首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Epithelial to mesenchymal transitions (EMT) have been suggested to be crucial during epithelial cancer cell invasion. However, in a three-dimensional “organotypic” invasion assay squamous cell carcinoma (SCC) cells that retain epithelial characteristics “hitch a ride” with carcinoma associated fibroblasts (CAFs) in order to collectively invade. Thus epithelial cancer cells can utilise the mesenchymal characteristics of CAFs without the need to undergo EMT themselves. This work provides new insight in cancer cell invasion and shows a new role for CAFs as a target for an anti-invasive therapy.Key words: collective invasion, carcinoma associated fibroblast, extracellular matrix, matrix metalloproteinases, RhoCancer cell invasion and metastasis are the main causes of mortality in cancer patients. Understanding how cancer cells move and invade within the surrounding tissue is therefore a key issue. Stromal fibroblasts within a tumor play a crucial role in cancer cell proliferation, survival, angiogenesis as well as invasion (reviewed in ref. 1). In many cases stromal CAFs are able to produce a wide range of growth factors and cytokines that modulate tumor growth and invasion.2,3 Their influence in cancer cell invasion and metastasis can also be mediated through the production of MMP''s that promote extra-cellular matrix degradation.4It has recently been shown that CAFs can play an unexpected role in SCC invasion.5 In a 3D ‘organotypic’ model of invasion that recreates the epidermal/dermal environment CAFs promote the collective invasion of SCC cells.6 3D time-lapse confocal microscopy imaging showed that CAFs were always the leading cell of the invading cohort with the SCC cells following behind. These cohorts closely resembled invading clusters of SCC cells observed in human cancer samples.7 CAFs promoted SCC cells collective invasion by remodelling the matrix and making a path that SCC cells can use to invade. This process is clearly shown in Figure 1: a CAF (in red) leads the invasion of a collective chain of SCC cells (green) and makes a path in the surrounding matrix, visualized in grey using confocal reflectance microscopy. Two key experiments helped to understand the role of fibroblasts in this system. Firstly, the separation of the two cell populations by a thin layer of gel without fibroblasts completely abolished SCC invasion and so ruled out the possibility of long distance chemoattractant molecules inducing SCC invasion. Secondly, SCC cells were able to invade into a gel which had previously been remodelled by CAFs that had subsequently been removed. Together these experiments showed that tracks made by the fibroblasts are essential and sufficient to promote collective carcinoma cells invasion. Heterotypic cell contact between both populations was not required, as SCC cells can invade using tracks made by the CAFs even if the CAFs have been removed.Open in a separate windowFigure 1Collective invasion of carcinoma cells led by fibroblast. Confocal time-lapse imaging of carcinoma associated fibroblast (red) leading the way of an invading chain of SCC cells (green) and making path into the surrounding matrix (grey). Panel is 80 x 80 mm and spans 300 minutes, scale are 20 um.Interestingly, inhibition of Rho/ROCK signalling to the actomyosin cytoskeleton or MMPs using small molecule inhibitors blocked SCC invasion even when only CAFs where targeted. Blocking these pathways in carcinoma cells had little or no effect on their invasion. Moreover, inhibition of Rho function specifically in CAFs did not block their invasion into matrices but prevented SCC cells from following. These experiments showed the role of Rho/ROCK and MMPs molecular pathways in track generation by the CAFs and that targeting these pathways in CAFs, but not SCC cells, is critical for preventing cancer invasion. Strikingly, blockade of protease function after CAFs had remodelled the ECM had little effect on the ability of SCC cells to invade. This could explain the relative poor results obtained