首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Motility is a major trait for competitive tomato root-tip colonization by Pseudomonas fluorescens. To test the hypothesis that this role of motility is based on chemotaxis toward exudate components, cheA mutants that were defective in flagella-driven chemotaxis but retained motility were constructed in four P. fluorescens strains. After inoculation of seedlings with a 1:1 mixture of wild-type and nonmotile mutants all mutants had a strongly reduced competitive root colonizing ability after 7 days of plant growth, both in a gnotobiotic sand system as well as in nonsterile potting soil. The differences were significant on all root parts and increased from root base to root tip. Significant differences at the root tip could already be detected after 2 to 3 days. These experiments show that chemotaxis is an important competitive colonization trait. The best competitive root-tip colonizer, strain WCS365, was tested for chemotaxis toward tomato root exudate and its major identified components. A chemotactic response was detected toward root exudate, some organic acids, and some amino acids from this exudate but not toward its sugars. Comparison of the minimal concentrations required for a chemotactic response with concentrations estimated for exudates suggested that malic acid and citric acid are among major chemo-attractants for P. fluorescens WCS365 cells in the tomato rhizosphere.  相似文献   

2.
This article correlates colonization with parameters, such as chemotaxis, biofilm formation, and bacterial growth, that are believed to be connected. We show here, by using two varieties of soybean plants that seeds axenically produced exudates, induced a chemotactic response in Bacillus amyloliquefaciens, whereas root exudates did not, even when the exudates, also collected under axenic conditions, were concentrated up to 200-fold. Root exudates did not support bacterial cell division, whereas seed exudates contain compounds that support active cell division and high cell biomass at stationary phase. Seed exudates of the two soybean varieties also induced biofilm formation. B. amyloliquefaciens colonized both seeds and roots, and plant variety significantly affected bacterial root colonization, whereas it did not affect seed colonization. Colonization of roots in B. amyloliquefaciens occurred despite the lack of chemotaxis and growth stimulation by root exudates. The data presented in this article suggest that soybean seed colonization, but not root colonization, by B. amyloliquefaciens is influenced by chemotaxis, growth, and biofilm formation and that this may be caused by qualitative changes of the composition of root exudates.  相似文献   

3.

Aim

It is necessary to understand the roles of root exudates involved in plant-microbe interactions to inform practical application of beneficial rhizosphere microbial strains.

Methods

Colonization of Bacillus amyloliquefaciens SQR9 (isolated from cucumber rhizosphere) and Bacillus subtilis N11 (isolated from banana rhizosphere) of their original host was found to be more effective as compared to the colonization of the non-host plant. Organic acids in the root exudates of the two plants were identified by High performance liquid chromatography (HPLC). The chemotactic response and effects on biofilm formation were assessed for SQR9 and N11 in response to cucumber and banana root exudates, as well as their organic acids components.

Results

Citric acid detected exclusively in cucumber exudates could both attract SQR9 and induce its biofilm formation, whereas only chemotactic response but not biofilm formation was induced in N11. Fumaric acid that was only detected in banana root exudates revealed both significant roles on chemotaxis and biofilm formation of N11, while showing only effects on biofilm formation but not chemotaxis of SQR9.

Conclusion

The relationship between PGPR strain and root exudates components of its original host might contribute to preferential colonization. This study advances a clearer understanding of the mechanisms relevant to application of PGPR strains in agricultural production.  相似文献   

4.
Abstract Intact seeds and seed and seedling root exudates of velvetleaf ( Abutilon theophrasti Medik.) were used as chemoattractants in experiments to determine the relative importance of chemotaxis in spermosphere and rhizosphere colonization by selected rhizobacteria. Results for soft-agar, capillary tube and soil chemotaxis assays indicated that selected deleterious rhizobacteria were specifically attracted to seed and seedling root exudates. Several amino acids and sugars detected in exudates were chemoattractants for these rhizobacteria. Using soil-chemotaxis assemblies, migration of rhizobacterial isolates through 2-cm distances of soil toward velvetleaf seeds or exudates was detected within 24 h. Isolates were not detected at the same site in soils without seeds or exudates until 72 h after inoculation. These results suggest that attraction of delecterious rhizobacteria toward seeds and seedling roots mediated by exudates (chemotaxis) might be the first step in establishment and subsequent colonization of biological control bacteria on weed seeds and seedling roots in soil.  相似文献   

