首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetics of neural cell adhesion molecule (NCAM) binding to heparin were studied in a heparin-Sepharose-based solid-phase binding assay. The observed binding is time dependent and saturable. A binding constant of 5.2 +/- 1.4 X 10(-8) M is observed for binding of newborn rat NCAM to heparin. This is approximately 25 times lower than the binding constant determined for newborn rat NCAM homophilic binding. Both Scatchard and Hill plot analyses suggest the presence of only one binding site. Fab' fragments of antibodies to rat NCAM significantly inhibit binding, a result indicating that a specific site on NCAM is involved in binding to heparin. The binding is inhibited by heparin (IC50, approximately 5 micrograms/ml), whereas chondroitin sulfate is a less potent inhibitor (IC50, approximately 15 micrograms/ml).  相似文献   

2.
Binding properties of detergent-solubilized NCAM   总被引:3,自引:3,他引:0       下载免费PDF全文
An assay has been designed for the identification of NCAM-binding proteins present in an NP-40 detergent extract of brain membranes. This method, which is capable of analyzing both heterophilic and homophilic interactions, uses species-specific antibodies against NCAM in combination with radioiodination, so that after unlabeled chicken and iodinated frog brain membrane proteins were allowed to interact, the chicken NCAM could be specifically isolated by immunoaffinity adsorption. The radiolabeled frog proteins coisolated with chicken NCAM were then characterized by one- and two-dimensional gel electrophoresis in combination with immunoblotting. The only detectable NCAM-binding proteins were identified as the 140- and 180-kD forms of NCAM. The presence and absence of polysialic acid on NCAM did not change the amount or nature of the frog proteins immunopurified under these conditions. As an alternative for detecting heterophilic ligands, a simplified immunoprecipitation method was employed using either iodine or sulfate radiolabels. Again under these conditions only NCAM was detected. These results are consistent with the hypothesis that the major binding protein for NCAM is NCAM itself, and suggest that differences in polysialic acid content do not directly alter the properties of NCAM's homophilic binding site.  相似文献   

3.
The second Ig module (IgII) of the neural cell adhesion molecule (NCAM) is known to bind to the first Ig module (IgI) of NCAM (so-called homophilic binding) and to interact with heparan sulfate and chondroitin sulfate glycoconjugates. We here show by NMR that the heparin and chondroitin sulfate-binding sites (HBS and CBS, respectively) in IgII coincide, and that this site overlaps with the homophilic binding site. Using NMR and surface plasmon resonance (SPR) analyses we demonstrate that interaction between IgII and heparin indeed interferes with the homophilic interaction between IgI and IgII. Accordingly, we show that treatment of cerebellar granule neurons (CGNs) with heparin inhibits NCAM-mediated outgrowth. In contrast, treatment with heparinase III or chondroitinase ABC abrogates NCAM-mediated neurite outgrowth in CGNs emphasizing the importance of the presence of heparan/chondroitin sulfates for proper NCAM function. Finally, a peptide encompassing HBS in IgII, termed the heparin-binding peptide (HBP), is shown to promote neurite outgrowth in CGNs. These observations indicate that neuronal differentiation induced by homophilic NCAM interaction is modulated by interactions with heparan/chondroitin sulfates.  相似文献   

4.
The neural cell adhesion molecule NCAM is capable of mediating cell-cell adhesion via homophilic interactions. In this study, three strategies have been combined to identify regions of NCAM that participate directly in NCAM-NCAM binding: analysis of domain deletion mutations, mapping of epitopes of monoclonal antibodies, and use of synthetic peptides to inhibit NCAM activity. Studies on L cells transfected with NCAM mutant cDNAs using cell aggregation and NCAM-covasphere binding assays indicate that the third immunoglobulin-like domain is involved in homophilic binding. The epitopes of four monoclonal antibodies that have been previously shown to affect cell-cell adhesion mediated by NCAM were also mapped to domain 3. Overlapping hexapeptides were synthesized on plastic pins and assayed for binding with these monoclonal antibodies. One of them (PP) reacted specifically with the sequence KYSFNY. Synthetic oligopeptides containing the PP epitope were potent and specific inhibitors of NCAM binding activity. A substratum containing immobilized peptide conjugates also exhibited adhesiveness for neural retinal cells. Cell attachment was specifically inhibited by peptides that contained the PP-epitope and by anti-NCAM univalent antibodies. The shortest active peptide has the sequence KYSFNYDGSE, suggesting that this site is directly involved in NCAM homophilic interaction.  相似文献   

