首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genomic in situ hybridization (GISH) and multicolor GISH (mcGISH) methodology were used to establish the cytogenetic constitution of five partial amphiploid lines obtained from wheat × Thinopyrum intermedium hybridizations. Line Zhong 1, 2n=52, contained 14 chromosomes from each of the wheat genomes plus ten Th. intermedium chromosomes, with one pair of A-genome chromosomes having a Th. intermedium chromosomal segment translocated to the short arm. Line Zhong 2, 2n=54, had intact ABD wheat genome chromosomes plus 12 Th. intermedium chromosomes. The multicolor GISH results, using different fluorochrome labeled Th. intermedium and the various diploid wheat genomic DNAs as probes, indicated that both Zhong 1 and Zhong 2 contained one pair of Th. intermedium chromosomes with a significant homology to the wheat D genome. High-molecular-weight (HMW) glutenin and gliadin analysis revealed that Zhong 1 and Zhong 2 had identical banding patterns that contained all of the wheat bands and a specific HMW band from Th. intermedium. Zhong 1 and Zhong 2 had good HMW subunits for wheat breeding. Zhong 3 and Zhong 5, both 2n=56, possessed no gross chromosomal aberrations or translocations that were detectable at the GISH level. Zhong 4 also had a chromosome number of 2n=56 and contained the complete wheat ABD-genome chromosomes plus 14 Th. intermedium chromosomes, with one pair of Th. intermedium chromosomes being markedly smaller. Multicolor GISH results indicated that Zhong 4 also contained two pairs of reciprocally translocated chromosomes involving the A and D genomes. Zhong 3, Zhong 4 and Zhong 5 contained a specific gliadin band from Th. intermedium. Based on the above data, it was concluded that inter-genomic transfer of chromosomal segments and/or sequence introgression had occurred in these newly synthesized partial amphiploids despite their diploid-like meiotic behavior and disomic inheritance.  相似文献   

2.
Fluorescence and genomic in situ hybridization (FISH and GISH) were used to establish the cytogenetic constitution of two wheat × Thinopyrum intermedium partial amphiploids H95 and 55(1-57). Both partial amphiploids are high-protein lines having resistance to leaf rust, yellow rust and powdery mildew and have in total 56 chromosomes per cell. Repetitive DNA probes (pTa71, Afa family and pSc119.2) were used to identify the individual wheat chromosomes and to reveal the distribution of these probes within the alien chromosomes. FISH detected 6B tetrasomy in H95 and a null (1D)-tetrasomy (1B) in 55(1-57). GISH was carried out using biotin labeled Th. intermedium DNA and digoxigenin labeled Pseudoroegneria spicata DNA as probes, subsequently. GISH results revealed 44 wheat chromosomes and four Thinopyrum chromosome pairs, including three S and one J chromosome pairs in line H95. Line 55(1-57), contained 42 wheat chromosomes and six Th. intermedium pairs, including two S and one JS pairs. Additionally, two identical translocated chromosome pairs with diminished affinity to the alien chromatin were detected in both amphiploids. Another two translocations were found in 55(1-57), with satellite sections from the Thinopyrum J genome.  相似文献   

3.
Z Y Zhang  Z Y Xin  P J Larkin 《Génome》2001,44(6):1129-1135
The wheat--Thinopyrum intermedium addition lines Z1 and Z2 carry 21 pairs of wheat chromosomes and one pair of Th. intermedium chromosomes (2Ai-2) conferring resistance to barley yellow dwarf virus (BYDV). GISH results using the genomic DNA of Pseudoroegneria strigosa (S genome) as the probe indicated that the 2Ai-2 chromosome in Z1 and Z2 is an S-J intercalary translocation. Most of the 2Ai-2 chromosome belongs to the S genome, except for about one third in the middle region of the long arm that belongs to the J genome. The results of detailed RFLP analyses confirmed that the 2Ai-2 chromosome is extensively homoeologous to wheat group 2 chromosomes. Some new RFLP markers specific to the 2Ai-2 chromosome were identified. A RAPD marker, OP-R16(340), specific to the 2Ai-2 chromosome, was screened. We converted the RAPD marker into a sequence-characterized amplified region (SCAR) marker (designated SC-R16). The study establishes the basis for selecting translocation lines with small segments of the 2Ai-2 chromosome and localizing the BYDV resistance gene when introgressed into a wheat background.  相似文献   