5.
Strains of Enterobacter cloacae show promise as biological control agents for Pythium ultimum-induced damping-off on cucumber and other crops. Enterobacter cloacae M59 is a mini-Tn5 Km transposon mutant of strain 501R3. Populations of M59 were significantly lower on cucumber roots and decreased much more rapidly than those of strain 501R3 with increasing distance from the soil line. Strain M59 was decreased or deficient in growth and chemotaxis on most individual compounds detected in cucumber root exudate and on a synthetic cucumber root exudate medium. Strain M59 was also slightly less acid resistant than strain 501R3. Molecular characterization of strain M59 demonstrated that mini-Tn5 Km was inserted in cyaA, which encodes adenylate cyclase. Adenylate cyclase catalyzes the formation of cAMP and cAMP levels in cell lysates from strain M59 were approximately 2% those of strain 501R3. Addition of exogenous, nonphysiological concentrations of cAMP to strain M59 restored growth (1 mM) and chemotaxis (5 mM) on synthetic cucumber root exudate and increased cucumber seedling colonization (5 mM) by this strain without serving as a source of reduced carbon, nitrogen, or phosphorous. These results demonstrate a role for cyaA in colonization of cucumber roots by Enterobacter cloacae.  相似文献   

6.
Many invasive plants have enhanced mutualistic arbuscular mycorrhizal (AM) fungal associations, however, mechanisms underlying differences in AM fungal associations between introduced and native populations of invasive plants have not been explored. Here we test the hypothesis that variation in root exudate chemicals in invasive populations affects AM fungal colonization and then impacts plant performance. We examined flavonoids (quercetin and quercitrin) in root exudates of native and introduced populations of the invasive plant Triadica sebifera and tested their effects on AM fungi and plant performance. We found that plants from introduced populations had higher concentrations of quercetin in root exudates, greater AM fungal colonization and higher biomass. Applying root exudates more strongly increased AM fungal colonization of target plants and AM fungal spore germination when exudate donors were from introduced populations. The role of root exudate chemicals was further confirmed by decreased AM fungal colonization when activated charcoal was added into soil. Moreover, addition of quercetin into soil increased AM fungal colonization, indicating quercetin might be a key chemical signal stimulating AM fungal associations. Together these results suggest genetic differences in root exudate flavonoids play an important role in enhancing AM fungal associations and invasive plants’ performance, thus considering root exudate chemicals is critical to unveiling mechanisms governing shifting plant-soil microbe interactions during plant invasions.Subject terms: Population dynamics, Community ecology, Plant ecology  相似文献   

7.
Beneficial bacteria of agricultural importance   总被引:5,自引:0,他引:5  
The rhizosphere is the soil–plant root interphase and in practice consists of the soil adhering to the root besides the loose soil surrounding it. Plant growth-promoting rhizobacteria (PGPR) are potential agents for the biological control of plant pathogens. A biocontrol strain should be able to protect the host plant from pathogens and fulfill the requirement for strong colonization. Numerous compounds that are toxic to pathogens, such as HCN, phenazines, pyrrolnitrin, and pyoluteorin as well as, other enzymes, antibiotics, metabolites and phytohormones are the means by which PGPR act, just as quorum sensing and chemotaxis which are vital for rhizosphere competence and colonization. The presence of root exudates has a pronounced effect on the rhizosphere where they serve as an energy source, promoting growth and influencing the root system for the rhizobacteria. In certain instances they have products that inhibit the growth of soil-borne pathogens to the advantage of the plant root. A major source of concern is reproducibility in the field due to the complex interaction between the plant (plant species), microbe and the environment (soil fertility and moisture, day length, light intensity, length of growing season, and temperature). This review listed most of the documented PGPR genera and discussed their exploitation.  相似文献   

8.
Li  Shili  Xu  Chen  Wang  Jiao  Guo  Bing  Yang  Liang  Chen  Juanni  Ding  Wei 《Plant and Soil》2017,412(1-2):381-395
Aim

The secretion of allelochemicals from plant roots plays a key role in soil sickness and soil-borne disease. The goal of this study was to investigate the role of allelopathic chemicals in Ralstonia solanacearum-infected tobacco roots.