using MMPs inhibitors as anti-invasive therapies.8 Rho/ROCK function was dispensable in SCC cells; however, depletion of the small GTPase Cdc42 and its effector MRCK disrupted the acto-myosin cortex of carcinoma cells and blocked their capacity to invade in response to CAFs.In order to invade and metastasise, carcinoma cells can switch from an epithelial state to a more mesenchymal phenotype.9 This process, called EMT, allows epithelial cancer cells to adapt their behaviour and confers the capacity to remodel the ECM on the cancer cells.10 However, in patient tissue samples, it has been observed that carcinoma cells can invade without undergoing an EMT, these cancer cells do not upregulate mesenchymal markers and retain cell to cell contact during their invasion.11 This work explains how carcinoma cells that have not undergone EMT could invade a 3D matrix. These cells use the mesenchymal characteristics of the stromal fibroblasts to remodel the ECM and consequently follow behind invading fibroblasts. In tumours of mesenchymal origin CAFs are not required for invasion; work from Friedl and colleagues, clearly shows that HT1080 fibrosarcoma cells could lead collectively invading chains of cancer cells The authors showed how the leading cell of the collective chain remodels collagen fibres into tracks as it invades through the action of MT1-MMP (MMP14).12In normal conditions, epithelial cells and dermal fibroblasts are in complete homeostasis and separated by a basement membrane (Fig. 2A). In addition, normal dermal fibroblasts are unable to promote SCC invasion. Understanding how CAFs are activated will be an important step forward. A desmoplastic response is observed in many tumours indicating a change in behaviour of fibroblasts.13 During wound healing or fibrosis, fibroblasts are in an active state that has been suggested to be similar to cancer activation.14 TGFβ has been shown to be a key player in fibroblasts activation and could support cancer progression.15 However, TGFβ was not responsible for SCC cells invasion since a TGFβ inhibitor had no effect in carcinoma cells collective invasion induced by the CAFs in the 3D invasion assay (Cedric Gaggioli and Steven Hooper, unpublished data). Interestingly, a probe that binds only to the active form of the small GTPase Rho showed that the activity of this protein was increased in CAFs compared to normal fibroblasts in tissue samples. Elevated expression of α5 integrin was also present in these cells and this has been implicated in Rho activation in a number of systems.1618 Consistent with this observation, depletion of integrin a5 in CAFs reduced their ability to promote the invasion of SCC cells. Alternatively, CAFs could also be derived from endothelial cells through a process called endothelial to mesenchymal transition19 (EndMT), or from cancer cells through EMT.20 These processes could be responsible for CAFs generation in the tumor stroma resulting in matrix remodelling and tracks generation in order for the carcinoma cells to collectively invade the surrounding tissue and metastasize (Fig. 2B).Open in a separate windowFigure 2Model of carcinoma cells collective invasion. (A) Schematic representation of a normal epithelium. Epithelial cells (light blue) and normal fibroblasts (pink) are separated by a basal membrane and are in a perfect homeostasis. Cross talk between both cell types occurs through adhesion and chemokine secretion. (B) Schematic representation of carcinoma cells collective invasion. CAFs (red) take the lead of a collective invading chain of SCC cells (brown). Invasion of CAFs is MMPs dependent but Rho/ROCK independent. However, track generation by CAFs is Rho/ROCK/MLC dependent. SCC cells require the small GTPase Cdc42 and its effector MRCK in order to collectively invade trough those tracks (black).This study opens a new field of investigation for collective cancer cell invasion. This work highlights carcinoma associated fibroblasts as new therapeutic targets which will be a new direction in cancer cell invasion and metastasis therapy.  相似文献   

