by a single population) were not closely related to each other or to the mitotic species.  相似文献   

5.
Roots of seedlings of red clover and alfalfa growing on 10⁻¹ Hoagland and Arnon solution agar were inoculated with various combinations of Meloidogyne incognita and Pratylenchus penetrans. Egg-laying by P. penetrans decreased as the number of nematodes, the ratio of entrant M. incognita to entrant P. penetrans, and the priority of invasion of roots by M. incognita increased. Embryogeny and hatching of eggs of P. penetrans, and development of larvae of M. incognita, were not affected. In red clover, the greatest red uction occurred when there were 65 entrant nematodes, the ratio of M. incognita:P. penetrans was 4:1 and M. incognita was inoculated four days prior to P. penetrans. In alfalfa, the less-favorable host for both nematodes, the greatest reduction occurred when there were 45 entrant nematodes, the ratio of M. incognita:P. penetrans was 2:1, and M. incognita was inoculated 4 days prior to P. penetrans.  相似文献   

6.
The effects of Meloidogyne incognita and M. javanica on a susceptible tobacco (Nicotiana tabacum L.) cv. McNair 944 were investigated in field microplots during 1978 and 1979. Three initial inoculum levels—4, 16, and 64 nematode eggs and/or second-stage larvae per 100 cm³ of soil—were used for each nematode species. Data obtained from the experiments included plant yield and the amount of reproduction of the two nematode species. At comparative inoculum levels, M. javanica was more aggressive than M. incognita on tobacco and caused approximately twofold more yield suppression than M. incognita. The calculated initial population of M. incognita, derived from the average for 2 yr, which produced a 7% suppression in plant yield was four eggs and/or second-stage larvae per 100 cm³ of soil; whereas less than one M. javanica egg and/or second-stage larvae per 100 cm³ of soil was needed to achieve similar suppression. Nematode reproduction varied in the 1978 and 1979 tests, but similar trends were observed. Early season M. javanica populations were greater than those of M. incognita, but late season populations of M. incognita were twice anti three times those of M. javanica.  相似文献   

7.
The discovery of Meloidogyne mayaguensis is confirmed in Florida; this is the first report for the continental United States. Meloidogyne mayaguensis is a virulent species that can reproduce on host cultivars bred for nematode resistance. The perineal patterns of M. mayaguensis isolates from Florida show morphological variability and often are similar to M. incognita. Useful morphological characters for the separation of M. mayaguensis from M. incognita from Florida are the male stylet length values (smaller for M. mayaguensis than M. incognita) and J2 tail length values (greater for M. mayaguensis than M. incognita). Meloidogyne mayaguensis values for these characters overlap with those of M. arenaria and M. javanica from Florida. Enzyme analyses of Florida M. mayaguensis isolates show two major bands (VS1-S1 phenotype) of esterase activity, and one strong malate dehydrogenase band (Rm 1.4) plus two additional weak bands that migrated close together. Their detection requires larger amounts of homogenates from several females. Amplification of two separate regions of mitochondrial DNA resulted in products of a unique size. PCR primers embedded in the COII and 16S genes produced a product size of 705 bp, and amplification of the 63-bp repeat region resulted in a single product of 322 bp. Nucleotide sequence comparison of these mitochondrial products together with sequence from 18S rDNA and ITS1 from the nuclear genome were nearly identical with the corresponding regions from a M. mayaguensis isolate from Mayaguez, Puerto Rico, the type locality of the species. Meloidogyne mayaguensis reproduced on cotton, pepper, tobacco, and watermelon but not on peanut. Preliminary results indicate the M. mayaguensis isolates from Florida can reproduce on tomato containing the Mi gene. Molecular techniques for the identification of M. mayaguensis will be particularly useful in cases of M. mayaguensis populations mixed with M. arenaria, M. incognita, and M. javanica, which are the most economically important root-knot nematode species in Florida, and especially when low (<25) numbers of specimens of these species are recovered from the soil.  相似文献   

8.
Nonspecific esterases and malate dehydrogenases of 1-5 females from 40 root-knot nematode populations from Portugal were analyzed by electrophoresis in 0.4-mm-thick polyacrylamide gels. Fourteen major bands of esterase activity were detected, corresponding to 10 distinct phenotypes, Meloidogyne javanica and M. hapla had distinct species-specific phenotypes. Two phenotypes occurred in M. arenaria. The most variability was found among M. incognita populations. Of the remaining two phenotypes, one was associated with M. hispanica and the other belonged to a new species. Three malate dehydrogenase phenotypes were discerned on the basis of particular combinations of the eight main bands of activity found. As previously found, esterases were more useful than malate dehydrogenases in identification of the major Meloidogyne species. The host plant had no effect on the nematode esterase or malate dehydrogenase phenotypes.  相似文献   

