首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
INTRODUCTIONDNA replication is a fundamenial process thatmust occur only once at each ce1l cycle. This restrictcontrol appears to be achieved through the coordi-nated actiVities of numerous proteins. The buddingyeast Saccharompes cerevhaae provides an excellenteukaryotic model fOr study of proteins invo1ved inthe control of DNA replication.In the budding yeast, minichromosome mainte-nance (MCM) proteins, MCM2-7, are a family of strsequence-related proteins that play crucia1 roles inr…  相似文献   

2.
MCM3 is an essential gene involved in the maintenance of minichromosomes in yeast cells. It encodes a protein of 971 amino acids that shows striking homology to the Mcm2 protein. We have mapped the mcm3-1 mutation of the left arm of chromosome V approximately 3 kb centromere proximal of anp1. The mcm3-1 mutant was found to be thermosensitive for growth. Under permissive growth conditions, it was defective in minichromosome maintenance in an autonomously replicating sequence-specific manner and showed an increase in chromosome loss and recombination. Under nonpermissive conditions, mcm3-1 exhibited a cell cycle arrest phenotype, arresting at the large-bud stage with an undivided nucleus that had a DNA content of nearly 2n. These phenotypes are consistent with incomplete replication of the genome of the mcm3-1 mutant, possibly as a result of limited replication initiation at selective autonomously replicating sequences leading to cell cycle arrest before mitosis. The phenotype exhibited by the mcm3 mutant is very similar to that of mcm2, suggesting that the Mcm2 and Mcm3 protein may play interacting roles in DNA replication.  相似文献   

3.
Liang DT  Forsburg SL 《Genetics》2001,159(2):471-486
MCM proteins are required for the proper regulation of DNA replication. We cloned fission yeast mcm7(+) and showed it is essential for viability; spores lacking mcm7(+) begin S phase later than wild-type cells and arrest with an apparent 2C DNA content. We isolated a novel temperature-sensitive allele, mcm7-98, and also characterized two temperature-sensitive alleles of the fission yeast homolog of MCM10, cdc23(+). mcm7-98 and both cdc23ts alleles arrest with damaged chromosomes and an S phase delay. We find that mcm7-98 is synthetically lethal with the other mcmts mutants but does not interact genetically with either cdc23ts allele. However, cdc23-M36 interacts with mcm4ts. Unlike other mcm mutants or cdc23, mcm7-98 is synthetically lethal with checkpoint mutants Deltacds1, Deltachk1, or Deltarad3, suggesting chromosomal defects even at permissive temperature. Mcm7p is a nuclear protein throughout the cell cycle, and its localization is dependent on the other MCM proteins. Our data suggest that the Mcm3p-Mcm5p dimer interacts with the Mcm4p-Mcm6p-Mcm7p core complex through Mcm7p.  相似文献   

4.
We describe a new minichromosome maintenance factor, Mcm10, and show that this essential protein is involved in the initiation of DNA replication in Saccharomyces cerevisiae. The mcm10 mutant has an autonomously replicating sequence-specific minichromosome maintenance defect and arrests at the nonpermissive temperature with dumbbell morphology and 2C DNA content. Mcm10 is a nuclear protein that physically interacts with several members of the MCM2-7 family of DNA replication initiation factors. Cloning and sequencing of the MCM10 gene show that it is identical to DNA43, a gene identified independently for its putative role in replicating DNA. Two-dimensional DNA gel analysis reveals that the mcm10-1 lesion causes a dramatic reduction in DNA replication initiation at chromosomal origins, including ORI1 and ORI121. Interestingly, the mcm10-1 lesion also causes replication forks to pause during elongation through these same loci. This novel phenotype suggests a unique role for the Mcm10 protein in the initiation of DNA synthesis at replication origins.  相似文献   

5.
6.
MCM proteins are required for the proper regulation of DNA replication. There are six MCM proteins in all eukaryotes which interact to form a large complex. We report the cloning of fission yeast mcm3 +. mcm3 + is essential and spores carrying a Delta mcm3 disruption arrest with an apparently replicated DNA content. The protein is found constitutively in the nucleus and levels remain constant throughout the cell cycle. Mcm3p binds particularly tightly to Nda4p (Mcm5p), but is loosely associated with the other Schizosaccharomyces pombe MCM proteins. Thus, Mcm3p is a peripheral MCM subunit.  相似文献   

7.
To ensure fidelity in genome duplication, eukaryotes restrict DNA synthesis to once every cell division by a cascade of regulated steps. Central to this cascade is the periodic assembly of the hexameric MCM2-7 complex at replication origins. However, in Saccharomyces cerevisiae, only a fraction of each MCM protein is able to assemble into hexamers and associate with replication origins during M phase, suggesting that MCM complex assembly and recruitment may be regulated post-translationally. Here we show that a small fraction of Mcm3p is polyubiquitinated at the onset of MCM complex assembly. Reducing the rate of ubiquitination by uba1-165, a suppressor of mcm3-10, restored the interaction of Mcm3-10p with subunits of the MCM complex and its recruitment to the replication origin. Possible roles for ubiquitinated Mcm3p in the assembly of the MCM complex at replication origins are discussed.  相似文献   

