首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Acartia spp. are the dominant copepod species in the Gironde estuary, seaward of the turbidity maximum area. Acartia bifilosa develop a large population in spring and early summer whereas Acartia tonsa appear in late summer. High values and high variability of chlorophyll a/suspended particulate matter ratio are found seaward of the turbidity maximum area. Feeding rates of A. bifilosa were measured by fluorometry. Phytoplankton ingestion was found to be highly variable, between 8 to 80% of copepod carbon body weight. Except for adult females, copepods were heavier in summer than in winter. PB ratios, estimated by the instantaneous growth rate method, varied from 0.03 d–1 to 0.14 d–1. The gut contents and P/B ratios of Acartia bifilosa were related to chl a/SPM ratio. From those data, and a few obtained for A. tonsa, it is concluded that only in summer months phytoplankton ingestion is enough to maintain secondary production.  相似文献   

2.
The dinoflagellate, Pfiesteria piscicida, can form harmful algal blooms in estuarine environments. The dominant copepod species usually found in these waters is Acartia tonsa. We tested the ability of A. tonsa to graze the non-toxic zoospore stage of P. piscicida and thus serve as a potential biological control of blooms of this algal species. A. tonsa grazed the non-toxic zoospore stages of both a non-inducible P. piscicida strain (FDEPMDR23) and a potentially toxic strain (Tox-B101156) at approximately equal rates. Ingestion of P. piscicida increased with cell concentration and exhibited a saturated feeding response. Both the maximum number of cells ingested (Imax) and the slope of the ingestion curve (α) of A. tonsa feeding on P. piscicida were comparable to these ingestion parameters for A. tonsa fed similar-sized phytoplankton and protozoan species. When these laboratory ingestion rates were combined with abundance estimates of A. tonsa from the Pocomoke Estuary and Chesapeake Bay, we found that significant grazing control of the non-toxic zoospore stage of P. piscicida by A. tonsa would only occur at high copepod abundances (>10 copepods L−1). We conclude that under most in situ conditions the potential biological control of blooms of P. piscicida is exerted by microzooplankton grazers. However, in the less saline portions of estuaries where maximum concentrations of copepods often occur with low abundances of microzooplankton, copepod grazing coefficients can be similar to the growth rates of P. piscicida.  相似文献   

3.
This study tested whether the dinoflagellate Prorocentrum minimum is nutritionally insufficient or toxic to the copepod Acartia tonsa. Experiments were carried out with adult female A. tonsa and the P. minimum clone Exuv, both isolated from Long Island Sound. Initially, the functional and numerical responses of A. tonsa feeding on exponentially growing P. minimum cells were characterized. These experiments revealed that A. tonsa readily ingested P. minimum cells, up to the equivalent of 200% of body carbon day−1, but egg production was relatively low, with a maximum egg production rate of 22% of body carbon day−1. Hence, the egg production efficiency (egg carbon produced versus cell carbon ingested) was low (10%). In a separate experiment, ingestion and egg production rates were measured as a function of food concentration with cells in different growth stages (early-exponential, late-exponential/early-stationary, and late-stationary growth phase) to simulate conditions during a bloom. There was no indication that cells in the stationary phase resulted in lower ingestion or egg production rates relative to actively growing cells. Egg hatching success remained high (>80%) and independent of the cell growth phase. In a third experiment specifically designed to test the hypothesis that P. minimum is toxic, ingestion, egg production and egg hatching success were measured when females were fed mixtures of P. minimum and the diatom Thalassiosira weissflogii, but in which total food concentration was held constant and the proportion of P. minimum in the mixed diet varied. A. tonsa readily ingested P. minimum when it was offered in the mixed diet, with no detrimental effects on egg production or egg hatching observed. Supplementing P. minimum with T. weissflogii increased both the egg production rate and the egg production efficiency. It is concluded that P. minimum is nutritionally insufficient, but not toxic to A. tonsa. Finally, it is estimated that in the field grazing by A. tonsa is approximately equivalent to 30% of the maximum daily growth rate of P. minimum. Hence, copepod grazing cannot be ignored in field and modeling studies of the population dynamics of P. minimum.  相似文献   