9.
Four bean genotypes (IPA-1, A-107, A-211, and Calima), representing all possible combinations of resistance and susceptibility to Fusarium oxysporum f. sp. phaseoli (Fop) and Meloidogyne incognita, were each inoculated with three population densities of these pathogens. Calima and A-107 were resistant to Fop; A-107 and A-211 were resistant to M. incognita; and IPA-1 was susceptible to both pathogens. In Fop-susceptible lines (IPA-1 and A-211), the presence of M. incognita contributed to an earlier onset and increased severity of Fusarium wilt symptoms and plant stunting. However, the Fop-resistant Calima developed symptoms of Fusarium wilt only in the presence of M. incognita. Genotype A-107 (resistant to both M. incognita and Fop) exhibited Fusarium wilt symptoms and a moderately susceptible reaction to Fop only after the breakdown of its M. incognita resistance by elevated incubation temperatures (27 C). Root galling and reproduction of M. incognita was generally increased as inoculum density of M. incognita was increased on the M. incognita susceptible cultivars. However, these factors were decreased as the inoculum density of Fop was increased. It was concluded that severe infections of bean roots by M. incognita increase the severity of Fusarium wilt on Fop-susceptible genotypes and may modify the resistant reaction to Fop.  相似文献   

10.
Rates of penetration of Meloidogyne incognita, M. arenaria, and M. javanica into tobacco cultivars NC2326 (susceptible to all three species) and K399 (resistant to M. incognita) and a breeding line that had been selected for resistance to M. incognita were compared. Meloidogyne incognita penetrated NC2326 rapidly during the first 24 hours after inoculation. Numbers of M. incognita continued to increase gradually through the 14-day experiment. Higher numbers of M. incognita were observed in the roots of K399 during the first 24 hours than were observed in NC2326. The number of M. incognita in K399 peaked 4 days after inoculation, then declined rapidly as the nematodes that were unable to establish a feeding site left the root or died. Numbers of M. incognita in the breeding line followed the same pattern as with K399, but in lower numbers. Numbers of M. arenaria showed little difference between cultivars until 7 days after inoculation, then numbers increased in NC2326. Numbers of M. javanica fluctuated in all cultivars, resulting in patterns of root population different from those observed for M. incognita or M. arenaria. Resistance to M. incognita appears to be expressed primarily as an inability to establish a feeding site rather than as a barrier to penetration. Some resistance to M. arenaria may also be present in K399 and the breeding line.  相似文献   

11.
Greenhouse and laboratory experiments were performed to determine if an interaction exists between Meloidogyne incognita and Hoplolaimus columbus on Davis soybean. Greenhouse tests were performed with three population levels of M. incognita and H. columbus (0, 1,500, 6,000/1.5-liter pot) separately and in all combinations. Dry root weight (DRT) declined nonlinearly and dry shoot weight (DST) declined linearly with respect to increasing initial populations of M. incognita and H. columbus. When the two nematode species were added to the soil together, the amount of DRT and DST suppression by one species was dependent on the initial level of the concomitant species. The final root population of M. incognita or H. columbus declined linearly with increasing initial population density of the concomitant species. H. columbus suppressed M. incognita populations in the soil nonlinearly, but M. incognita had no effect on H. columbus.  相似文献   

12.
The motility of Meloidogyne incognita second-stage juveniles (J2) and their ability to induce root galls in tomato were progressively decreased upon exposure to nicotine at concentrations of 1-100 μg/ml. EC₅₀ values ranged from 14.5 to 22.3 μg/ml, but J2 motility and root-gall induction were not eliminated at 100 μg/ml nicotine. Nicotine in both resistant NC 89 and susceptible NC 2326 tobacco roots was increased significantly 4 days after exposure to M. incognita. The increase was greater in resistant than in susceptible tobacco. Root nicotine concentrations were estimated to be 661.1-979.1 μg/g fresh weight. More M. incognita were detected in roots of susceptible than in roots of resistant tobacco. Numbers of nematodes within resistant roots decreased as duration of exposure to M. incognita was increased from 4 to 16 days. Concentrations of nicotine were apparently sufficient to affect M. incognita in both susceptible and resistant tobacco roots. Localization of nicotine at infection sites must be determined to ascertain its association with resistance.  相似文献   