2.
3.
It is well established that crosstalk between cancer‐associated fibroblasts (CAFs) and cancer cells plays a critical role in the occurrence and development of oral squamous cell carcinoma (OSCC). The molecular mechanisms underlying such interaction, however, remain far from clear. Accumulating data have indicated that microRNAs involved in tumor microenvironment, particularly in CAFs, contribute to the activation of fibroblasts and metastasis of cancer cells. Here, we showed that miR‐148a was downregulated in CAFs compared with normal fibroblasts isolated from clinical OSCC tissue. Investigation of miR‐148a function in fibroblasts demonstrated that overexpression of miR‐148a in CAFs significantly impaired the migration and invasion of oral carcinoma cells (SCC‐25) by directly targeting WNT10B. Taken together, these data suggested that miR‐148a might be a novel candidate target for the treatment of OSCC.  相似文献   

4.
The aim of this study was to investigate the regulatory mechanism of cancer-associated fibroblasts (CAFs) exosome in bladder cancer (BC) cell proliferation and invasion. CAFs and normal fibroblasts (NFs) were isolated from tumor tissues and adjacent normal tissues of BC patients, and examined by immunocytochemistry for the expression of fibroblast activation protein alpha (FAP) and α-smooth muscle actin (α-SMA). Exosomes were extracted from CAFs and NFs and observed under a transmission electron microscope, and expression of the exosome markers CD9 and CD63 was confirmed by western blotting. The distribution and intensity of fluorescence were observed by confocal laser microscopy to analyze exosomes uptake by BC cell lines T24 or 5367. BC cell proliferation and invasion were detected by MTT and Transwell assays, respectively. LINC00355 levels in CAFs, NFs, CAFs exosome, NFs exosome, and BC cells were detected by quantitative real-time polymerase chain reaction (qRT-PCR). Results showed that CAFs exosome significantly promoted BC cell proliferation and invasion relative to NFs exosome. LINC00355 expression was significantly elevated in CAFs exosome when compared with that in NFs-exosome. Up-regulated LINC00355 expression was observed both in T24 and 5367 cells co-incubated with CAFs exosome. Exosomes derived from LINC00355 siRNA-transfected CAFs observably repressed BC cell proliferation and invasion when compared with control siRNA-CAFs exosome. In conclusion, CAFs exosome–mediated transfer of LINC00355 regulates BC cell proliferation and invasion. Significance of the study. In this study, our data suggest that the exosomes released from CAFs promote BC cell proliferation and invasion. The mechanism of this effect is, at least in part, related to the increased LINC00355. Regulation of LINC00355 expression in exosomes released from CAFs might be a putative therapeutic strategy against the pathogenesis of BC.  相似文献   

5.
6.
It is has been hypothesized that methylselenol is a critical selenium metabolite for anticancer activity in vivo. In this study, we used a protein array which contained 112 different antibodies known to be involved in the p53 pathway to investigate the molecular targets of methylselenol in human HCT116 colon cancer cells. The array analysis indicated that methylselenol exposure changed the expression of 11 protein targets related to the regulation of cell cycle and apoptosis. Subsequently, we confirmed these proteins with the Western blotting approach, and found that methylselenol increased the expression of GADD 153 and p21 but reduced the level of c-Myc, E2F1 and Phos p38 MAP kinase. Similar to our previous report on human HCT116 colon cancer cells, methylselenol also inhibited cell growth and led to an increase in G1 and G2 fractions with a concomitant drop in S-phase in mouse colon cancer MC26 cells. When the MC26 cells were transplanted to their immune-competent Balb/c mice, methylselenol-treated MC26 cells had significantly less tumor growth potential than that of untreated MC26 cells. Taken together, our data suggest that methylselenol modulates the expression of key genes related to cell cycle and apoptosis and inhibits colon cancer cell proliferation and tumor growth.  相似文献   