4.
Cervetto  G.  Pagano  M.  Gaudy  R. 《Hydrobiologia》1995,(1):237-248
This paper deals with the variations on feeding activities and diel migrations of Acartia tonsa Dana, the dominant copepod species in Berre lagoon (west Mediterranean French coasts).A 27 hour in situ study was carried out during June 1989, at a station located in the south west of the lagoon. Vertical profiles of salinity, temperature and dissolved oxygen taken each 12 hours showed a stratification of the water column in two distinct layers: (1) a superficial layer with higher temperature, moderate salinity, and high oxygen concentrations; (2) a colder, more saline and almost anoxic deep layer. In situ chlorophyll a measurements were made at –1, –3 and –5 m; concentrations were relatively homogeneous through the water column during the whole sampling period.Zooplankton samples were collected every 3 hours with a 200 µm mesh net, in three strata (0–2 m, 2–4 m, 4–6 m). A complete dominance of A. tonsa was observed in the zooplankton community. Our results point out clearly a nocturnal migration, with individuals concentrating in both superficial layers; thus an unimodal migratory pattern can be inferred. Gut flourescence measured following the Mackas & Bohrer technique (1976), showed higher values during night time, and values for females were the highest with wider day—night variations. Similar results were found in laboratory experiments with copepods fed with a culture of Dunaliella tertiolecta.Gut evacuation rate was measured in two laboratory experiments either mixing or separating males and females. Evacuation rate was 17.92 and 27.25 min for males and females respectively.Phytoplankton daily ration for A. tonsa calculated by gut flourescence and gut evacuation rate was particularly low, for it represents only 10% of the individual carbon weight.Moreover, grazing impact on phytoplankton is very restricted, it represents less than 1% of the daily phytoplankton stock.  相似文献   

5.
Hoffmeyer  Mónica S. 《Hydrobiologia》1994,292(1):303-308
The abundance and species composition of Copepoda with respect to other mesozooplanktonic groups were studied at the harbour of Ingeniero White in the inner zone of the Bahfa Blanca estuary, between July 1990 and August 1991. Maximal copepod abundances of 4.7 × 10 m–3 and 4.9 × 10 m–3 were observed in January 1991 and May 1991, respectively. Minimal abundances of 6 m–3 were found in June 1990. Acartia tonsa was present throughout the year with high dominance in summer-autumn (December to May). Eurytemora affinis was present from July to October 1990 (first pulse) and from July to September 1991 (second pulse). Euterpina acutifrons was most abundant during spring 1990, whereas Paracalanus parvus was most abundant during winter-spring (July–October) 1990 and April–May 1991. The rest of the copepods were observed during winter and spring 1990 and July–August 1991. Calanoides carinatus and Labidocera fluviatilis, both species from the outer estuarine waters, were only found on two sampling dates. The proportion of meroplanktonic forms was high in certain months of the annual period considered. Differences between the copepod seasonal succession studied here and those observed during several years in the 1980's are discussed.  相似文献   

6.
The trophic interactions of the marine rotifer Synchaeta cecilia were investigated by determining its feeding and growth rates on a wide variety of marine phytoplankton and by determining its susceptibility to predation by the calanoid copepod, Acartia tonsa. Reproduction of S. cecilia was sustained in four-day feeding trails by 13 of 37 algal species tested. Growth-supporting species included species of Cryptophyceae, Dinophyceae, Chlorophyceae and Haptophyceae in sizes from 4 to 47 μm. Within these taxa, other species in the acceptable size range failed to support growth. No species of Cyanophyceae, Bacillariophyceae, or Chrysophyceae supported growth of the rotifer. S. cecilia can be maintained on unialgal cultures of Cryptophyceae but growth is enhanced by a combination of two or three species; a mixture of Chroomonas salina (Cryptophyceae), Heterocapsa pygmaea (Dinophyceae), and Isochrysis galbana (Haptophyceae) has sustained laboratory stocks of S. cecilia for over four years. The expected response of S. cecilia to food quantity was observed: as food concentration was increased from 58 to 1154 μg C 1−1, the population growth constant increased from 0.17 to 0.60 d−1 at 20°C. This is equivalent to population doubling times of 4.0 and 1.1 days at H. pygmaea densities of 500 and 104 cells ml−1, respectively. The susceptibility of S. cecilia to predation was investigated by determining its rate of capture by the omnivorous marine copepod Acartia tonsa. At prey densities of 5 to 35 μg C 1−1 (0.3 to 1.9 individuals 1−1), A. tonsa readily ingested S. cecilia at rates up to 3 μg C copepod−1 day−1.  相似文献   