13.
Four methods of placement of DBCP (l,2-dibromo-3-chloropropane) and a single method of application of ethoprop (0-ethyl S,S-dipropyl phosphorodithioate) wexe compared in each of two areas for control of nematodes on soybeans. One area was a Marlboro sand infested with Hoplolaimus columbus. The other area was a Fuquay loamy sand infested with Meloidogne incognita. Soybean yields were increased and numbers of H. columbus in the row 0-20 cm deep were decreased similarly by all methods of DBCP application in Marlboro soil. All DBCP treatments increased the average soybean yields and decreased numbers of M. incognita larvae in the row 0-20 cm deep in the Fuquay soil. Average root-knot indices were reduced by all DBCP treatments except with placement 40 cm deep beneath the row. Similarly, placement of all or part of the DBCP 20 cm deep and 13 cm to either side of the row resulted in greater average yields than placement of the DBCP 40 cm deep. Apparently, control of M. incognita is more critical 0-20 cm deep than 20-40 cm deep for increasing soybean yields. DBCP did not control H. columbus as effectively as it did M. incognita. Control of H. columbus and M. incognita was not obtained at 0-20-cm and 20-40-cm depths 30 cm and 45 cm from the row regardless of the method used to apply DBCP. H. columbus and M. incognita were controlled more effectively and soybean yields were higher with DBCP at 13.6 kg a.i./ha than with ethoprop at 4.5 kg a.i./ha.  相似文献   

14.
Buildup of plant-parasitic nematode populations on corn (Zea mays), soybean (Glycine max), and sorghum (Sorghum bicolor) were compared in 1991 and 1992. Final population densities (Pf) of Meloidogyne incognita were lower following sorghum than after soybean in both seasons, and Pf after sorghum was lower than Pf after corn in 1992. In both seasons, Pf differed among the sorghum cultivars used. No differences in Pf on corn, sorghum, and soybean were observed for Criconemella spp. (a mixture of C. sphaerocephala and C. ornata) or Paratrichodorus minor in either season. Pf levels of Pratylenchus spp. (a mixture of P. brachyurus and P. scribneri) were greatest after corn in 1992, but no differences with crop treatments were observed in 1991. When data from field tests conducted with corn and sorghum during the past four seasons were pooled, negative linear relationships between ln(Pf/Pi) and ln(Pi) were observed for Criconemella spp. and P. minor on each crop, and for M. incognita on corn (Pi = initial population density). Although ln(Pf/Pi) and ln(Pi) were not related for M. incognita with pooled sorghum data, separate relationships were derived for various sorghum cultivars. Regression equations from pooled data were used to obtain estimates of equilibrium density and maximum reproductive rate, and these estimates were used to construct models expressing nematode Pf across a range of initial densities. Many of these models were robust, encompassing a range of sites, season, crop cultivars, and planting dates. Quadratic models derived from pooled field data provided an alternative method for expressing Pf as a function of Pi.  相似文献   

15.
Eight to ten precipitin bands were formed in a double immunodiffusion system comparing antigens of adult females of Meloidogyne incognita and M. arenaria. Most of the precipitin bands, based on band position and coalescence, were common to both species. Antiserum specific for M. incognita was prepared by cross absorption. Two populations of M. incognita were serologically identical, whereas two populations of M. arenaria differed slightly with respect to one weak precipitin band.  相似文献   

16.
Management of Meloidogyne incognita (root-knot nematode) in cotton in the United States was substantially affected by the decision to stop production of aldicarb by its principle manufacturer in 2011. The remaining commercially available tools to manage M. incognita included soil fumigation, nematicide seed treatments, postemergence nematicide application, and cultivars partially resistant to M. incognita. Small plot field studies were conducted on a total of nine sites from 2011–2013 to examine the effects of each of these tools alone or in combinations, on early season galling, late-season nematode density in soil, yield, and value ($/ha = lint value minus chemical costs/ha). The use of a partially resistant cultivar resulted in fewer galls/root system at 35 d after planting in eight of nine tests, lower root-knot nematode density late in the growing season for all test sites, higher lint yield in eight of nine sites, and higher value/ha in six of nine sites. Galls per root were reduced by aldicarb in three of nine sites and by 1,3-dichloropropene (1,3-D) in two of eight sites, relative to the nontreated control (no insecticide or nematicide treatment). Soil fumigation reduced M. incognita density late in the season in three of nine sites. Value/ha was not affected by chemical treatment in four of nine sites, but there was a cultivar × chemical interaction in four of nine sites. When value/ha was affected by chemical treatment, the nontreated control had a similar value to the treatment with the highest value/ha in seven of eight cultivar-site combinations. The next “best” value/ha were associated with seed treatment insecticide (STI) + oxamyl and aldicarb (similar value to the highest value/ha in six of eight cultivar-site combinations). The lowest valued treatment was STI + 1,3-D. In a semi-arid region, where rainfall was low during the spring for all three years, cultivars with partial resistance to M. incognita was the most profitable method of managing root-knot nematode in cotton.  相似文献   