Methods

The organic acids investigated in the present study are major components of tobacco root exudates. Through a swarming assay, we assessed the chemotaxis and colonization of R. solanacearum in response to organic acids.

Results

Fumaric acid was detected, and the results showed that this acid could serve as a semiochemical for attracting R. solanacearum and inducing the formation of biofilms of this species. The results also revealed that cinnamic and myristic acids play significant roles on swarming motility and chemotaxis. In addition, cinnamic, myristic and fumaric acids could enhance the expression of chemotaxis- and motility-related genes in R. solanacearum cultured in minimal medium. Furthermore, these three acids promote R. solanacearum colonization and accelerate disease progression in tobacco.

Conclusion

Cinnamic, myristic and fumaric acids could serve as semiochemical attractants to induce the colonization and infection of R. solanacearum. The results of the present study enhance our understanding of the ecological effects of plant root exudates in plant-microbe interactions and help to reveal the relationship between tobacco bacterial wilt and the autotoxins and allelochemicals that accumulate from root exudates.

  相似文献   

9.
Vierheilig H  Lerat S  Piché Y 《Mycorrhiza》2003,13(3):167-170
The arbuscular mycorrhizal (AM) non-host plants mustard, sugar beet, lupin and the AM host plant cucumber were used as test plants. Cucumber plants were grown either in the absence of the AM fungus (AMF) Glomus mosseae or in a split-root system, with one side mycorrhizal and one side non-mycorrhizal. Root exudates of the AM non-host plants, the non-mycorrhizal cucumber plants and the mycorrhizal and the non-mycorrhizal side of the split-root system of mycorrhizal cucumber plants were collected and applied to cucumber plants inoculated with the AMF. Root exudates of non-mycorrhizal cucumber plants showed a significant stimulatory effect on root colonization, whereas root exudates from the mycorrhizal and the non-mycorrhizal sides of a split-root system of a mycorrhizal cucumber plant did not show this stimulatory effect and were even slightly inhibitory. Root exudates of the two AM non-host plants mustard and sugar beet significantly reduced root colonization in cucumber plants, whereas no such effect was observed when root exudates of the AM non-host plant lupin were applied.  相似文献   

10.
影响引人微生物根部定殖的因素   总被引:15,自引:2,他引:13  
从外界引入的各类有益微生物如生防菌(BCA)和根际促生菌或增产菌(PGPR,YIB)到种子表面随其生根发芽而蔓延或直接到根表沿根分布定殖.外来微生物在根际定殖的过程为与根尖接触,沿根分布,最后在根际建立自己的种群.定殖的位点以PGPR为例,是表皮细胞间隙,或侧根、根毛基部.外来微生物在根际定殖动态变化的原因,由于根际生物的和非生物的因素引起的.生物因子除去外来微生物本身的生理特性,还有根际土著微生物与外来微生物的相互作用,更重要的是植物基因型对微生物定殖的影响.非生物因子包括土壤环境、土壤结构和含水量,土壤温度和土壤pH值均能影响外来微生物在根部的定殖.  相似文献   

11.
The influence of boron starvation on the root exudates content in soybean seedlings (Glycine max. L. Merr.) and the effect of exudates pretreatment on the pre-infection processes in symbiotic system Br. japonicum strain 636 and soybean were investigated. Root cell membrane stability of boron starved soybean plants (-B) decreased compared to the control. The concentrations of all analyzed metabolites (reducing sugars, free amino acids, organic acids, soluble phenols and total flavonoids) from root exudates of -B plants were lower than the control concentrations. Analysis of polyphenols after HPLC chromatography of root exudates showed significant difference of peak numbers between chromatograms of exudates obtained from boron starved and from control plants. Bacterial culture treatment with root exudates from -B plants showed decreased growth, chemotaxis and attachment ability toward the host root compared to the control exudate treatments. These changes were accompanied by decreased nodulation and acetylene reduction activity of boron starved soybean plants.  相似文献   

