首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Many bacterial lineages lack seemingly essential metabolic genes. Previous work suggested selective benefits could drive the loss of biosynthetic functions from bacterial genomes when the corresponding metabolites are sufficiently available in the environment. However, the factors that govern this “genome streamlining” remain poorly understood. Here we determine the effect of plasticity and epistasis on the fitness of Escherichia coli genotypes from whose genome biosynthetic genes for one, two, or three different amino acids have been deleted. Competitive fitness experiments between auxotrophic mutants and prototrophic wild‐type cells in one of two carbon environments revealed that plasticity and epistasis strongly affected the mutants’ fitness individually and interactively. Positive and negative epistatic interactions were prevalent, yet on average cancelled each other out. Moreover, epistasis correlated negatively with the expected effects of combined auxotrophy‐causing mutations, thus producing a pattern of diminishing returns. Moreover, computationally analyzing 1,432 eubacterial metabolic networks revealed that most pairs of auxotrophies co‐occurred significantly more often than expected by chance, suggesting epistatic interactions and/or environmental factors favored these combinations. Our results demonstrate that both the genetic background and environmental conditions determine the adaptive value of a loss‐of‐biochemical‐function mutation and that fitness gains decelerate, as more biochemical functions are lost.  相似文献   

2.
Bacteria that have adapted to nutrient‐rich, stable environments are typically characterized by reduced genomes. The loss of biosynthetic genes frequently renders these lineages auxotroph, hinging their survival on an environmental uptake of certain metabolites. The evolutionary forces that drive this genome degradation, however, remain elusive. Our analysis of 949 metabolic networks revealed auxotrophies are likely highly prevalent in both symbiotic and free‐living bacteria. To unravel whether selective advantages can account for the rampant loss of anabolic genes, we systematically determined the fitness consequences that result from deleting conditionally essential biosynthetic genes from the genomes of Escherichia coli and Acinetobacter baylyi in the presence of the focal nutrient. Pairwise competition experiments with each of 20 mutants auxotrophic for different amino acids, vitamins, and nucleobases against the prototrophic wild type unveiled a pronounced, concentration‐dependent growth advantage of around 13% for virtually all mutants tested. Individually deleting different genes from the same biosynthesis pathway entailed gene‐specific fitness consequences and loss of the same biosynthetic genes from the genomes of E. coli and A. baylyi differentially affected the fitness of the resulting auxotrophic mutants. Taken together, our findings suggest adaptive benefits could drive the loss of conditionally essential biosynthetic genes.  相似文献   

3.
Protoplasts of morphologically and biochemically different Claviceps purpurea strains producing ergotoxins were fused without introducing selective auxotrophic markers. Fused strains thus obtained differed significantly in biosynthetic activity and morphology from the prototrophic isolates obtained after fusion of the same parent strains marked by auxotrophy. Comparison of the two types of fused strains showed about tenfold higher alkaloid production in fusants obtained from prototrophic strains. Selected stable prototrophic isolates also showed a significant productivity improvement in comparison with the original parent strains. Correspondence to: M. Didek-Brumec  相似文献   

4.
A total of 351 auxotrophic mutants with different antibiotic activity, including several mutants with activity higher than that of the parent prototrophic strains were obtained under the effect of gamma-rays from 3 prototrophic strains of Act. coeruleorubidus. It was shown that most of the auxotrophic mutants did not preserve the property of biochemical insufficiency on passages on complete media. A mutant strain 1059-32 with activity 2 times higher than that of the prototrophic strain 2-39 and the parent auxotrophic culture was obtained from the revertants. Requirements in 29 growth factors including 17 amino acids, 4 nitrous bases, 8 vitamins and coenzymes were determined in 46 stable auxotrophic mutants isolated. The effect of the specific and non-specific growth factors on the culture antibiotic production was studied.  相似文献   

5.
Sinefungin, an antifungal and antiparasitic antibiotic, is produced efficiently from ammonium citrate by prototrophic strains of Streptomyces incarnatus. The regulation of the biosynthesis of this nucleoside, composed of adenosine and ornithine, was studied by using auxotrophic mutants and a resting-cell system. Mutants blocked in arginine synthesis were not able to produce sinefungin. A uridine-negative mutant produced sinefungin in the presence of ATP, but this production was strongly inhibited when amino acids of the urea cycle were added. The same mutant produced sinefungin from aspartic acid, and this production was enhanced by ornithine. Our results show that the ornithine part of the molecule originates from arginine, liberated by either anabolic or catabolic processes.  相似文献   