4.
Li  Jianbo  Lang  Tao  Li  Bin  Yu  Zhihui  Wang  Hongjin  Li  Guangrong  Yang  Ennian  Yang  Zujun 《Planta》2017,245(6):1121-1135
Main conclusion

Fluorescence in situ hybridization and molecular markers have confirmed that several chromosomes from Thinopyrum intermedium ssp. trichophorum have been added to a wheat background, which originated from a cross between a wheat– Thinopyrum partial amphiploid and triticale. The lines displayed blue grains and resistance to wheat stripe rust.

Thinopyrum intermedium has been used as a valuable resource for improving the disease resistance and yield potential of wheat. With the aim to transfer novel genetic variation from Th. intermedium species for sustainable wheat breeding, a new trigeneric hybrid was produced by crossing an octoploid wheat–Th. intermedium ssp. trichophorum partial amphiploid with hexaploid triticale. Fluorescence in situ hybridization (FISH) revealed that Thinopyrum chromosomes were transmitted preferably and the number of rye chromosomes tended to decrease gradually in the selfed derivatives of the trigeneric hybrids. Four stable wheat–Th. intermedium chromosome substitution, addition and translocation lines were selected, and a 2JS addition line, two substitution lines of 4JS(4B) and 4J(4B), and a small 4J.4B translocation line were identified by FISH and molecular markers. It was revealed that the gene(s) responsible for blue grains may located on the FL0.60–1.00 of long arm of Th. intermedium-derived 4J chromosome. Disease resistance screenings indicated that chromosomes 4JS and 2JS appear to enhance the resistance to stripe rust in the adult plant stage. The new germplasm with Th. intermedium introgression shows promise for utilization of Thinopyrum chromosome segments in future wheat improvement.

  相似文献   

5.
Summary The chromosome constitutions of eight wheat streak mosaic virus (WSMV)-resistant lines, three of which are also greenbug resistant, derived from wheat/ Agropyron intermedium/Aegilops speltoides crosses were analyzed by C-banding and in situ hybridization. All lines could be traced back to CI15092 in which chromosome 4A is substituted for by an Ag. intermedium chromosome designated 4Ai-2, and the derived lines carry either 4Ai-2 or a part of it. Two (CI17881, CI17886) were 4Ai-2 addition lines. CI17882 and CI17885 were 4Ai-2-(4D) substitution lines. CI17883 was a translocation substitution line with a pair of 6AL.4Ai-2S and a pair of 6AS.4Ai-2L chromosomes substituting for chromosome pairs 4D and 6A of wheat. CI17884 carried a 4DL.4Ai-2S translocation which substituted for chromosome 4D. CI17766 carried a 4AL.4Ai-2S translocation substituting for chromosome 4A. The results show that the 4Ai-2 chromosome is related to homoeologous group 4 and that the resistance gene(s) against WSMV is located on the short arm of 4Ai-2. In addition, CI17882, CI17884, and CI17885 contained Ae. speltoides chromosome 7S substituting for chromosome 7A of wheat. The greenbug resistance gene Gb5 was located on chromosome 7S.Contribution No. 90-515-J from the Kansas Agricultural Experiment Station, Kansas State University, Manhattan, Kan., USA  相似文献   