7.
Grazing rates and behaviors of the copepod Neocalanus plumchrus were investigated in shipboard experiments during the first SUPER Program cruise (May, 1984). N. plumchrus can exploit cells in the 2 to 30 m size range with equal clearance efficiency but displays considerable flexibility in responding to changes in concentration and size composition. Its functional response helps to stabilize phytoplankton at low densities. In 60-liter microcosms, a density of one copepod liter–1 was sufficient to maintain the ambient abundance and structure of the phytoplankton community for a week. In the absence of the copepod, phytoplankton bloomed to unnaturally high levels, and the community composition was dramatically altered. Despite its grazing potential, N. plumchrus was not present in sufficient density to control phytoplankton blooms in the subarctic Pacific. However, the copepod may have an important role in regulating the abundance of smaller grazers and the size structure of the phytoplankton community.Contribution No. 2002 from Hawaii Institute of Geophysics, University of Hawaii, Honolulu, HI 96822  相似文献   

8.
Phytoplankton exhibit a diversity of morphologies, nutritional values, and potential chemical defenses that could affect the feeding and fitness of zooplankton consumers. However, how phytoplankton traits shape plant–herbivore interactions in the marine plankton is not as well understood as for terrestrial or marine macrophytes and their grazers. The occurrence of blooms of marine dinoflagellates such as Karenia brevis suggests that, for uncertain reasons, grazers are unable to capitalize on, or control, this phytoplankton growth—making these systems appealing for testing mechanisms of grazing deterrence. Using the sympatric copepod Acartia tonsa, we conducted a mixed diet feeding experiment to test whether K. brevis is beneficial, toxic, nutritionally inadequate, or behaviorally rejected as food relative to the palatable and nutritionally adequate phytoplankter Rhodomonas lens. On diets rich in K. brevis, copepods experienced decreased survivorship and decreased egg production per female, but the percentage of eggs that hatched was unaffected. Although copepods showed a 6–17% preference for R. lens over K. brevis on some mixed diets, overall high ingestion rates eliminated the possibility that reduced copepod fitness was caused by copepods avoiding K. brevis, leaving nutritional inadequacy and toxicity as remaining hypotheses. Because egg production was dependent on the amount of R. lens consumed regardless of the amount of K. brevis eaten, there was no evidence that fitness costs were caused by K. brevis toxicity. Copepods limited to K. brevis ate 480% as much as those fed only R. lens, suggesting that copepods attempted to compensate for low food quality with increased quantity ingested. Our results indicate that K. brevis is a poor food for A. tonsa, probably due to nutritional inadequacy rather than toxicity, which could affect bloom dynamics in the Gulf of Mexico where these species co-occur.  相似文献   

9.
The zooplankton community of the brackish part of the Westerschelde estuary (November 1989–October 1990) was dominated by two calanoid copepods, Eurytemora affinis and Acartia tonsa. Eurytemora was present during a longer period of the year and was much more important in terms of total abundances and biomasses than Acartia.The secondary production of these species was estimated by means of the growth rate method, using weight-specific growth rates obtained from laboratory cultures (Eurytemora) or from the literature (Acartia).Due to the substantially higher growth rates of Acartia compared to Eurytemora, total yearly productions of both communities were comparable, notwithstanding the large discrepancies in biomass. They amounted to about 5 and 6 g C m–2 y–1 by Acartia and Eurytemora respectively.The food needed to realise this production was estimated to be about 14 and 17 g C m–2 y–1 by Acartia and Eurytemora respectively. Provided that the copepods are able to selectively ingest the phytoplankton, in situ net production provides sufficient carbon for zooplankton demands for a short period of the year only. As phytoplankton standing stock is very low and net phytoplankton productivity is negative from late fall to early spring, nutritional demands of the copepods have to be fulfilled by other than algal food at least during this period of the year.Although the copepods in the brackish part can have an important impact on some food items, their contribution to total carbon fluxes in the brackish zone is negligible: each year some 6% of all consumed carbon in the brackish part of the estuary passes through the copepod food web.  相似文献   