6.
Sinefungin, an antifungal and antiparasitic antibiotic, is produced efficiently from ammonium citrate by prototrophic strains of Streptomyces incarnatus. The regulation of the biosynthesis of this nucleoside, composed of adenosine and ornithine, was studied by using auxotrophic mutants and a resting-cell system. Mutants blocked in arginine synthesis were not able to produce sinefungin. A uridine-negative mutant produced sinefungin in the presence of ATP, but this production was strongly inhibited when amino acids of the urea cycle were added. The same mutant produced sinefungin from aspartic acid, and this production was enhanced by ornithine. Our results show that the ornithine part of the molecule originates from arginine, liberated by either anabolic or catabolic processes.  相似文献   

7.
The initiation of growth of a polyaromatic auxotrophic mutant of Saccharomyces cerevisiae was inhibited by several amino acids, whereas growth of the parent prototroph was unaffected. A comparative investigation of amino acid transport in the two strains employing (14)C-labeled amino acids revealed that the transport of amino acids in S. cerevisiae was mediated by a general transport system responsible for the uptake of all neutral as well as basic amino acids. Both auxotrophic and prototrophic strains exhibited stereospecificity for l-amino acids and a K(m) ranging from 1.5 x 10(-5) to 5.0 x 10(-5) M. Optimal transport activity occurred at pH 5.7. Cycloheximide had no effect on amino acid uptake, indicating that protein synthesis was not a direct requirement for amino acid transport. Regulation of amino acid transport was subject to the concentration of amino acids in the free amino acid pool. Amino acid inhibition of the uptake of the aromatic amino acids by the aromatic auxotroph did not correlate directly with the effect of amino acids on the initiation of growth of the auxotroph but provides a partial explanation of this effect.  相似文献   

8.
9.
The general control of amino acid biosynthesis was investigated in Candida spec. EH 15/D, using single and double mutant auxotrophic strains and prototrophic revertants starved for their required amino acids. These experiments show that starvation for lysine, histidine, arginine, leucine, threonine, proline, serine, methionine, homoserine, asparagine, glutamic acid or aspartic acid can result in derepression of enzymes. A correlation was found between the degree of derepression, growth of strains, and concentration of required amino acids. The amino acids pool pattern of mutants and revertants is different from that in the wild type strain.  相似文献   

10.
The requirement for essential amino acids and vitamins was determined in wild-type Lactobacillus plantarum strains isolated from green olive fermentation brines. All the strains were found to be auxotrophic with respect to the amino acids but some of them were prototrophic for pyridoxal, p -aminobenzoic acid and/or nicotinic acid. Their growth response to these nutrients was also studied and found to be quite heterogeneous. Nutritional requirement pattern as a criteria for selecting starter cultures is discussed.  相似文献   

11.
The ability of yeasts to grow in the presence of weak organic acid preservatives is an important cause of food spoilage. Many of the determinants of acetate resistance in Saccharomyces cerevisiae differ from the determinants of resistance to the more lipophilic sorbate and benzoate. Interestingly, we show in this study that hypersensitivity to both acetate and sorbate results when the cells have auxotrophic requirements for aromatic amino acids. In tryptophan biosynthetic pathway mutants, this weak acid hypersensitivity is suppressed by supplementing the medium with high levels of tryptophan or, in the case of sorbate sensitivity, by overexpressing the Tat2p high affinity tryptophan permease. Weak acid stress therefore inhibits uptake of aromatic amino acids from the medium. This allows auxotrophic requirements for these amino acids to strongly influence the resistance phenotypes of mutant strains. This property must be taken into consideration when using these phenotypes to attribute functional assignments to genes. We show that the acetate sensitivity phenotype previously ascribed to yeast mutants lacking the Pdr12p and Azr1p plasma membrane transporters is an artefact arising from the use of trp1 mutant strains. These transporters do not confer resistance to high acetate levels and, in prototrophs, their presence is actually detrimental for this resistance.  相似文献   

12.
Minimal chemically defined media for Bacillus stearothermophilus were developed at 60°C and quantitative requirements for each nutrient were determined. A prototrophic strain of B. stearothermophilus was grown in medium containing only glucose and mineral salts whereas auxotrophic strains in addition required biotin, thiamine, nicotinic acid and DL-methionine. Metabolic interaction between L-valine and L-leucine was observed with auxotrophic organisms. The presence of L-leucine in minimal medium necessitated the addition of L-valine. Growth took place in the absence of both amino acids.  相似文献   