8.
9.
10.
11.
12.
Iu B Iurov 《Tsitologiia》1977,19(9):1064-1067
DNA fiber autoradiography was used to measure the rate of replication and the size of replication units in Chinese hamster cells cultured at 34, 37 and 39 degrees C. The average rate of DNA replication per single fork is 0.6 mcm/min at 34 degrees and 0.8 mcm/min at 37 and 39 degrees. In contrast to the change in the rate of DNA replication, no change was found in the size of replication units, which are more than 200 mcm at 31, 37 and 39 degrees. The change of the length of the S phase at various temperatures is determined only by the rate of DNA replication.  相似文献   

13.
We investigated the dynamics of DNA binding of replication initiation proteins during formation of the pre-replicative complex (pre-RC) on plasmids in Xenopus egg extracts. The pre-RC was efficiently formed on plasmids at 23 degrees C, with one or a few origin recognition complex (ORC) molecules and approximately 10-20 mini-chromosome maintenance 2 (MCM2) molecules loaded onto each plasmid. Although geminin inhibited MCM loading, MCM interacted weakly but stoichiometrically with the plasmid in an ORC-dependent manner, even in the presence of geminin (with approximately 10 MCM2 molecules per plasmid). Interestingly, DNA binding of ORC, CDC6, and CDT1 was significantly stabilized in the presence of geminin, under which conditions approximately 10-20 molecules each of ORC and CDC6 were bound. Moreover, a similarly stable ORC-CDC6-CDT1 complex rapidly formed on DNA at lower temperature (0 degrees C) without geminin, with approximately 10-20 molecules each of ORC and CDC6 bound to the plasmid, but almost no binding of MCM. However, upon shifting the temperature to 23 degrees C, most ORC, CDC6, and CDT1 molecules were displaced from the DNA, leaving about one ORC molecule on the plasmid, whereas approximately 10 MCM2 molecules were loaded onto each plasmid. Furthermore, it was possible to load MCM onto DNA when the isolated ORC-CDC6-CDT1-DNA complex was mixed with purified MCM proteins. These results suggest that an ORC-CDC6-CDT1 complex pre-formed on DNA is directly involved in MCM loading and imply that each DNA-bound ORC molecule loads only one or a few MCM2-7 complexes during metazoan pre-RC formation.  相似文献   

14.
Minichromosome maintenance (mcm) is an effective genetic assay for mutants defective in DNA replication. Two classes of mcm mutants have been identified using this screen: those that differentially affect the activities of certain autonomously replicating sequences (ARSs) and those that uniformly affect the activities of all ARSs. The ARS-specific MCM genes are essential for the initiation of DNA replication. Among these are members of the MCM2-7 family that encode subunits of the preinitiation complex and MCM10, whose gene product interacts with members of the Mcm2-7 proteins. Among the ARS-nonspecific MCM gene products are chromosome transmission factors. Refinement of this genetic assay as a screening tool and further analysis of existing mcm mutants may reveal new replication initiation proteins.  相似文献   

15.
The CDC45 gene of Saccharomyces cerevisiae was isolated by complementation of the cold-sensitive cdc45-1 mutant and shown to be essential for cell viability. Although CDC45 genetically interacts with a group of MCM genes (CDC46, CDC47, and CDC54), the predicted sequence of its protein product reveals no significant sequence similarity to any known Mcm family member. Further genetic characterization of the cdc45-1 mutant demonstrated that it is synthetically lethal with orc2-1, mcm2-1, and mcm3-1. These results not only reveal a functional connection between the origin recognition complex (ORC) and Cdc45p but also extend the CDC45-MCM genetic interaction to all known MCM family members that were shown to be involved in replication initiation. Initiation of DNA replication in cdc45-1 cells was defective, causing a delayed entry into S phase at the nonpermissive temperature, as well as a high plasmid loss rate which could be suppressed by tandem copies of replication origins. Furthermore, two-dimensional gels directly showed that chromosomal origins fired less frequently in cdc45-1 cells at the nonpermissive temperature. These findings suggest that Cdc45p, ORC, and Mcm proteins act in concert for replication initiation throughout the genome.  相似文献   