10.
In the mesohaline zone of the Westerschelde estuaryEurytemora affinis is the dominant copepod, demonstrating large biomass values nearly throughout the year. In the meso-polyhaline Lake VeereAcartia tonsa is abundant, mainly during summer. In spring a small population ofEurytemora americana is found. The tidal estuary harboured far denser copepod populations throughout the year than the stagnant brackish lake water. The average yearly copepodid+adult biomass in the Westerschelde estuary was approx. 850 mg/m3 (wet weight), in Lake Veere approx. 130 mg/m3. Temporarily low oxygen values did not influence negatively the copepod populations in the Westerschelde estuary. The seasonal distribution of the dominant copepods in both areas is explained in the light of recent litterature data. PerennialEurytemora affinis abundance in the Westerschelde estuary must be mainly caused by large concentrations of nannodetritus particles, bacteria included, throughout the year.Acartia tonsa in Lake Veere has to thrive mainly on nannophytoplankton. Communication no. 141 of the Delta Institute for Hydrobiological Research, Yerseke, The Netherland.  相似文献   

11.
In 1987, there was an episode of shellfish poisoning in Canada with human fatalities caused by the diatom Pseudo-nitzschia multiseries, which produced the toxin domoic acid. In order to examine whether domoic acid in this diatom serves as a grazing deterrent for copepods, we compared feeding rates, egg production rates, egg hatching success and mortality of the calanoid copepods Acartia tonsa and Temora longicornis feeding on unialgal diets of the toxic diatom P. multiseries and the similarly-sized non-toxic diatom Pseudo-nitzschia pungens. Copepods were collected in summers of 1994, 1995 and 1996 from Shediac Bay, New Brunswick, Canada, near Prince Edward Island, the site of the 1987 episode of domoic acid shellfish poisoning. Rates of ingestion of the toxic versus the non-toxic diatom by A. tonsa and T. longicornis were similar, with only one significantly different pair of values obtained in 1994, for which A. tonsa had a higher mean rate of ingestion of the toxic than the non-toxic diatom. Thus, domoic acid did not appear to retard grazing. Analyses of copepods with high performance liquid chromatography (HPLC) revealed that copepods accumulated domoic acid when feeding on P. multiseries. Egg production rates of copepods when feeding on P. multiseries and P. pungens were very low, ranging from 0 to 2.79 eggs female–1 d–1. There did not appear to be differential egg production or egg hatching success on diets of the toxic and non-toxic diatoms. Mortality of females on the toxic diet was low, ranging from 0 to 20%, with a mean of 13%, and there was no apparent difference between mortality of copepods feeding on toxic versus non-toxic diatoms. Egg hatching success on both diets, although based on few eggs, ranged between 22% and 76%, with a mean percentage hatching of 45%. Diets of the non-toxic diatom plus natural seawater assemblages supplemented with dissolved domoic acid, revealed similar rates and percentages when compared to previous experiments. In summary, none of the variables measured indicated adverse effects on copepods feeding on the toxic compared to the non-toxic diatom.  相似文献   

12.
Sellner  K. G.  Olson  M. M.  Kononen  K. 《Hydrobiologia》1994,(1):249-254
Blooms of the cyanobacteria Nodularia spumigena and Aphanizomenon flos-aquae dominated the phytoplankton assemblages of the western Gulf of Finland and the eastern side of the northern Baltic Sea in late July–August, 1992. The bloom overlapped the peak seasonal contributions of the dominant mesozooplankton herbivores in the region, the copepods Acartia bifilosa and Eurytemora affinis and the cladoceran Bosmina longispina maritima. Using radio-labelling techniques; the copepods were offered one of the cyanobacteria, Nodularia, as well as the 10–54 µm fraction of the natural phytoplankton assemblage. In general, incorporation rates of the labelled phytoplankton into the copepods declined with increasing contributions of the cyanobacteria. For both copepods, incorporation was inversely related to total phytoplankton biomass, whether measured as chlorophyll, total cells or cyanobacteria biomass. The very low rates for Acartia (< 0.8 µl [copepod h]–1) indicated that this copepod was likely starving in the cyanobacteria bloom, consistent with the generally poor condition of the animal observed in the laboratory. The other major mesozooplanktor, B. longispina maritima, ingested substantially more cyanobacterial biomass than the two copepods, based on HPLC-identified cyanobacteria-specific pigment echinenone in the gut. Bloom carbon provided < 1% and < 4% of the daily rations for Acartia and Eurytemora, respectively. Total copepod demand in the cyanobacteria blooms was trivial, < 1% of bloom biomass consumed daily. These results suggest that copepod herbivory is relatively unimportant in dissipating summer cyanobacteria blooms in the Gulf of Finland.  相似文献   