5.
NCAM plays a key role in neural development and plasticity-mediating cell adhesion and differentiation mainly through homophilic binding. Until recently, attempts to modulate neuronal differentiation and plasticity through NCAM have been impeded by the absence of small synthetic agonists mimicking homophilic interactions of NCAM. We show here that a peptide, P2, corresponding to a 12-amino acid sequence localized in the FG loop of the second Ig module of NCAM, binds to the first Ig module, which is the natural binding partner of the second Ig module, with an apparent K(d) of 4.7 +/- 0.9 x 10(-6) m. P2 inhibits cell aggregation and induces neurite outgrowth from hippocampal neurons, maximal neuritogenic effect being obtained at a concentration of 0.8 microm. The neuritogenic effect was inhibited by preincubation of P2 with the recombinant NCAM-IgI. Both the length of P2 and the basic amino acid residues at the N and C termini are important for its neuritogenic activity. Treatment of hippocampal cultures with P2 results in induction of phosphorylation of the mitogen-activated protein kinases ERK1 and ERK2. Thus, P2 is a potent mimetic of NCAM, and therefore, an attractive compound for the development of drugs for the treatment of neurodegenerative diseases.  相似文献   

6.
Binding studies of human plasma gelsolin with ATP were done by equilibrium dialysis. Analysis of the binding data showed that plasma gelsolin had one class of ATP binding site with Kd = 2.8 x 10(-7) M, which saturated at an ATP/gelsolin ratio of 0.6. The bioluminescent assay for ATP with luciferin and firefly luciferase confirmed that the protein contained a nucleotide as ATP.  相似文献   

7.
The binding of [(3)H]tyrosyl-PBAN28-33NH(2) to pheromone gland membranes of the moth Heliothis peltigera was investigated. The study describes the development of a pheromone biosynthesis-activating neuropeptide (PBAN) radioreceptor assay and demonstrates the presence of a putative PBAN binding site on the pheromone gland. It also describes synthesis of a radioligand and optimization of binding conditions with respect to membrane preparation, number of gland equivalents, kinetics of ligand binding and composition of the binding solution. Binding was found to be optimal when membranes were freshly prepared from frozen glands, incubated at a concentration of one gland equivalent per reaction tube in the presence of 10 mM HCO(3)(-) ions. Equilibrium of ligand binding was obtained after 20 min. Presence of other components such as NaCl, KCl or SH reagents did not have any effect on binding. Binding was found to be saturable, with a K(d) of 5.73 +/- 1.05 x 10(-6) M and a Bmax of 1.85 +/- 0.22 nmol/mg protein. Binding was effectively displaced by unlabeled PBAN1-33NH(2) and PBAN28-33NuEta(2) with a K(i) of 4.3 +/- 1.1 x 10(-6) M and 4.9 +/- 2.6 x 10(-6) M, respectively.  相似文献   

8.
The neural cell adhesion molecule (NCAM) plays a key role in neural development, regeneration, and learning. In this study, we identified a synthetic peptide-ligand of the NCAM Ig1 module by combinatorial chemistry and showed it could modulate NCAM-mediated cell adhesion and signal transduction with high potency. In cultures of dissociated neurons, this peptide, termed C3, stimulated neurite outgrowth by activating a signaling pathway identical to that activated by homophilic NCAM binding. A similar effect was shown for the NCAM Ig2 module, the endogenous ligand of NCAM Ig1. By nuclear magnetic resonance spectroscopy, the C3 binding site in the NCAM Ig1 module was mapped and shown to be different from the binding site of the NCAM Ig2 module. The C3 peptide may prove useful as a lead in development of therapies for neurodegenerative disorders, and the C3 binding site of NCAM Ig1 may represent a target for discovery of nonpeptide drugs.  相似文献   

9.
The 1,4-dihydropyridine Ca2+ channel activator, (-) [3H]Bay K 8644, binds to cardiac membranes and polarized [5 mM K+] and depolarized [50 mM K+] cardiac cells. Binding to microsomal membranes at 25 degrees C indicates a single set of binding sites, KD = 2.9 x 10(-9) M and a site density, 337 fmoles/mg protein, not different from that measured by antagonist 1,4-dihydropyridines. Binding to neonatal rat myocytes at 37 degrees C was independent of membrane potential with a KD value of 5 x 10(-8)M and a site density, 63 fmoles/mg protein, not significantly different from that measured by PN 200 110. These results indicate that 1,4-dihydropyridine activators and antagonists label the same number of binding sites in cardiac tissue, but that activator binding to intact myocytes is voltage-independent.  相似文献   