7.
The activation of cancer-associated fibroblasts (CAFs) is a key event in tumor progression, and alternative extracellular matrix (ECM) proteins derived from CAFs induce ECM remodeling and cancer cell invasion. Here we found that miR-200 s, which are generally downregulated in activated CAFs in breast cancer tissues and in normal fibroblasts (NFs) activated by breast cancer cells, are direct mediators of NF reprogramming into CAFs and of ECM remodeling. NFs with downregulated miR-200 s displayed the traits of activated CAFs, including accelerated migration and invasion. Ectopic expression of miR-200 s in CAFs at least partially restored the phenotypes of NFs. CAF activation may be governed by the targets of miR-200 s, Fli-1 and TCF12, which are responsible for cell development and differentiation; Fli-1 and TCF12 were obviously elevated in CAFs. Furthermore, miR-200 s and their targets influenced collagen contraction by CAFs. The upregulation of fibronectin and lysyl oxidase directly by miR-200 or indirectly through Fli-1 or TCF12 contributed to ECM remodeling, triggering the invasion and metastasis of breast cancer cells both in vitro and vivo. Thus, these data provide important and novel insights into breast CAF activation and ECM remodeling, which trigger tumor cell invasion.It has been well established that a reactive microenvironment induces cancer cells to proliferate, migrate and become invasive. Cancer-associated fibroblasts (CAFs) are thought to be the main players among the cohabitating stromal cell types, and they favor tumor progression. The cancer-promoting ability of CAFs is dependent on their activation; however, this process has not been fully explored.The extracellular matrix (ECM) is a complex mixture of structural proteins, proteoglycans and glycoproteins that exerts biochemical and mechanical effects on cells. An increasing body of evidence suggests that ECM remodeling has an important role in cell morphogenesis,1 survival,2 migration and invasion.3 CAFs can deposit certain ECM components and facilitate the directional migration and invasion of carcinoma cells through mechanotransduction-triggered architectural remodeling of the microenvironment.4, 5 However, the mechanism by which activated CAFs stimulate the dysregulation of ECM proteins, thus influencing cancer cell invasion, is not well understood.Previously, our team identified a set of dysregulated miRNAs in breast CAFs using a miRNA microarray, and it was found that the levels of miR-200 family members were noticeably suppressed,6 indicating their importance in CAF function. Whether these downregulated miR-200 s in the stroma drive the activated phenotype of CAFs as well as aberrant ECM protein expression to promote cancer cell invasion is an intriguing question.The miR-200 s family can be functionally divided into cluster 1 (miR-200a and miR-141) and cluster 2 (miR-200b and miR-200c) according to their ''seed'' region for binding to mRNA. The effects of the miR-200 s on fibrosis, epithelial cell characteristics, cell differentiation and tumor progression have been discussed. For example, miR-200b is essential for the regulation of renal fibrogenesis7 and the intestinal fibrosis of Crohn''s disease.8 In aggressive carcinoma cells, the maintenance of EMT,9 tumor growth,10 migration,11 invasion,9 anoikis resistance12 and poor response to chemotherapy13 are enhanced by the reduced expression of miR-200 s. Furthermore, miR-200 s are upregulated during mammary differentiation14 but are downregulated in breast cancer stem cells,15 and these molecules support the maintenance of pluripotent stem cells.16 These previous reports indicate that miR-200 s may have a significant role in CAF activation.In the current work, we first determined that miR-200 s were commonly downregulated in breast CAFs, and this result was also demonstrated in normal fibroblasts (NFs) co-cultured with breast cancer cells. miR-200 s induced the conversion of NFs into CAFs by targeting Fli-1 and TCF12. Re-expression of miR-200 s in CAFs attenuated the activation-associated CAF phenotype. In particular, miR-200 s and their targets all contributed to CAF-associated ECM remodeling through two key ECM remodeling proteins, fibronectin (FN) and lysyl oxidase, further fueling cancer cell invasion and metastasis. Therefore, our data provide new information regarding the role of CAF activation and function in the promotion of cancer cell invasion through ECM remodeling and provide a considerable amount of information that will be useful for the development of stromal therapeutic targets.  相似文献   

8.
目的:探讨NDRG1对体外培养的人肠癌细胞系失巣凋亡的影响。方法:采用慢病毒系统将NDRG1表达单元转入人肠癌细胞系SW620、HCT8中,建立相应的过表达稳定细胞系;通过siRNA的方法干扰HCT116和LOVO细胞系中NDRG1的表达,分别在非贴壁培养的情况下培养48小时,采用流式细胞术和TUNEL染色检测细胞的凋亡情况。结果:在贴壁培养条件下,NDRG1过表达并没有显著影响肠癌细胞的生长及增殖,而NDRG1特异性siRNA干扰HCT116细胞中NDRG1的表达后,其凋亡率无明显变化(P0.05)。在悬浮培养条件下,NDRG1过表达的肠癌细胞的失巢凋亡率显著低于正常对照组(P0.05),而用三种不同的siRNA干扰HCT116及LOVO细胞中NDRG1的表达后,其失巢凋亡率均显著高于正常对照组(P0.05)。结论:NDRG1在体外可抑制人肠癌细胞的失巢凋亡。  相似文献   