13.
Tanskanen  Sanna 《Hydrobiologia》1994,292(1):397-403
The seasonal variation in the carbon content of the calanoid copepod Acartia bifilosa was studied in the northern Baltic Sea. Monthly length-weight relationships were followed from November 1990 to October 1991 by analysing the organic carbon content of individuals, using a high temperature combustion method. The monthly length (L) on carbon (C) regressions of copepodites were best described by power functions (C = aLb), where 75% to 88% of the variation could be explained by length. Nauplii length explained less of their carbon content (63–71 %). The carbon content per length was highest in summer when the nutritional situation was good and temperature at its highest. However, the carbon-length regressions differed significantly between months, except in winter, when two subsequent months had similar regressions. The results pointed out the importance of seasonal variation as well as the risk of making errors if biomass estimates based on length on carbon regressions are used. Carbon analysis should, if possible, be done on every sample or should at least be tested as to whether the regressions are consistent with the study material before estimations are calculated.  相似文献   

14.
    
Eurytemora americana and Acartia tonsa are the two most important copepods from the Bahía Blanca estuary plankton. For this study, 30 females were selected from recently preserved samples. Prosome length (PL), width (PW) and height (PH), urosome length (UL) and width (UW) measured in each female and subsequently the following ratios PL/PW, PL/PH, PW/PH and PL/UL were determined. Individual volumes for E. americana and A. tonsa females were estimated following the morphometric method in order to obtain individual biomass values. Regression tests were conducted for both species between individual volume and prosome length or width as independent variables, fitting data to a power model. Regression lines were compared through covariance analysis and single pair comparisons in order to evaluate the temporal behavior of the relationships. PL/UL was the best ratio for separating one species from the other. Average individual volume and std. error estimated for E. americana and A. tonsa were 0.0749 (±0.0097) mm3 and 0.0399 (±0.0049) mm3, respectively. Strong differences between both copepods morphometric variable and rate values were observed. A size and volume decrease was detected associated with higher temperatures and less phytoplankton available for food. According to R 2 values of regression lines prosome width and prosome length were good volume predictors on different dates for E. americana, however, prosome width was the best predictor on the majority of dates for A. tonsa. Differences in slopes and mean variances found between regression lines demonstrated seasonal variability. General regression equations between volume and PL or PW for each species could be derived.  相似文献   

15.
L. Arvola 《Hydrobiologia》1983,101(1-2):105-110
Primary production and phytoplankton in polyhumic lakes showed a very distinct seasonal succession. A vigorous spring maximum produced by Chlamydomonas green algae at the beginning of the growing season and two summer maxima composed mainly of Mallomonas caudata Iwanoff were typical. The annual primary production was ca. 6 g org. C · m–2 in both lakes. The mean epilimnetic biomass was 1.1 in the first lake and 2.2 g · m–2 (ww) in the second one. The maximum phytoplankton biomass, 14 g · m–2, was observed during the vernal peak in May.  相似文献   

16.
A study was made of the mortality and aerobic decomposition of light- and phosphorus-limited cultures of Oscillatoria limnetica, a dominant phytoplankton species in shallow, eutrophic Lake Loosdrecht (The Netherlands). When placed in the dark at 20 °C, most cells died and lysed within twelve days. The labile organic matter was completely decomposed within three weeks. Absorbance spectra indicated that blue green algae may contributed significantly to the refractory dissolved substances in the lake. Refractory particulate matter constituted from 7 to 24% of the biomass of O. limnetica, depending on the growth rate before incubation in the dark. The decomposition rate of this fraction was 0.005 d–1. On a basis of a steady-state model of the dynamics of phytoplankton detritus, the areal organic dry weight concentration of the detritus in the lake is ca. 60 g m–2. This means the quantities of detritus in the seston and epipelon are about equal.  相似文献   

17.
Water quality experienced changes throughout the 3-year ecological engineering experiment in the drinking water source in Meiliang Bay of Lake Taihu. Average concentrations of TN, TP, NH4+, BOD5 and transparency in the drinking water source during the period of July–December 2005 were 1.85, 0.13, 0.23, 3.03 mg L−1 and 27.5 cm, respectively, decreasing by 47.9%, 21.2%, 83.3%, 54.4% and 24.2%, compared to concentrations from the same period in 2003. Concentrations of chlorophyll a and COD were 89.9 μg L−1 and 6.45 mg L−1, increasing by 27.9% and 17.7%, compared to the values in 2003. Cyanobacteria (mainly Microcystis) dominated the phytoplankton community in the ecological engineering area during July–December 2005. Densities of cyanobacteria and Microcystis were higher in 2005 than in 2004 and higher inside the engineering area than outside. Density percentages of cyanobacteria and Microcystis to total algae were above 90% and 60% during the bloom period. Average density of flagellate algae was higher during July–December 2005 than in 2004. Changes in water quality in the engineering area resulted mainly from the weakening of waves, decrease in concentrations of suspended solids, and assimilation of mass algae and periphytons. In spite of initial improvement of water quality, cyanobacterial bloom still determined the phytoplankton dynamics and variations. Additionally, nutrient concentration still remained at a high level without control of external loading. Therefore, a more holistic approach and long-term management should be adopted in Lake Taihu.  相似文献   