10.
Binding of zinc to Mung Bean Nuclease was investigated by anodic stripping voltammetry and cyclic voltammetry. These methods rely on the direct monitoring of the oxidation current of zinc in the absence and presence of Mung Bean Nuclease. Titration curves of Zn(2+) with the enzyme were obtained in concentrations ranging from 1.08x10(-9) to 1.07x10(-8) M and 1.16x10(-8) to 1.04x10(-7) M. The acquired data were used to calculate the dissociation constant and the stoichiometry of the complex. The binding sites of zinc in the Mung Bean Nuclease molecule were investigated using cyclic voltammetry. Two types of binding sites for zinc were identified and were attributed to a mononuclear exposed zinc-binding site with catalytic function and to an inaccessible binuclear zinc-binding site with structural functions.  相似文献   

11.
The neural cell adhesion molecule (NCAM) plays a pivotal role in the development of the nervous system, promoting neuronal differentiation via homophilic (NCAM-NCAM) as well as heterophilic (NCAM-fibroblast growth factor receptor [FGFR]) interactions. NCAM-induced intracellular signaling has been shown to affect and be dependent on the cytoplasmic Ca2+ concentration ([Ca2+]i). However, the molecular basis of this remains unclear. In this study, we determined [Ca2+]i regulating mechanisms involved in intracellular signaling induced by NCAM. To mimic the effect of homophilic NCAM interaction on [Ca2+]i in vitro, we used a peptide derived from a homophilic binding site of NCAM, termed P2, which triggers signaling cascades similar to those activated by NCAM-NCAM interaction. We found that P2 increased [Ca2+]i in primary hippocampal neurons. This effect depended on two signaling pathways. The first pathway was associated with activation of FGFR, phospholipase Cgamma, and production of diacylglycerol, and the second pathway involved Src-family kinases. Moreover, NCAM-mediated Ca2+ entry required activation of nonselective cation and T-type voltage-gated Ca2+ channels. These channels, together with the Src-family kinases, were also involved in neuritogenesis induced by physiological, homophilic NCAM interactions. Thus, unanticipated mechanisms of Ca2+ homeostasis are shown to be activated by NCAM and to contribute to neuronal differentiation.  相似文献   

12.
The I domain of the integrin LFA-1 possesses a ligand binding interface that includes the metal ion-dependent adhesion site. Binding of the LFA-1 ligand, ICAM-1 to the metal ion-dependent adhesion site is regulated by the I domain allosteric site (IDAS). We demonstrate here that intracellular signaling leading to activation of LFA-1 binding to ICAM-1 is regulated at the IDAS. Inhibitory mutations in or proximal to the IDAS are dominant to cytoplasmic signals that activate binding to ICAM-1. In addition, mutational activation at the IDAS greatly increases the binding of lymphocyte-expressed LFA-1 to ICAM-1 in response to PMA, but does not result in constitutive binding. Binding of a novel CD18 activation epitope mAb to LFA-1 in response to soluble ICAM-1 binding was also blocked by inhibitory and was enhanced by activating IDAS mutations. Surface plasmon resonance using soluble wild-type LFA-1 and an IDAS mutant of LFA-1 indicate that the IDAS can regulate a 6-fold change in the K(d) of ICAM-1 binding. The K(d) of wild-type LFA-1 (1.2 x 10(-1) s(-1)) differed with that of the activating IDAS mutant (1.9 x 10(-2) s(-1)), but their K(a) values were identical (2.2 x 10(5) M(-1)s(-1)). We propose that IDAS regulates the binding of LFA-1 to ICAM-1 activated by intracellular signals. IDAS can control the affinity state of LFA-1 with concomitant I domain and CD18 conformational changes.  相似文献   

13.
Some effects of calcitonin (CT) can also be produced by calcitonin gene-related peptide (CGRP), an alternative product of the calcitonin gene. This might be mediated by interaction of CGRP at the CT-receptor site. The human breast cancer cell line T47D possesses well characterized CT-receptors (KD = 2.3 x 10(-10) M for 125I salmon CT). 50% inhibition of 125I-sCT binding was achieved with 10(-9) M sCT, 5 x 10(-6) M rat CGRP and 10(-5) M human CGRP. Half maximal cAMP production in T47D cells was seen with 6 x 10(-10) M sCT, 5 x 10(-6) M rCGRP and 10(-5) M hCGRP. Binding and displacement capacity as well as the biological activity of CT and CGRP seems to correlate well. These findings suggest that CGRP in pharmacological doses acts via the CT-receptor. This could be explained by the homology and conformational similarities between CT and CGRP.  相似文献   