9.
The development of cancer in patients with schizophrenia is affected by genetic and environmental factors and antipsychotic medication. Several studies found that schizophrenia was associated with decreased risk of some cancers, and the neuroleptic medication might help to reduce the risk of colorectal cancer (CRC). Phenothiazine drugs including trifluoperazine (TFP) are widely used antipsychotic drugs and showed some antitumor effects, we here investigated the potential application of TFP in the treatment of colon cancer. A series doses of TFP were treated to the colon cancer cell line HCT116 and the inhibitory concentration (IC50) of TFP for HCT116 was determined by cell counting kit-8. The results indicated that the treatment of TFP impaired the cell vitality of HCT116 in a dose- and time-dependent manner. Meanwhile, the Edu assay demonstrated that the proliferation was also inhibited by TFP, which was accompanied with the induction of apoptosis and autophagy. The expression of CCNE1, CDK4, and antiapoptosis factor BCL-2 was downregulated but the proapoptosis factor BAX was upregulated. The autophagy inhibitor chloroquine could significantly reverse the TFP-induced apoptosis. Moreover, the ability of migration and invasion of HCT116 was found to be suppressed by TFP, which was associated with the inhibition of epithelial-mesenchymal transition (EMT). The function of TFP in vivo was further confirmed. The results showed that the administration of TFP remarkably abrogated the tumor growth with decreased tumor volume and proliferation index Ki-67 level in tumor tissues. The EMT phenotype was also confirmed to be inhibited by TFP in vivo, suggesting the promising antitumor effects of TFP in CRC.  相似文献   

10.
With the extensive use of dexmedetomidine (Dex) in the surgical resection of tumours for its potent sedative and analgesic properties, its effects on various properties of tumours have received increased attention. The study described herein aimed to investigate the effects of Dex on glioma cells in the presence or absence of cisplatin (DDP). Glioma U251 and U87MG cells were treated with different doses (1-50 nM) of Dex for 12 hours, then recultured in a Dex-free medium. In addition, Dex was added to U251 and U87MG cells 12 hours before or simultaneously with a 12-hour DDP treatment. Treatment with Dex increased the viability of both cell lines; this effect continued for at least 24 hours after Dex was removed. A cell invasion assay indicated that Dex inhibited cell invasion at 50 nM, but not at 10 nM. Western blot analysis showed that Dex increased the expression of phosphorylated extracellular-signal-regulated kinase 1/2, phosphoitide 3-kinase and p-AKT, but decreased ROCK protein levels at a dose of 50 nM. Intracellular Ca 2+ concentration was decreased by Dex in a dose-dependent manner. DDP toxicity was attenuated by 10 nM Dex added either before or with DDP treatment. However, pretreatment with 50 nM Dex instead enhanced the toxicity of DDP. Single-dose treatment with Dex did not significantly change glioma volume in nude mice, but changed the expression of Ki67 and matrix metalloproteinase-3 in the tumour. In conclusion, this study provides evidence of the regulatory effects of Dex on proliferation, invasion and chemosensitivity of glioma cells, and outlines potential mechanisms for these effects.  相似文献   

11.
Lung cancer is the most common cause of cancer-related death worldwide. Stromal cancer-associated fibroblasts (CAFs) play crucial roles in carcinogenesis, proliferation, invasion, and metastasis of non-small cell lung carcinoma, and targeting of CAFs could be a novel strategy for cancer treatment. However, the characteristics of human CAFs still remain to be better defined. In this study, we established patient-matched CAFs and normal fibroblasts (NFs), from tumoral and non-tumoral portions of resected lung tissue from lung cancer patients. CAFs showed higher α-smooth muscle actin (α-SMA) expression than NFs, and CAFs clearly enhanced collagen gel contraction. Furthermore, we employed three-dimensional co-culture assay with A549 lung cancer cells, where CAFs were more potent in inducing collagen gel contraction. Hematoxylin and eosin staining of co-cultured collagen gel revealed that CAFs had the potential to increase invasion of A549 cells compared to NFs. These observations provide evidence that lung CAFs have the tumor-promoting capacity distinct from NFs.  相似文献   

12.
The DEX gene encodes an extracellular dextranase (EC 3.2.1.11); this enzyme hydrolyzes the α(1,6) glucosidic bond contained in dextran to release small isomaltosaccharides. Sequence analysis has revealed only one homologous sequence, CB-8 protein, from Arthrobacter sp., with 30% sequence identity. The secondary structure prediction for Dex was corroborated by circular dichroism measurements. To explore the possibility that Dex protein might adopt a fold similar to any known structure, we conducted a threading search of a three-dimensional structure database. This search revealed that the Dex sequence is compatible with the galactose oxidase/methanol dehydrogenase/sialidase fold. A structural model of Dex based on these results is physically and biologically plausible and leads to testable predictions, including the prediction that Asp246 and Glu299 might be catalytic residues. Also, according to this model the Dex enzyme has a mechanism of hydrolysis with net inversion of anomeric configuration. Proteins 31:345–354, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