6.
In this study, chromosome painting was developed and used to identify alien chromosomes in TAi-27, a wheat - Thinopyrum intermedium addition line, and the chromosomes of the three different genomes of Th. Intermedium. The smallest alien chromosome of TAi-27 was microdissected and its DNA amplified by DOP-PCR was used as a probe to hybridize with metaphase chromosomes of TAi-27 and Th . intermedium . Results showed that hybridization signals were observed in all regions of a pair of the smallest alien chromosomes and the pericentromeric area of another pair of alien chromosomes in TAi-27, indicating that the probe from microdissected chromosome is species specific. In Th . intermedium , 14 chromosomes had wide and strong hybridization signals distributed mainly on the pericentromere area and 9 chromosomes with narrow and weak signals on the pericentromere area. The remaining chromosomes displayed a very weak or no signal. Sequential FISH/GISH on Th . intermedium chromosomes using the DNAs of microdissected chromosome, Pseudoroegneria spicata (St genome) and pDbH12 (a Js genome specific probe) as the probes indicated that the microdissected chromosome belonged to the St genome, three genomes (Js, J and St) in Th . intermedium could be distinguished, in which there is no hybridization signal on J genome that is similar to the genome of Th . bessarabicum . Our results showed that the smallest alien chromosomes may represent a truncated chromosome and the repetitive sequence distribution might be similar in different chromosomes within the St genome. However, the repetitive sequence distributions are different within the Js genome, within a single chromosome, and among different genomes in Th . intermedium . Our results suggested that chromosome painting could be feasible in some plants and useful in detecting chromosome variation and repetitive sequence distribution in different genomes of polyploidy plants, which is helpful for understanding the evolution of different genomes in polyploid plants.  相似文献   

7.
The wheat-Thinopyrum intermedium addition lines Z1,Z2 contain a pair of Th. intermedium chromosomes 2Ai-2 carrying the gene with resistance to barley yellow dwarf virus (BYDV). Genomic in situ hybridization (GISH) was used to analyze the chromosome constitution of Z1,Z2 by using genomic DNA probes from Th. intermedium and Pseudoroegneria strigosa. The results showed that the chromosome constitution of either Z1 or Z2 composes of 42 wheat chromosomes and two Th. intermedium chromosomes (2Ai-2). The 2Ai-2 chromosome is St-E intercalary translocation, in which the E genomic chromosome segment translocated into the middle region of the long arm of chromosome belonging to St genome. With the genomic DNA probe of Ps. strigosa, the GISH pattern specific to the 2Ai-2 chromosome may be used as a molecular cytogenetic marker. A detailed RFLP analysis on Z1, Z2 and their parents was carried out by using 12 probes on the wheat group 2 chromosomes. Twenty RFLP markers specific to the 2Ai-2 chromosome were identified. Two RAPD markers of OPR16 –350 and OPH09 -1580, specific to the 2Ai-2 chromosome, were identified from 280 RAPD primers. These molecular markers could be used to assisted-select translocation lines with small segment of the 2Ai-2 chromosome and provide tools to localize the BYDV resistance.  相似文献   

8.
小偃麦附加系Z1和Z2中外源染色体2Ai-2的结构组成@张增燕$中国农业科学院作物育种栽培研究所!北京100081@辛志勇$中国农业科学院作物育种栽培研究所!北京100081@陈孝$中国农业科学院作物育种栽培研究所!北京100081小偃麦;;附加系;;染色体  相似文献   

9.
 Wheat streak mosaic virus (WSMV), vectored by the wheat curl mite (WCM), is one of the most important viral diseases of wheat (Triticum aestivum) in the world. Genetic resistance to WSMV and the WCM does not exist in wheat. Resistance to WSMV and the WCM was evaluated in five different partial amphiploids namely Agrotana, OK7211542, ORRPX, Zhong 5 and TAF 46, which were derived from hybrids of wheat with decaploid Thinopyrum ponticum or with hexaploid Th. intermedium. Agrotana was shown to be immune to WSMV and the WCM; the other four partial amphiploids were susceptible to the WCM. Genomic in situ hybridization (GISH) using genomic DNA probes from Th. elongatum (EE, 2n=14), Th. bessarabicum (JJ, 2n=14), Pseudoroegneria strigosa (SS, 2n=14) and T. aestivum (AABBDD, 2n=42) demonstrated that three of the partial amphiploids, Agrotana, OK7211542 and ORRPX, have almost identical alien genome constitutions: all have 16 alien chromosomes, with 8 chromosomes being closely related to the Js genome and 8 chromosomes belonging to the E or J genomes and no evidence of any S-genome chromosomes. GISH confirmed that the alien genomes of Agrotana and OK7211542, like ORRPX, were all derived from Th. ponticum, and not from Th. intermedium. However, in contrast to Agrotana, ORRPX and OK7211542 were susceptible to the WCM and WSMV. The partial amphiploid Zhong 5 had a reconstituted alien genome composed of 4 S-and 4 Js-genome chromosomes of Th. intermedium with 6 translocated chromosomes between the S and Js genomes. This line was highly resistant to WSMV, but was susceptible to the WCM. TAF 46, which contained a synthetic genome consisting of 3 pairs of S-genome chromosomes and 4 pairs of E- or J-genome chromosomes in addition to the 21 pairs of wheat chromosomes, was susceptible to the WCM, but moderately resistant to WSMV. Agrotana offers great potential for transferring WSMV and WCM resistance into wheat. Received: 27 January 1998 / Accepted: 10 February 1998  相似文献   