14.
Characterization of azadirachtin binding to Sf9 nuclei in vitro   总被引:1,自引:0,他引:1  
[22,23-(3)H(2)]dihydroazadirachtin was incorporated by Sf9 cells in culture and was bound specifically to the nuclear fraction. The observed association constant of the binding of the radioligand to a purified nuclear fraction was determined to be 0.037 +/- 0.008 min(-1) using a one-phase exponential association equation, and binding appeared to be to a single population of sites. The binding was essentially irreversible, and the dissociation constant was estimated to be 0.00065 +/- 0.00013 min(-1). An association rate constant of 7.3 x 10(6) M(-1) min(-1) was calculated from these data. Binding was saturable, and the receptor number and affinity were determined as B(max) = 23.87 +/- 1.15 pmol/mg protein, K(d) = 18.1 +/- 2.1 nM. The order of potency of semisynthetic azadirachtin analogues for competition for the binding site was as follows (IC(50) in parentheses): azadirachtin (1.55 x 10(-8) M) > dihydroazadirachtin (3.16 x 10(-8) M) > dansyl dihydroazadirachtin (7.40 x 10(-8) M) > DNP-azadirachtin (7.50 x 10(-8) M) > biotin dihydroazadirachtin (1.27 x 10(-7) M) > 11-methoxy 22,23-dihydroazadirachtin (6.67 x 10(-7) M). [Originally published in Volume 34, Archives of Insect Biochemistry and Physiology, 34:461-473 (1997).] Copyright 1997 Wiley-Liss, Inc.  相似文献   

15.
A radioligand assay was designed to detect and compare specific hemin binding by the periodontal anaerobic black-pigmenting bacteria (BPB) Porphyromonas gingivalis and Prevotella intermedia. The assay included physiological concentrations of the hemin-binding protein rabbit serum albumin (RSA) to prevent self-aggregation and nonspecific interaction of hemin with cellular components. Under these conditions, heme-starved P. intermedia cells (two strains) expressed a single binding site species (4,100 to 4,600 sites/cell) with a dissociation constant (Kd) of 1.0 x 10(-9) M. Heme-starved P. gingivalis cells (two strains) expressed two binding site species; the higher-affinity site (1,000 to 1,500 sites/cell) displayed a Kd of between 3.6 x 10(-11) and 9.6 x 10(-11) M, whereas the estimated Kd of the lower-affinity site (1.9 x 10(5) to 6.3 x 10(5) sites/cell) ranged between 2.6 x 10(-7) and 6.5 x 10(-8) M. Specific binding was greatly diminished in heme-replete cells of either BPB species and was not displayed by iron-replete Escherichia coli cells, which bound as much hemin in the absence of RSA as did P. intermedia. Hemin binding by BPB was reduced following treatment with protein-modifying agents (heat, pronase, and N-bromosuccinimide) and was blocked by protoporphyrin IX and hemoglobin but not by Congo red. Hemopexin also inhibited bacterial hemin binding. These findings indicate that both P. gingivalis and P. intermedia express heme-repressible proteinaceous hemin-binding sites with affinities intermediate between those of serum albumin and hemopexin. P. gingivalis exhibited a 10-fold-greater specific binding affinity and greater heme storage capacity than did P. intermedia, suggesting that the former would be ecologically advantaged with respect to heme acquisition.  相似文献   

16.
Calcium binding to carbohydrate binding module CBM4-2 of xylanase 10A (Xyn10A) from Rhodothermus marinus was explored using calorimetry, NMR, fluorescence, and absorbance spectroscopy. CBM4-2 binds two calcium ions, one with moderate affinity and one with extremely high affinity. The moderate-affinity site has an association constant of (1.3 +/- 0.3) x 10(5) M(-1) and a binding enthalpy DeltaH(a) of -9.3 +/- 0.4 kJ x mol(-1), while the high-affinity site has an association constant of approximately 10(10) M(-1) and a binding enthalpy DeltaH(a) of -40.5 +/- 0.5 kJ x mol(-1). The locations of the binding sites have been identified by NMR and structural homology, and were verified by site-directed mutagenesis. The high-affinity site consists of the side chains of E11 and D160 and backbone carbonyls of E52 and K55, while the moderate-affinity site comprises the side chain of D29 and backbone carbonyls of L21, A22, V25, and W28. The high-affinity site is in a position analogous to the calcium site in CBM4 structures and in a recent CBM22 structure. Binding of calcium increases the unfolding temperature of the protein (T(m)) by approximately 23 degrees C at pH 7.5. No correlation between binding affinity and T(m) change was noted, as each of the two calcium ions contributes almost equally to the increase in unfolding temperature.  相似文献   