16.
Mcm3 is a subunit of the hexameric MCM2-7 complex required for the initiation and elongation of DNA replication in eukaryotes. We have characterized two mutant alleles, mcm3-1 and mcm3-10, in Saccharomyces cerevisiae and showed that they are defective at different steps of the replication initiation process. Mcm3-10 contains a P118L substitution that compromises its interaction with Mcm5 and the recruitment of Mcm3 and Mcm7 to a replication origin. P118 is conserved between Mcm3, Mcm4, Mcm5, and Mcm7. An identical substitution of this conserved residue in Mcm5 (P83L of mcm5-bob1) strengthens the interaction between Mcm3 and Mcm5 and allows cells to enter S phase independent of Cdc7-Dbf4 kinase (Hardy, C. F., Dryga, O., Pahl, P. M. B., and Sclafani, R. A. (1997) Proc. Natl. Acad. Sci. U. S. A. 94, 3151-3155). Mcm3-1 contains a G246E mutation that diminishes the efficiency of replication initiation (Yan, H., Merchant, A. M., and Tye, B. K. (1993) Genes Dev. 7, 2149-2160) but not its interaction with Mcm5 or recruitment of the MCM2-7 complex to replication origin. These observations indicate that Mcm3-10 is defective in a step before, and Mcm3-1 is defective in a step after the recruitment of the MCM2-7 complex to replication origins.  相似文献   

17.
Fission yeast p56(chk1) kinase is known to be involved in the DNA damage checkpoint but not to be required for cell cycle arrest following exposure to the DNA replication inhibitor hydroxyurea (HU). For this reason, p56(chk1) is considered not to be necessary for the DNA replication checkpoint which acts through the inhibitory phosphorylation of p34(cdc2) kinase activity. In a search for Schizosaccharomyces pombe mutants that abolish the S phase cell cycle arrest of a thermosensitive DNA polymerase delta strain at 37 degrees C, we isolated two chk1 alleles. These alleles are proficient for the DNA damage checkpoint, but induce mitotic catastrophe in several S phase thermosensitive mutants. We show that the mitotic catastrophe correlates with a decreased level of tyrosine phosphorylation of p34(cdc2). In addition, we found that the deletion of chk1 and the chk1 alleles abolish the cell cycle arrest and induce mitotic catastrophe in cells exposed to HU, if the cells are grown at 37 degrees C. These findings suggest that chk1 is important for the maintenance of the DNA replication checkpoint in S phase thermosensitive mutants and that the p56(chk1) kinase must possess a novel function that prevents premature activation of p34(cdc2) kinase under conditions of impaired DNA replication at 37 degrees C.  相似文献   

18.
RAT7/NUP159 was identified previously in a screen for genes whose products are important for nucleocytoplasmic export of poly(A)+ RNA and encodes an essential nucleoporin. We report here the identification of RSS1 (Rat Seven Suppressor) as a high-copy extragenic suppressor of the rat7-1 temperature-sensitive allele. Rss1p encodes a novel essential protein of 538 amino acids, which contains an extended predicted coiled-coil domain and is located both at nuclear pore complexes (NPCs) and in the cytoplasm. RSS1 is the first reported high-copy extragenic suppressor of a mutant nucleoporin. Overexpression of Rss1p partially suppresses the defects in nucleocytoplasmic export of poly(A)+ RNA, rRNA synthesis and processing, and nucleolar morphology seen in rat7-1 cells shifted to the nonpermissive temperature of 37 degrees C and, thus, restores these processes to levels adequate for growth at a rate approximately one-half that of wild-type cells. After a shift to 37 degrees C, the mutant Rat7-1p/Nup159-1p is lost from the nuclear rim of rat7-1 cells and NPCs, which are clustered together in these cells grown under permissive conditions become substantially less clustered. Overexpression of Rss1p did not result in retention of the mutant Rat7-1p/Nup159-1p in NPCs, but it did result in partial maintenance of the NPC-clustering phenotype seen in mutant cells. Depletion of Rss1p by placing the RSS1 open reading frame (ORF) under control of the GAL1 promoter led to cessation of growth and nuclear accumulation of poly(A)+ RNA without affecting nuclear protein import or nuclear pore complex distribution, suggesting that RSS1 is directly involved in mRNA export. Because both rat7-1 cells and cells depleted for Rss1p are defective in mRNA export, our data are consistent with both gene products playing essential roles in the process of mRNA export and suggest that Rss1p overexpression suppresses the growth defect of rat7-1 cells at 37 degrees C by acting to maintain mRNA export.  相似文献   

19.
The G1/S phase restriction point is a critical checkpoint that interfaces between the cell cycle regulatory machinery and DNA replicator proteins. Here, we report a novel function for the cyclin-dependent kinase inhibitor p27Kip1 in inhibiting DNA replication through its interaction with MCM7, a DNA replication protein that is essential for initiation of DNA replication and maintenance of genomic integrity. We find that p27Kip1 binds the conserved minichromosome maintenance (MCM) domain of MCM7. The proteins interact endogenously in vivo in a growth factor-dependent manner, such that the carboxyl terminal domain of p27Kip1 inhibits DNA replication independent of its function as a cyclin-dependent kinase inhibitor. This novel function of p27Kip1 may prevent inappropriate initiation of DNA replication prior to S phase.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号