17.
Pathogenicity and reproduction of single and combined populations of Meloidogyne arenaria and M. incognita on a susceptible soybean (Glycine max cv. Davis) were investigated. Significant galling and egg mass production were observed on roots of greenhouse-grown soybean inoculated with M. arenaria and M. incognita, in combination and individually. M. arenaria produced more galls and egg masses than M. incognita, whereas in combined inoculation with both nematode species, gall and egg production was intermediate. In growth chamber tests, inoculations with M. arenaria and M. incognita, singly or in combination, produced more galls and egg masses at 30 C than at 25 C. At 25 C, M. arenaria alone produced significantly more galls and egg masses than the combined M. arenaria plus M. incognita, while M. incognita produced the fewest. At 30 C, numbers of egg masses produced by M. arenaria did not differ significantly from combined M. arenaria and M. incognita. In temperature tank tests, M. incognita produced more galls and egg masses at 28 C than at 24 C soil temperature. In contrast, numbers of galls, egg masses, and eggs of M. arenaria were slightly higher at 24 C than at 28 C. Combined inoculum of both nematode species produced greater numbers of galls at 24 C than at 28 C.  相似文献   

18.
The host-parasite relationships of asparagus and Meloidogyne spp. were examined under greenhouse and microplot conditions. Meloidogyne species and races differed greatly in their ability to reproduce on asparagus seedlings. Meloidogyne hapla generally failed to reproduce, and M. javanica, M. arenaria race 1, and M. incognita race 3 reproduced poorly, with a reproduction factor (Rf = final population/initial population) usually < 1.0. Only M. arenaria race 2 and M. incognita races 1 and 4 reproduced consistently on all asparagus cultivars tested (Rf typically 1-11). No effect of M. incognita race 4 on host growth was detected. Meloidogyne arenaria race 2 and M. incognita race 1 had slight negative effects (5-10%) on plant and root growth.  相似文献   

19.
Rates of nematode penetration and the histopathology of root infections in fluecured tobacco cultivars ''McNair-944,'' ''Speight G-28,'' and ''NC-89'' with either Meloidogyne arenaria, M. incognita, M. hapla, or M. javanica were investigated. Penetration of root tips by juveniles of all species into the M. incognita-resistant NC-89 and G-28 was much less than that on the susceptible McNair-944. Few juveniles of M. incognita were detected in resistant cultivars 7 and 14 days after inoculation. Infection sites exhibited some cavities and extensive necrotic tissue at 14 days; less necrotic tissue and no intact nematodes were observed 35 days after inoculation. Although some females of M. arenaria reached maturity and produced eggs, considerable necrosis was induced in the resistant cultivars. Meloidogyne hapla and M. javanica developed on all cultivars, but there was necrotic tissue at some infection sites in the resistant cultivars. The occurrence of single multistructured nuclei in the syncytia of most M. hapla infections differed from the numerous small nuclei found in syncytia caused by the other three species.  相似文献   

20.
Meloidogyne incognita race 1, M. javanica, M. arenaria race 1, M. hapla, and an undescribed Meloidogyne sp. were analyzed by comparing isozyme phenotypes of esterase, malate dehydrogenase, phosphoglucomutase, isocitrate dehydrogenase, and α-glycerophosphate dehydrogenase. Isozyme phenotypes were obtained from single mature females by isoelectric focusing electrophoresis. Of these five isozymes, only esterase and phosphoglucomutase could be used to separate all five Meloidogyne spp.; however, the single esterase electromorphs were similar for M. incognita and M. hapla. Yet when both nematodes were run on the same gel, differences in their esterase phenotypes were detectable. Isozyme phenotypes from the other three isozymes revealed a great deal of similarity among M. incognita, M. javanica, M. arenaria, and the undescribed Meloidogyne sp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号