10.
Zhong 5 is a partial amphiploid (2n = 56) between Triticum aestivum (2n = 42) and Thinopyrum intermedium (2n = 42) carrying all the chromosomes of wheat and seven pairs of chromosomes from Th. intermedium. Following further backcrossing to wheat, six independent stable 2n = 44 lines were obtained representing 4 disomic chromosome addition lines. One chromosome confers barley yellow dwarf virus (BYDV) resistance, whereas two other chromosomes carry leaf and stem rust resistance; one of the latter also confers stripe rust resistance. Using RFLP and isozyme markers we have shown that the extra chromosome in the Zhong 5-derived BYDV resistant disomic addition lines (Z1, Z2, or Z6) belongs to the homoeologous group 2. It therefore carries a different locus to the BYDV resistant group 7 addition, L1, described previously. The leaf, stem, and stripe rust resistant line (Z4) carries an added group 7 chromosome. The line Z3 has neither BYDV nor rust resistance, is not a group 2 or group 7 addition, and is probably a group 1 addition. The line Z5 is leaf and stem rust resistant, is not stripe rust resistant, and its homoeology remains unknown.  相似文献   

11.
The wheat line H960642 is a homozygous wheat-Thinopyrum intermedium translocation line with resistance to BYDV by genomicin situ hybridization (GISH) and RFLP analysis. The genomic DNA ofTh. intermedium was used as a probe, and common wheat genomic DNA as a blocking in GISH experiment. The results showed that the chromosome segments ofTh. intermedium were transferred to the distal end of a pair of wheat chromosomes. RFLP analysis indicated that the translocation line H960642 is a T7DS-7DL-7XL translocation by using 8 probes mapped on the homoeologous group 7 in wheat. The translocation breakpoint is located between Xpsr680 and Xpsr965 about 90–99 cM from the centromere. The RFLP markers psr680 and psr687 were closely linked with the BYDV resistance gene. The gene is located on the distal end of 7XL around Xpsr680 and Xpsr687.  相似文献   

12.
The wheat line H960642 is a homozygous wheat-Thinopyrum intermedium translocation line with resistance to BYDV by genomicin situ hybridization (GISH) and RFLP analysis. The genomic DNA ofTh. intermedium was used as a probe, and common wheat genomic DNA as a blocking in GISH experiment. The results showed that the chromosome segments ofTh. intermedium were transferred to the distal end of a pair of wheat chromosomes. RFLP analysis indicated that the translocation line H960642 is a T7DS-7DL-7XL translocation by using 8 probes mapped on the homoeologous group 7 in wheat. The translocation breakpoint is located between Xpsr680 and Xpsr965 about 90–99 cM from the centromere. The RFLP markers psr680 and psr687 were closely linked with the BYDV resistance gene. The gene is located on the distal end of 7XL around Xpsr680 and Xpsr687. Project supported by the 863 program and the National Natural Science Foundation of China (Grant No. 39680027).  相似文献   