17.
M Hugues  M Crane  S Hakki  P O'Hanley  S A Waldman 《Biochemistry》1991,30(44):10738-10745
Novel high-affinity, low-capacity binding sites in intestinal membranes for the heat-stable toxin produced by Escherichia coli have been defined. The appearance of these sites is observed in the presence of physiological concentrations of NaCl in binding reactions. Scatchard analyses of equilibrium binding in the absence of NaCl demonstrated a single class of binding sites with KD = 1.9 x 10(-9) M and Bmax = 0.75 pmol/mg of protein. In contrast, similar experiments in the presence of NaCl demonstrated, in addition to the previously described low-affinity site, a high-affinity site with a KD of 2.1 x 10(-11) M and a Bmax of 73 fmol/mg of protein. Confirmation of the presence of high- and low-affinity sites was obtained in studies of the kinetics of ST binding. These sites exhibited similar dissociation but markedly different association kinetics. Determination of the association and dissociation constants permitted calculation of the KD's for the high- and low-affinity sites, which were 1.15 x 10(-11) M and 1.89 x 10(-9) M, respectively. These data agree closely with those obtained in studies of equilibrium binding. Furthermore, similar values for the KD's of these sites were obtained in experiments of competitive displacement of labeled ST, confirming the presence of two receptors for this toxin. Binding of ST to high-affinity sites is completely reversible and does not appear to be coupled to activation of particulate guanylate cyclase. In contrast, binding of ST to low-affinity sites appears to be partially reversible and may be coupled to activation of guanylate cyclase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The neural cell adhesion molecule, NCAM, mediates Ca(2+)-independent cell-cell and cell-substratum adhesion via homophilic (NCAM-NCAM) and heterophilic (NCAM-non-NCAM molecules) binding. NCAM plays a key role in neural development, regeneration, and synaptic plasticity, including learning and memory consolidation. The crystal structure of a fragment comprising the three N-terminal Ig modules of rat NCAM has been determined to 2.0 A resolution. Based on crystallographic data and biological experiments we present a novel model for NCAM homophilic binding. The Ig1 and Ig2 modules mediate dimerization of NCAM molecules situated on the same cell surface (cis interactions), whereas the Ig3 module mediates interactions between NCAM molecules expressed on the surface of opposing cells (trans interactions) through simultaneous binding to the Ig1 and Ig2 modules. This arrangement results in two perpendicular zippers forming a double zipper-like NCAM adhesion complex.  相似文献   

19.
The neural cell adhesion molecule (NCAM) is pivotal in neural development, regeneration, and learning. Here we characterize two peptides, termed P1-B and P2, derived from the homophilic binding sites in the first two N-terminal immunoglobulin (Ig) modules of NCAM, with regard to their effects on neurite extension and adhesion. To evaluate how interference of these mimetic peptides with NCAM homophilic interactions in cis influences NCAM binding in trans, we employed a coculture system in which PC12-E2 cells were grown on monolayers of fibroblasts with or without NCAM expression and the rate of neurite outgrowth subsequently was analyzed. P2, but not P1-B, induced neurite outgrowth in the absence of NCAM binding in trans. When PC12-E2 cells were grown on monolayers of NCAM-expressing fibroblasts, the effect of both P1-B and P2 on neurite outgrowth was dependent on peptide concentrations. P1-B and P2 acted as conventional antagonists, agonists, and reverse agonists of NCAM at low, intermediate, and high peptide concentrations, respectively. The demonstrated in vitro triple pharmacological effect of mimetic peptides interfering with the NCAM homophilic cis binding will be valuable for the understanding of the actions of these mimetics in vivo.  相似文献   

20.
A competitive binding assay for biotin, biocytin, and desthiobiotin utilizing a genetically engineered enzyme-ligand conjugate is described herein. This assay is unique in that the enzyme-ligand conjugate consists of the streptavidin binding peptide Strep-tag II, which mimics the binding of biotin to streptavidin, rather than biotin itself. This allows for the construction of a well-defined, oligosubstituted enzyme-ligand conjugate for which the site of attachment of the ligand on the enzyme is known precisely. The assay has detection limits of 5 x 10(-8) M for biotin, 1 x 10(-7) M for biocytin, and 2 x 10(-6) M for desthiobiotin, and it serves as a model system in that it demonstrates the feasibility of using enzyme-ligand conjugates in which a peptide mimic of the analyte ligand is genetically fused to the enzyme. This avoids the problems associated with covalent attachment of the ligand to the enzyme, such as multiple substitution of the ligand and variability of the site of attachment. To our knowledge, this is the first example of using an enzyme-peptide mimic conjugate to detect a nonpeptide analyte.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号