13.
Colon cancer is a detrimental neoplasm of the digestive tract. MicroRNAs (miRNAs) as central regulators have been discovered in colon cancer. Nonetheless, the impact of miR-204-3p on colon cancer remains indistinct. The research attempted to uncover the impacts of miR-204-3p on colon cancer cells growth, migration, and invasion. miR-204-3p expression level in colon cancer tissues and diverse colon cancer cell lines were testified by the quantitative real-time polymerase chain reaction. Exploration of the impacts of miR-204-3p on cell growth, migration, invasion, and their associated factors through assessment of CCK-8, flow cytometry, Transwell, and western blot, respectively. High mobility group AT-hook 2 (HMGA2) expression was then detected in Caco-2 cells after miR-204-3p mimic and inhibitor transfection, additionally dual-luciferase activity was implemented to further uncover the correlation between HMGA2 and miR-204-3p. The impact of HMGA2 on Caco-2 cell growth, migration, and invasion was finally assessed. We found that repression of miR-204-3p was discovered in colon cancer tissues and HCT116, SW480, Caco-2, HT29 and SW620 cell lines. MiR-204-3p overexpression mitigated Coca-2 cell viability, facilitated apoptosis, simultaneously adjusted CyclinD1 and cleaved caspase-3 expression. Cell migration, invasion, and the associated factors were all suppressed by miR-204-3p overexpression. Reduction of HMGA2 was presented in Caco-2 cells with miR-204-3p mimic transfection, and HMGA2 was predicated to be a target gene of miR-204-3p. Besides, HMGA2 silence showed the inhibitory effect on Caco-2 cells growth, migration, and invasion. In conclusion, miR-204-3p repressed colon cancer cell growth, migration, and invasion through targeting HMGA2.  相似文献   

14.
A constitutive and dynamic interaction between tumor cells and their surrounding stroma is a prerequisite for tumor invasion and metastasis. Fibroblasts and myofibroblasts (collectively called cancer associated fibroblasts, CAFs) often represent the major cellular components of tumor stroma. Tumor cells secret different growth factors which induce CAFs proliferation and differentiation, and, consequently, CAFs secrete different chemokines, cytokines or growth factors which induce tumor cell invasion and metastasis. In this study we showed here that CAFs from breast cancer surgical specimens significantly induced the invasion of breast cancer cells in vitro. Most interestingly, the novel multiple tyrosine kinase inhibitor Dovitinib significantly blocked the CAFs-induced invasion of breast cancer cells by, at least in part, inhibition of the expression and secretion of CCL2, CCL5 and VEGF in CAFs. Inhibition of PI3K/Akt/mTOR signaling could be responsible for the effects of Dovitinib, since Dovitinib antagonized the promoted phosphorylated Akt after treatment with PDGF, FGF or breast cancer cell-conditioned media. Treatment with Dovitinib in combination with PI3K/Akt/mTOR signaling inhibitors Ly294002 or RAD001 resulted in additive inhibition of cell invasion. This is the first in vitro study to show that the multiple tyrosine kinase inhibitor has therapeutic activities against breast cancer metastasis by targeting both tumor cells and CAFs.  相似文献   

15.
Cancer-associated fibroblasts (CAFs) have important roles in promoting cancer development and progression. We previously reported that high expression of sex-determining region Y (SRY)-box9 (SOX9) in oral squamous cell carcinoma (OSCC) cells was positively correlated with poor prognosis. This study developed three-dimensional (3D) in vitro models co-cultured with OSCC cells and CAFs to examine CAF-mediated cancer migration and invasion in vitro and in vivo. Moreover, we performed an immunohistochemical analysis of alpha-smooth muscle actin and SOX9 expression in surgical specimens from 65 OSCC patients. The results indicated that CAFs promote cancer migration and invasion in migration assays and 3D in vitro models. The invading OSCC cells exhibited significant SOX9 expression and changes in the expression of epithelial–mesenchymal transition (EMT) markers, suggesting that SOX9 promotes EMT. TGF-β1 signalling inhibition reduced SOX9 expression and cancer invasion in vitro and in vivo, indicating that TGF-β1-mediated invasion is dependent on SOX9. In surgical specimens, the presence of CAFs was correlated with SOX9 expression in the invasive cancer nests and had a significant impact on regional recurrence. These findings demonstrate that CAFs promote cancer migration and invasion via the TGF-β/SOX9 axis.  相似文献   