13.
The chronological lifespan of Saccharomyces cerevisiae represents the duration of cell survival in the postdiauxic and stationary phases. Using a prototrophic strain derived from the standard auxotrophic laboratory strain BY4742, we showed that supplementation of non-essential amino acids to a synthetic defined (SD) medium increases maximal cell growth and extends the chronological lifespan. The positive effects of amino acids can be reproduced by modulating the medium pH, indicating that amino acids contribute to chronological longevity in a cell-extrinsic manner by alleviating medium acidification. In addition, we showed that the amino acid-mediated effects on extension of chronological longevity are independent of those achieved through a reduction in the TORC1 pathway, which is mediated in a cell-intrinsic manner. Since previous studies showed that extracellular acidification causes mitochondrial dysfunction and leads to cell death, our results provide a path to premature chronological aging caused by differences in available nitrogen sources. Moreover, acidification of culture medium is generally associated with culture duration and cell density; thus, further studies are required on cell physiology of auxotrophic yeast strains during the stationary phase because an insufficient supply of essential amino acids may cause alterations in environmental conditions.  相似文献   

14.
A stable virulent donor strain (EA 178R1-99) of Erwinia amylovora can transfer, by conjugation during a 3-h mating period, the gene or genes which determine(s) plant virulence to avirulent recipient strains (EA178-M64S1 and EA178-M173S1) of Escherichia amylovora. The virulence of over 200 recombinant clones was tested; they all were as virulent on immature Bartlett pear fruits (and, in the smaller series of strains tested, also, on Pyracantha twigs) as was the parent donor strain. Although the avirulent recipeint strains are amino acid auxotrophs, addition of the required amino acids to the inocula in plant virulence trials does not of itself restore virulence. Two small series of prototrophic revertant clones were selected from the auxotrophic avirulent recipient strains; only nine of the 21 prototrophic revertant clones regained virulence, whereas the other 12 prototrophic revertant clones remained avirulent, again suggesting a lack of parallelism between nutritional status and virulence in this system. Preliminary interrupted mating trials, carried out at 15-min intervals over 3 h, show that ser is transferred during the first 15 min, that pro starts entering at about 75 min (and with a higher frequency later), and that lac (originating from an integrated Escherichia coli F'lac) enters toward the end of the 3-h mating period and at a reduced frequency compared to the other markers. The gene or genes which determine(s) plant virulence in this Escherichia amylovora donor strain appear(s) to be transferred readily and seemingly completely to recipient strains during the first 15 min of a 3-h mating period. Exposure of the virulent donor strain to acridine orange or ethidium bromide does not result in loss of virulence, suggesting (but, of course, not proving conclusively) that the determinant(s) of virulence in Escherichia amylovora might be chromosomal rather than extrachromosomal.  相似文献   

15.
The polyamine metabolic pathway is intricately connected to metabolism of several amino acids. While ornithine and arginine are direct precursors of putrescine, they themselves are synthesized from glutamate in multiple steps involving several enzymes. Additionally, glutamate is an amino group donor for several other amino acids and acts as a substrate for biosynthesis of proline and γ-aminobutyric acid, metabolites that play important roles in plant development and stress response. Suspension cultures of poplar (Populus nigra × maximowiczii), transformed with a constitutively expressing mouse ornithine decarboxylase gene, were used to study the effect of up-regulation of putrescine biosynthesis (and concomitantly its enhanced catabolism) on cellular contents of various protein and non-protein amino acids. It was observed that up-regulation of putrescine metabolism affected the steady state concentrations of most amino acids in the cells. While there was a decrease in the cellular contents of glutamine, glutamate, ornithine, arginine, histidine, serine, glycine, cysteine, phenylalanine, tryptophan, aspartate, lysine, leucine and methionine, an increase was seen in the contents of alanine, threonine, valine, isoleucine and γ-aminobutyric acid. An overall increase in percent cellular nitrogen and carbon content was also observed in high putrescine metabolizing cells compared to control cells. It is concluded that genetic manipulation of putrescine biosynthesis affecting ornithine consumption caused a major change in the entire ornithine biosynthetic pathway and had pleiotropic effects on other amino acids and total cellular carbon and nitrogen, as well. We suggest that ornithine plays a key role in regulating this pathway.  相似文献   