12.
13.
The influence of stonewool substrate on the exudation of the major soluble carbon nutrients and of the auxin precursor tryptophane for Pseudomonas biocontrol agents was studied. To this end, the composition of the organic acids and sugars, as well that of tryptophane, of axenically collected exudates of seed, seedlings, and roots of tomato, cucumber, and sweet pepper was determined. The major results were as follows. i) The total amount of organic acid is much higher than that of total sugar. ii) Exudation of both organic acids and sugars increases during plant growth. iii) Citric, succinic, and malic acids represent the major organic acids, whereas fructose and glucose are the major sugars. iv) Compared with glass beads as a neutral substrate, stonewool substantially stimulates exudation of organic acids and sugars. v) It appeared that enhanced root-tip-colonizing bacteria isolated previously from the rhizosphere of tomato and cucumber grow much better in minimal medium with citrate as the sole carbon source than other, randomly selected rhizobacteria do. This indicates that the procedure which selects for excellent root-tip colonizers enriches for strains which utilize the major exudate carbon source citrate. vi) The content of L-tryptophane, the direct precursor of auxin, is approximately 60-fold higher in seedling exudates of tomato and sweet pepper than in cucumber seedling exudates, indicating a higher possibility of plant growth stimulation after inoculation with auxin-producing rhizobacteria for tomato and sweet pepper crops than for cucumber. However, the biocontrol strain Pseudomonas fluorescens WCS365, which is able to convert tryptophane into auxin, did not stimulate growth of these three crops. In contrast, this strain did stimulate growth of roots of radish, a plant which exudes nine times more tryptophane than tomato does.  相似文献   

14.
Chemotaxis of Bradyrhizobium japonicum to soybean exudates.   总被引:5,自引:1,他引:4       下载免费PDF全文
The chemotactic response of Bradyrhizobium japonicum toward soybean seed and root exudates was examined. Assays using various isoflavones and fractionated exudate indicated that isoflavones are not the principal attractants in exudates. Likewise, induction of nod genes with isoflavones or seed exudate before assay did not enhance chemotaxis. Screening of numerous compounds revealed that only dicarboxylic acids and the amino acids glutamate and aspartate were strong attractants. The presence of glutamate, aspartate, and dicarboxylic acids in appreciable concentrations in soybean seed and root exudates indicates that these compounds likely represent natural chemoattractants for B. japonicum.  相似文献   

15.
Chemotaxis of Bradyrhizobium japonicum to soybean exudates.   总被引:1,自引:0,他引:1  
The chemotactic response of Bradyrhizobium japonicum toward soybean seed and root exudates was examined. Assays using various isoflavones and fractionated exudate indicated that isoflavones are not the principal attractants in exudates. Likewise, induction of nod genes with isoflavones or seed exudate before assay did not enhance chemotaxis. Screening of numerous compounds revealed that only dicarboxylic acids and the amino acids glutamate and aspartate were strong attractants. The presence of glutamate, aspartate, and dicarboxylic acids in appreciable concentrations in soybean seed and root exudates indicates that these compounds likely represent natural chemoattractants for B. japonicum.  相似文献   

16.
Root exudates released into soil have important functions in mobilizing metal micronutrients and for causing selective enrichment of plant beneficial soil micro-organisms that colonize the rhizosphere. Analysis of plant root exudates typically has involved chromatographic methods that rely on a priori knowledge of which compounds might be present. In the research reported here, the combination of multinuclear and 2-D NMR with GC-MS and high-resolution MS provided de novo identification of a number of components directly in crude root exudates of different plant types. This approach was applied to examine the role of exudate metal ion ligands (MIL) in the acquisition of Cd and transition metals by barley and wheat. The exudation of mugineic acids and malate was enhanced by Fe deficiency. which in turn led to an increase in the tissue content of Cu, Mn, and Zn. The presence of elevated Cd maintained at a free activity pCd of 8.8 (10(-8.8) M), resulted in reduced phytosiderophore production by Fe deficient plants. The buffer morpholinoethane sulfonate (MES), which is commonly used in chelator-buffering nutrient solutions, was detected in the root exudate mixture, suggesting uptake and re-secretion of this compound by the roots. The ability to detect this compound in complex mixtures containing organic acids, amino acids, and other substances suggests that the analytical methods used here provide an unbiased method for simultaneous detection of all major components contained in root exudates.  相似文献   