16.
Cortactin (CTTN), first identified as a major substrate of the Src tyrosine kinase, actively participates in branching F-actin assembly and in cell motility and invasion. CTTN gene is amplified and its protein is overexpressed in several types of cancer. The phosphorylated form of cortactin (pTyr421) is required for cancer cell motility and invasion. In this study, we demonstrate that a majority of the tested primary colorectal tumor specimens show greatly enhanced expression of pTyr421-CTTN, but no change at the mRNA level as compared to healthy subjects, thus suggesting post-translational activation rather than gene amplification in these tumors. Curcumin (diferulolylmethane), a natural compound with promising chemopreventive and chemosensitizing effects, reduced the indirect association of cortactin with the plasma membrane protein fraction in colon adenocarcinoma cells as measured by surface biotinylation, mass spectrometry, and Western blotting. Curcumin significantly decreased the pTyr421-CTTN in HCT116 cells and SW480 cells, but was ineffective in HT-29 cells. Curcumin physically interacted with PTPN1 tyrosine phosphatases to increase its activity and lead to dephosphorylation of pTyr421-CTTN. PTPN1 inhibition eliminated the effects of curcumin on pTyr421-CTTN. Transduction with adenovirally-encoded CTTN increased migration of HCT116, SW480, and HT-29. Curcumin decreased migration of HCT116 and SW480 cells which highly express PTPN1, but not of HT-29 cells with significantly reduced endogenous expression of PTPN1. Curcumin significantly reduced the physical interaction of CTTN and pTyr421-CTTN with p120 catenin (CTNND1). Collectively, these data suggest that curcumin is an activator of PTPN1 and can reduce cell motility in colon cancer via dephosphorylation of pTyr421-CTTN which could be exploited for novel therapeutic approaches in colon cancer therapy based on tumor pTyr421-CTTN expression.  相似文献   

17.
Abnormal proliferation is one characteristic of cancer-associated fibroblasts (CAFs), which play a key role in tumorigenesis and tumor progression. Oxidative stress (OS) is the root cause of CAFs abnormal proliferation. ATM (ataxia-telangiectasia mutated protein kinase), an important redox sensor, is involved in DNA damage response and cellular homeostasis. Whether and how oxidized ATM regulating CAFs proliferation remains unclear. In this study, we show that there is a high level of oxidized ATM in breast CAFs in the absence of double-strand breaks (DSBs) and that oxidized ATM plays a critical role in CAFs proliferation. The effect of oxidized ATM on CAFs proliferation is mediated by its regulation of cellular redox balance and the activity of the ERK, PI3K-AKT, and Wnt signaling pathways. Treating cells with antioxidant N-acetyl-cysteine (NAC) partially rescues the proliferation defect of the breast CAFs caused by ATM deficiency. Administrating cells with individual or a combination of specific inhibitors of the ERK, PI3K-AKT, and Wnt signaling pathways mimics the effect of ATM deficiency on breast CAF proliferation. This is mainly ascribed to the β-catenin suppression and down-regulation of c-Myc, thus further leading to the decreased cyclinD1, cyclinE, and E2F1 expression and the enhanced p21Cip1 level. Our results reveal an important role of oxidized ATM in the regulation of the abnormal proliferation of breast CAFs. Oxidized ATM could serve as a potential target for treating breast cancer.  相似文献   