13.
Thinopyrum intermedium is a useful source of resistance genes for Barley Yellow Dwarf Virus (BYDV), one of the most damaging wheat diseases. In this study, wheat/Th. intermedium translocation lines with a BYDV resistance gene were developed using the Th. intermedium 7Ai-1 chromosome. Genomic in situ hybridization (GISH), using a Th. intermedium total genomic DNA probe, enabled detection of 7Ai-1-derived small chro-matins containing a BYDV resistance gene, which were translocated onto the end of wheat chromosomes in the lines Y95011 and Y960843. Random amplified polymorphic DNA (RAPD) analyses using 120 random 10-mer primers were conducted to compare the BYDV-resistant translocation lines with susceptible lines. Two primers amplified the DNA fragments specific to the resistant line that would be useful as molecular markers to identify 7Ai-1-derived BYDV resistance chromatin in the wheat genome. Additionally, the isolated Th. intermedium-specific retrotransposon-like sequence pTi28 can be used to identify Th. intermedium chromatin transferred to the wheat genome.  相似文献   

14.
15.
 Genomic in situ hybridization (GISH) was used to distinguish autosyndetic from allosyndetic pairing in the hybrids of Thinopyrum intermedium and Th. ponticum with Triticum aestivum cv ‘Chinese Spring’ (CS). All hybrids showed high autosyndetic pairing frequencies among wheat chromosomes and among Thinopyrum chromosomes. The high autosyndetic pairing frequencies among wheat chromosomes in both hybrids suggested that Th. intermedium and Th. ponticum carry promoters for homoeologous chromosome pairing. The higher frequencies of autosyndetic pairing among Thinopyrum chromosomes than among wheat chromosomes in both hybrids indicated that the relationships among the three genomes of Th. intermedium and among the five genomes of Th. ponticum are closer than those among the three genomes of T. aestivum. Received: 19 September 1996 / Accepted: 18 April 1997  相似文献   

16.
Stripe rust (caused by Puccinia striiformis) occurs annually in most wheat-growing areas of the world. Thinopyrum ponticum has provided novel rust resistance genes to protect wheat from this fungal disease. Wheat – Th. ponticum partial amphiploid line 7430 and a substitution line X005 developed from crosses between wheat and 7430 were resistant to stripe rust isolates from China. Genomic in situ hybridization (GISH) analysis using Pseudoroegneria spicata genomic DNA as a probe demonstrated that the partial amphiploid line 7430 contained ten Js and six J genome chromosomes, and line X005 had a pair of Js-chromosomes. Giemsa-C banding further revealed that both lines 7430 and X005 were absent of wheat chromosomes 6B. The EST based PCR confirmed that the introduced Js chromosomes belonging to linkage group 6, indicating that line X005 was a 6Js/6B substitution line. Both resistance observation and sequence characterized amplified region (SCAR) markers displayed that the introduced chromosomes 6Js were responsible for the stripe rust resistances. Therefore, lines 7430 and X005 can be used as a donor in wheat breeding for stripe rust resistance.  相似文献   

17.
Summary C-banded karyotypes of Agropyron intermedium (2n=6x=42, E1E2X), a partial amphiploid Triticum aestivumAg. intermedium (2n=8x=56, TAF46), and six derived chromosome addition lines, were analyzed. In Ag. intermedium, diagnostic C-bands were present on 14 pairs of chromosomes, designated from A to N, while the remaining seven pairs, designated O to U, either lacked, or had only faint, C-bands and were not always identified unambiguously. All seven Ag. intermedium chromosome pairs of the partial amphiploid TAF46, and the added Ag. intermedium chromosomes present in the six derived addition lines, were identified by their characteristic C-banding patterns. Chromosome morphology and banding patterns were similar to those of the corresponding chromosomes present in the parent Ag. intermedium accession, suggesting that these chromosomes were not structurally rearranged. In-situ hybridization, using a 18s.265s rDNA probe, showed that the Ag. intermedium chromosomes 1Ai-1 and 5Ai-l present in the addition lines L3 and L5 were carrying actively transcribed nucleolus organizer regions. The results are discussed with respect to the genomic relationships of these chromosomes.Contribution no. 91-561-J from the Wheat Genetics Resource Center and Kansas Agricultural Experiment Station, Kansas State University, Manhatten, USA  相似文献   