17.
为探讨温室蔬菜CO2施肥的根际效应,以黄瓜幼苗为试材,研究了CO2施肥(上午施肥/上、下午施肥;施肥浓度/对照浓度(950±50)/(350±50)μmol/molCO2)对根系生长及分泌物和伤流液组成的影响。结果表明,CO2施肥明显促进黄瓜幼苗根系发育,根系生物量显著增加;单株根系分泌物中氨基酸、糖、有机酸和酚酸总量增加,但单位鲜重根系分泌量却呈现增幅减少、无变化甚至降低趋势,说明单株分泌量增加主要由根系生长量的增加所引起。CO2施肥促进幼苗对养分的吸收,伤流液中矿质元素、ZT浓度增加,但GA、ABA和IAA浓度降低;与上午CO2施肥相比,上、下午均CO2施肥的效果更明显。CO2施肥促进了黄瓜幼苗根系发育及其代谢活性,为地上部的旺盛生长创造了条件。  相似文献   

18.
The outcome of an interaction between plant growth promoting rhizobacteria and plants may depend on the chemical composition of root exudates (REs). We report the colonization of tobacco, and not groundnut, roots by a non-rhizospheric Bacillus cereus (MTCC 430). There was a differential alteration in the cell wall components of B. cereus in response to the REs from tobacco and groundnut. Attenuated total reflectance infrared spectroscopy revealed a split in amide I region of B. cereus cells exposed to tobacco-root exudates (TRE), compared to those exposed to groundnut-root exudates (GRE). In addition, changes in exopolysaccharides and lipid-packing were observed in B. cereus grown in TRE-amended minimal media that were not detectable in GRE-amended media. Cell-wall proteome analyses revealed upregulation of oxidative stress-related alkyl hydroperoxide reductase, and DNA-protecting protein chain (Dlp-2), in response to GRE and TRE, respectively. Metabolism-related enzymes like 2-amino-3-ketobutyrate coenzyme A ligase and 2-methylcitrate dehydratase and a 60 kDa chaperonin were up-regulated in response to TRE and GRE. In response to B. cereus, the plant roots altered their exudate-chemodiversity with respect to carbohydrates, organic acids, alkanes, and polyols. TRE-induced changes in surface components of B. cereus may contribute to successful root colonization and subsequent plant growth promotion.  相似文献   

19.
The study of the effect of the root exometabolites of tomato plants on the growth and antifungal activity of plant growth–promoting Pseudomonas strains showed that the antifungal activity of plant growth–promoting rhizobacteria in the plant rhizosphere may depend on the sugar and organic acid composition of root exudates.  相似文献   

20.
Translocation of nickel in xylem exudate of plants   总被引:3,自引:3,他引:0       下载免费PDF全文
Tiffin LO 《Plant physiology》1971,48(3):273-277
Topped plants of tomato (Lycopersicon esculentum), cucumber (Cucumis sativus), corn (Zea mays), carrot (Daucus carota), and peanut (Arachis hypogaea) were treated with 0.5 to 50 micromolar Ni (containing 63Ni) in nutrient solutions. Xylem exudate was collected for 10 hours or, in the case of corn, for 20 hours at 5-hour intervals. Electrophoresis of nutrient solution distributed all Ni cathodically as inorganic Ni2+. Low concentrations of Ni in tomato exudate migrated anodically, presumably bound to organic anion (carrier). However, this carrier became saturated at about 2 micromolar Ni in exudate, and excess Ni ran cathodically. Most of the Ni in cucumber, corn, carrot, and peanut exudate ran anodically, and its migration rate was identical for all exudates. Peanut root sap contained 14 to 735 micromolar Ni. The anodic Ni carriers in root sap and exudate appear identical. The carrier in root sap became saturated near 100 micromolar Ni, as shown by cathodic streaking of Ni exceeding that concentration. It appears that all five species translocate low concentrations of Ni in the same anionic form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号