16.
A novel biosynthetic strategy is described for the preparation of deuterated proteins containing protons at the ring carbons of Phe, Tyr and Trp, using the aromatic amino acid precursor shikimic acid. Specific protonation at aromatic side chains, with complete deuteration at C/positions was achieved in proteins overexpressed in bacteria grown in shikimate-supplemented D2O medium. Co-expression of a shikimate transporter in prototrophic bacteria resulted in protonation levels of 62–79%, whereas complete labeling was accomplished using shikimate auxotrophic bacteria. Our labeling protocol permits the measurement of important aromatic side chain derived distance restraints in perdeuterated proteins that could be utilized to enhance the accuracy of NMR structures calculated using low densities of NOEs from methyl selectively protonated samples.  相似文献   

17.
Microbial production of many commercially important secondary metabolites occurs during stationary phase, and methods to measure metabolic flux during this growth phase would be valuable. Metabolic flux analysis is often based on isotopomer information from proteinogenic amino acids. As such, flux analysis primarily reflects the metabolism pertinent to the growth phase during which most proteins are synthesized. To investigate central metabolism and amino acids synthesis activity during stationary phase, addition of fully 13C‐labeled glucose followed by induction of green fluorescent protein (GFP) expression during stationary phase was used. Our results indicate that Escherichia coli was able to produce new proteins (i.e., GFP) in the stationary phase, and the amino acids in GFP were mostly from degraded proteins synthesized during the exponential growth phase. Among amino acid biosynthetic pathways, only those for serine, alanine, glutamate/glutamine, and aspartate/asparagine had significant activity during the stationary phase. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

18.
C. stellatoidea differs from both C. albicans and C. tropicalis in its i) much greater growth differential on minimal and amino acid enriched media and ii) unique inability to grow on minimal medium containing glycerol as carbon source at 37C. The relative responses to amino acid enrichment occur on media containing either fermentative or oxidative carbon sources, at 25C or 37C. Under any given conditions of carbon source and temperature, different assortments of individual amino acids are stimulatory for each of the three species. All assortments include one or more members of the glutamic acid family. However, sulfur amino acids stimulate only C. stellatoidea on all three carbon sources. On minimal-glycerol medium, wild type strains of C. stellatoidea grow prototrophically at 25C but are auxotrophic for amino acids at 37C; the particular auxotrophies expressed vary from strain to strain. Slow growing, mycelial mutants, prototrophic on glycerol at 37C arise spontaneously in wild type strains at frequencies indicating nuclear gene mutation. Such mutants can be induced by both transition and frame shift mutagens. The implications of these observations for the taxonomic relationships between the three Candida species and for identification of C. stellatoidea in particular are discussed.  相似文献   

19.
Escherichia coli is the most popular microorganism for the production of recombinant proteins and is gaining increasing importance for the production of low-molecular weight compounds such as amino acids. The metabolic cost associated with the production of amino acids and (recombinant) proteins from glucose, glycerol and acetate was determined using three different computational techniques to identify those amino acids that put the highest burden on the biosynthetic machinery of E. coli. Comparing the costs of individual amino acids, we find that methionine is the most expensive amino acid in terms of consumed mol of ATP per molecule produced, while leucine is the most expensive amino acid when taking into account the cellular abundances of amino acids. Moreover, we show that the biosynthesis of a large number of amino acids from glucose and particularly from glycerol provides a surplus of energy, which can be used to balance the high energetic cost of amino acid polymerization.  相似文献   

20.
Threonine, lysine, methionine, and tryptophan are essential amino acids for humans and monogastric animals. Many of the commonly used diet formulations, particularly for pigs and poultry, contain limiting amounts of these amino acids. One approach for raising the level of essential amino acids is based on altering the regulation of their biosynthetic pathways in transgenic plants. Here we describe the first production of a transgenic forage plant, alfalfa (Medicago sativa L.) with modified regulation of the aspartate-family amino acid biosynthetic pathway. This was achieved by over-expressing the Escherichia coli feedback-insensitive aspartate kinase (AK) in transgenic plants. These plants showed enhanced levels of both free and protein-bound threonine. In many transgenic plants the rise in free threonine was accompanied by a significant reduction both in aspartate and in glutamate. Our data suggest that in alfalfa, AK might not be the only limiting factor for threonine biosynthesis, and that the free threonine pool in this plant limits its incorporation into plant proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号