18.
Intergeneric hybrids (ABDJJsS genomes) were made between Triticum aestivum cv. Chinese Spring (CS) and Thinopyrum intermedium. Genomic in situ hybridization (GISH) using genomic DNA probes from Pseudoroegneria libanotica (Hackel) D.R. Dewey (genome S, 2n = 14) was used to study chromosome pairing among J, Js, S and wheat ABD genomes in the hybrids. It was shown that in the hexaploid (ABDJJsS) hybrids, high pairing occurred among wheat chromosomes and among Thinopyrum chromosomes. A closer relationship was observed among the three genomes of Th. intermedium than among the three genomes of T. aestivum. It was further discerned that S genome chromosomes paired with J- and Js-genome chromosomes at a high frequency. The frequency of heterologous pairing between S and J or S and Js chromosomes was higher than those between J and Js chromosomes, indicating that the S-genome was more closely related with these two genomes. Our results provided direct molecular cytogenetic evidence for the hypothesis that S-genome chromosomes are genetically similar to the J-genome chromosomes and, therefore, genetic exchange between these genomes is possible. The discovery of a close relationship among S, J and Js genomes provides valuable markers for molecular cytogenetic analyses using S-genomic DNA probes in monitoring the transfer of useful traits from Thinopyrum species into wheat. Received: 23 August 2000 / Accepted: 5 September 2000  相似文献   

19.
Restriction fragment length polymorphism (RFLP) analysis and multicolor genomic in situ hybridization (GISH) are useful tools to precisely characterize genetic stocks derived from crosses of wheat (Triticum aestivum) with Thinopyrum intermedium and Thinopyrum elongatum. The wheat x Th. intermedium derived stocks designated Z1, Z2, Z3, Z4, Z5, and Z6 were initially screened by multicolor GISH using Aegilops speltoides genomic DNA for blocking and various combinations of genomic DNA from Th. intermedium, Triticum urartu, and Aegilops tauschii for probes. The probing (GISH) results indicated that lines Z1 and Z3 were alien disomic addition lines with chromosome numbers of 2n = 44. Z2 was a substitution line in which chromosome 2D was substituted by a pair of Th. intermedium chromosomes; this was confirmed by RFLP and muticolour GISH. Z4 (2n = 44) contained two pairs of wheat--Th. intermedium translocated chromosomes; one pair involved A-genome chromosomes, the other involved D- and A- genome chromosomes. Z5 (2n = 44) contained one pair of wheat--Th. intermedium translocated chromosomes involving the D- and A-genome chromosomes of wheat. Z6 (2n = 44) contained one pair of chromosomes derived from Th. intermedium plus another pair of translocated chromosomes involving B-genome chromosomes of wheat Line Z2 was of special interest because it has some resistance to infection by Fusarium graminearum.  相似文献   

20.
Summary The Agropyron intermedium chromosome 7Ai #2 is the source of the leaf rust resistance gene Lr38 which was transferred to wheat by irradiation. The chromosomal constitutions of eight radiation-induced rust-resistant wheat-Agropyron intermedium derivatives were analyzed by C-banding and genomic in-situ hybridization (GISH). Five lines were identified as wheat Ag. intermedium chromosome translocation lines with the translocation chromosomes T2AS·2AL-7Ai#2L, T5AL · 5AS-7Ai # 2L, T1DS · 1DL-7Ai # 2L, T3DL · 3DS-7Ai#2L, and T6DS · 6DL-7Ai#2L. The sizes of the 7Ai#2L segments in mitotic metaphases of these translocations are 2.42 m, 4.20 m, 2.55 m, 2.78 m, and 4.19 m, respectively. One line was identified as a wheat-Ag. intermedium chromosome addition line. The added Ag. intermedium chromosome in this line is different from 7Ai # 2. This line has resistance to leaf rust and stem rust. Based on the rust reactions, and the C-banding and GISH results, the remaining two lines do not contain any Ag. intermedium-derived chromatin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号