18.
Ara  Koichi 《Hydrobiologia》2001,445(1-3):205-215
Seasonal variation in daily egg production rate of the planktonic calanoid copepod Acartia lilljeborgi Giesbrecht in relation to temperature, salinity and chlorophyll a concentration was studied in the Cananéia Lagoon estuarine system, from March 1995 to January 1996. Recently captured A. lilljeborgi adult females were individually incubated in bottles filled with surface water screened through a 40-m mesh, containing a natural assemblage of phytoplankton in the laboratory, at temperatures corresponding to ambient. Daily egg production rate ranged from 13.8±3.5 to 66.8± 15.1 eggs female–1 d–1 (mean ± 95% CL). The mean and maximum rates of daily egg production increased with temperature from 19.5 to 25.2 °C but then decreased with further increase in temperature at 28.4 through 29.1 °C, attaining the highest rates at approximately annual mean ambient water temperature (ca. 24–25 °C). The egg production rates increased linearly with chlorophyll a <40 m fraction. Hatching success varied from 68.6 to 91.9%. Cannibalism varied from 1.4±0.7 to 7.1±3.3 nauplii female–1 d–1 (mean ± 95% CL). These results suggest that water temperature and phytoplankton concentration are important factors affecting the egg production rate of A. lilljeborgi in the Cananéia Lagoon estuarine.  相似文献   

19.
Contributions to the mesozooplankton of the northern Wadden Sea of Sylt. From June 1975 to June 1976 temperature, salinity, mesozooplankton (>76 µm), phytoplankton and seston (dry weight, particulate organic carbon and nitrogen) were measured at different stations in the northern Wadden Sea of Sylt (German Bight, North Sea). Maxima of the planktonic copepods, which form the biggest part of the zooplankton, occurred in the summer months from June to September. Larval development from nauplii to adults was observed inAcartia clausi, Acartia discaudata, Centropages hamatus andTemora longicornis; generation times ranged from 3 (Temora longicornis) to 7 1/2 weeks (Centropages hamatus) at ca. 20 °C. Organic carbon produced by zooplankton was about 0.4 g C m–3 year–1 and zooplanktonic carbon decomposed in the area studied amounted to about 1.4 g C m–3 year–1. Meroplanktonic larvae made up ca. 60 % of the organic carbon produced by zooplankton, indicating great influence of the benthos on the water column in this very shallow part of the German Bight.  相似文献   

20.
Changes in the species composition, photosynthesis, calcification and size-fractionated carbon metabolism by natural phytoplankton assemblages were monitored in three mesocosms under different nutrient conditions during May 1993. In the 3 enclosures, the decline of the diatom-dominated assemblages was followed by the development of a bloom of the coccolithoporid Emiliania huxleyi. Highest growth of E. huxleyi was observed in the mesocosm with a high N : P ratio, suggesting this species is a good competitor at low phosphate concentrations. The transition from diatom- to E. huxleyi-dominated assemblages brought about a sharp reduction of the phytoplankton standing stock and carbon-specific photosynthetic rate. The relative contribution of the smaller size fraction to total photosynthesis increased as the succession progressed. Calcification rate and E. huxleyi cell-specified calcite production were highest during the early stages of development of the E. huxleyi bloom. Distinct changes in the patterns of 14C allocation into biomolecules were noticed during the diatom-E. huxleyi succession. The diatom-dominated assemblage showed high relative 14C incorporation into low molecular weight metabolites (LMWM), whereas proteins and, specially, lipids accounted for the largest proportion of carbon incorporation in the E. huxleyi bloom. The patterns of photoassimilated carbon metabolism proved to be strongly dependent on cellular size, as protein relative synthesis was significantly higher in the smaller than in the larger size fraction, irrespective of the nutrient regime and the successional stage. These results are discussed in relation to the ecological and physiological features of small phytoplankton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号