18.
Although glucocorticoids (GCs) are physiologically essentialfor bone metabolism, it is generally accepted that high dosesof GCs cause bone loss through a combination of decreased boneformation and increased bone resorption. However, the actionof GCs on mature osteoclasts remains contradictory. In thisstudy, we have examined the effect of GCs on osteoclasticbone-resorbing activity and osteoclast apoptosis, by using twodifferent cell types, rabbit unfractionated bone cells andhighly enriched mature osteoclasts (>95% of purity).Dexamethasone (Dex, 10-10–10-7 M) inhibited resorption pit formation on a dentine slice by the unfractionated bone cells in a dose- and time-dependent manner.However, Dex had no effect on the bone-resorbing activity of the isolated mature osteoclasts. When the isolated osteoclastswere co-cultured with rabbit osteoblastic cells, the osteoclastic bone resorption decreased in response to Dex,dependent on the number of osteoblastic cells. Like the effecton the bone resorption, Dex induced osteoclast apoptosis in cultures of the unfractionated bone cells, whereas it did not promote the apoptosis of the isolated osteoclasts. An inhibitorof caspases, Z-Asp-CH2-DCB attenuated both the inhibitory effecton osteoclastic bone resorption and the stimulatory effect onthe osteoclast apoptosis. In addition, the osteoblastic cellswere required for the osteoclast apoptosis induced by Dex. These findings indicate that the main target cells of GCs arenon-osteoclastic cells such as osteoblasts and that GCsindirectly inhibit bone resorption by inducing apoptosis ofthe mature osteoclasts through the action of non-osteoclasticcells. This study expands our knowledge about the multifunctional roles of GCs in bone metabolism.  相似文献   

19.
Benzonaphthofurandione has been considered as an important class of naturally occurring and synthetic compounds having a variety of biological functions. In this study, we evaluated the antitumor effects of 3-[2-(dimethylamino)isopropoxy]-1-hydroxybenzo[b]naphtho[2,3-d]furan-6,11-dione (8e), a novel benzonaphthofurandione derivative, on the growth of colorectal cancer HCT 116 cells both in vitro culture and an in vivo animal model.Compound 8e exhibited the potential growth inhibition of the colon cancer cells in a concentration-dependent manner. The anti-proliferative activity of 8e was also associated with the induction of cell cycle arrest in the G0/G1 phase. The 8e-induced cell cycle arrest was well correlated with the suppression of cyclin-dependent kinase 2 (CDK2), CDK4, cyclin D1, cyclin E, c-Myc, and phosphorylated retinoblastoma protein (pRb). The tumor growth in xenograft nude mice bearing HCT 116 cells by compound 8e (10 mg/kg) also significantly inhibited without any overt toxicity. In addition, the down-regulation of epidermal growth factor receptor (EGFR), Akt, and mTOR signalings were associated with the anti-proliferative activity of compound 8e in colon cancer cells. Taken together, these findings suggested that cell cycle arrest and modulation of cell signal transduction pathways might be the plausible mechanisms of actions for the anti-proliferative activity of 8e, and thus 8e might be used as an effective chemotherapeutic agent in human colon cancer.  相似文献   

20.
The tumor microenvironment(TME) is complex and constantly evolving. This is due, in part, to the crosstalk between tumor cells and the multiple cell types that comprise the TME, which results in a heterogeneous population of tumor cells and TME cells. This review will focus on two stromal cell types, the cancerassociated adipocyte(CAA) and the cancer-associated fibroblast(CAF). In the clinic, the presence of CAAs and CAFs in the TME translates to poor prognosis in multiple tumor types. CAAs and CAFs have an activated phenotype and produce growth factors, inflammatory factors, cytokines, chemokines, extracellular matrix components, and proteases in an accelerated and aberrant fashion. Through this activated state, CAAs and CAFs remodel the TME, thereby driving all aspects of tumor progression, including tumor growth and survival, chemoresistance, tumor vascularization, tumor invasion, and tumor cell metastasis. Similarities in the tumorpromoting functions of CAAs and CAFs suggest that a multipronged therapeutic approach may be necessary to achieve maximal impact on disease. While CAAs and CAFs are thought to arise from tissues adjacent to the tumor, multiple alternative origins for CAAs and CAFs have recently been identified. Recent studies from our lab and others suggest that the hematopoietic stem cell, through the myeloid lineage, may serve as a progenitor for CAAs and CAFs. We hypothesize that the multiple origins of CAAs and CAFs may contribute to the heterogeneity seen in the TME. Thus, a better understanding of the origin of CAAs and CAFs, how this origin impacts their functions in the TME, and thetemporal participation of uniquely originating TME cells may lead to novel or improved anti-tumor therapeutics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号