首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 460 毫秒
1.
1. Local assemblage structure, from a deterministic perspective, is presumably dictated by the regional species pool as well as regulated by local factors. We examined the relationships of the regional species pool and local hydrological characteristics to local species richness of North American freshwater fishes using data sets collected during the National Water Quality Assessment program conducted by the United States Geological Survey. 2. We predicted that local species richness is ultimately constrained by the composition of the regional species pool and further associated with local hydrological factors. Moreover, we predicted that variation in local species richness within major families can be explained by different combinations of hydrological characteristics that represent lineage‐specific responses to the environment. 3. Daily discharge and regional and local species richness data were assembled from 41 stream localities across the United States. Multiple stepwise regressions were conducted to predict local species richness, based on regional species richness, mean discharge and hydrological characteristics quantified by nine variables characterising flow variability. Species richness at each site was calculated for the entire assemblage as well as within the four most species‐rich families in the data set (Catostomidae, Centrarchidae, Cyprinidae and Percidae). 4. Local species richness was best predicted by a combination of regional species richness and discharge magnitude when all species were considered. Regional species richness was a significant explanatory variable of local species richness for three of four families (Catostomidae, Centrarchidae, Cyprinidae), but not for Percidae. Local richness in Centrarchidae and Cyprinidae was positively correlated with temporal flow variability as well as high and low flow duration, respectively, while richness in Catostomidae and Percidae tended to be associated with discharge volume. In addition, local species richness for three of the four major families was positively correlated with species richness of the other families in the assemblage, potentially suggesting the influence of local habitat quality and heterogeneity. 5. Results suggest the importance of the combined influences of the regional species pool and local hydrological characteristics on local richness in freshwater fishes, with variation in richness within each family predicted by different characteristics of flow regimes.  相似文献   

2.
1. North‐eastern Spain is a hot spot for the introduction of alien fish species, and its native fish fauna is one of the most endangered worldwide. We used an extensive data set from 2002 to 2003 and historical information from the area to characterize fish diversity and establish conservation priorities in river catchments. 2. Diversity indices were used to characterize fish diversity at the basin scale. An index of conservation status was applied for each species, which considers the occurrence, abundance and endemicity of each taxon. We used indirect ordination methods to test the relationship among basin features and to identify those variables most correlated with each other. To identify physical, biotic and environmental characteristics that seem to make a basin particularly susceptible to invasion, we performed a step‐wise multiple regression to examine the relationship between the number of native, translocated and introduced fish species (including the original native species richness of each basin), and landscape variables. 3. Over a period of approximately 50 years, the mean range size of native fish species has decreased by 60%. The greatest decline occurred in Gasterosteus gymnurus, Anguilla anguilla and Salaria fluviatilis, for which species over 75% of the original distribution area has been lost. The species with the highest conservation index were Gasterosteus gymnurus and Salaria fluviatilis. 4. Basin area and the catchment type explained 70% of variation in native species richness, whereas the number of dams and basin area accounted for more than 80% of variation in the number of introduced species. 5. The original native species richness and the number of introduced species at basin scale were not related, and thus there was no evidence of “biotic resistance” to invasion. The restoration of natural hydrologic processes and the development of specific management tools to protect native species, such as the prioritization of areas for fish conservation and the eradication of local populations of exotic species, are required to restore native fish fauna in these catchments.  相似文献   

3.
Aim Climate change could result in an increase in species richness because large‐scale biogeography suggests that more species could be gained from equatorial regions than may be lost pole‐ward. However, the colonization of newly available habitat may lag behind the rate dictated by climatic warming if there exists of a lack of connectivity between ‘donor’ and receiving areas. The objective of this study was to compare how regional warming affected the biodiversity of marine fish in areas that differed in their connectivity in the Baltic Sea. Location North‐east Atlantic, Kattegat and Baltic Sea. Methods The total species richness and the mean species richness from scientific surveys were related to changes in temperature and salinity. Changes in the extent of the distribution of individual fish species were related to the latitudinal distribution, salinity tolerance, maximum body size and exploitation status to assess to what extent climate change and fishing impacts could explain changes in species richness in the Baltic. Results Rising temperatures in the well‐connected Kattegat correlated to an increase in the species richness of fish, due to an increase in low‐latitude species. Unexpectedly, species richness in the poorly connected Baltic Sea also increased. However, the increase seems to be related to higher salinity rather than temperature and there was no influx of low‐latitude species. Main conclusions These results do not support the hypothesis that low‐connectivity areas are less likely to see increases in species richness in response to warming. This indicates that the effect of climate change on biodiversity may be more difficult to predict in areas of low connectivity than in well‐connected areas.  相似文献   

4.
Effective conservation of freshwater biodiversity requires spatially explicit investigations of how dams and hydroclimatic alterations among climate regions may interact to drive species to extinction. We investigated how dams and hydroclimatic alterations interact with species ecological and life history traits to influence past extirpation probabilities of native freshwater fishes in the Upper and Lower Colorado River (CR), Alabama‐Coosa‐Tallapoosa (ACT), and Apalachicola‐Chattahoochee‐Flint (ACF) basins. Using long‐term discharge data for continuously gaged streams and rivers, we quantified streamflow anomalies (i.e., departure “expected” streamflow) at the sub‐basin scale over the past half‐century. Next, we related extirpation probabilities of native fishes in both regions to streamflow anomalies, river basin characteristics, species traits, and non‐native species richness using binomial logistic regression. Sub‐basin extirpations in the Southwest (= 95 Upper CR,= 130 Lower CR) were highest in lowland mainstem rivers impacted by large dams and in desert springs. Dampened flow seasonality, increased longevity (i.e., delayed reproduction), and decreased fish egg sizes (i.e., lower parental care) were related to elevated fish extirpation probability in the Southwest. Sub‐basin extirpations in the Southeast (ACT = 46, ACF = 22) were most prevalent in upland rivers, with flow dependency, greater age and length at maturity, isolation by dams, and greater distance upstream. Our results confirm that dams are an overriding driver of native fish species losses, irrespective of basin‐wide differences in native or non‐native species richness. Dams and hydrologic alterations interact with species traits to influence community disassembly, and very high extirpation risks in the Southeast are due to interactions between high dam density and species restricted ranges. Given global surges in dam building and retrofitting, increased extirpation risks should be expected unless management strategies that balance flow regulation with ecological outcomes are widely implemented.  相似文献   

5.
Prey preference of top predators and energy flow across habitat boundaries are of fundamental importance for structure and function of aquatic and terrestrial ecosystems, as they may have strong effects on production, species diversity, and food‐web stability. In lakes, littoral and pelagic food‐web compartments are typically coupled and controlled by generalist fish top predators. However, the extent and determinants of such coupling remains a topical area of ecological research and is largely unknown in oligotrophic high‐latitude lakes. We analyzed food‐web structure and resource use by a generalist top predator, the Arctic charr Salvelinus alpinus (L.), in 17 oligotrophic subarctic lakes covering a marked gradient in size (0.5–1084 km2) and fish species richness (2–13 species). We expected top predators to shift from littoral to pelagic energy sources with increasing lake size, as the availability of pelagic prey resources and the competition for littoral prey are both likely to be higher in large lakes with multispecies fish communities. We also expected top predators to occupy a higher trophic position in lakes with greater fish species richness due to potential substitution of intermediate consumers (prey fish) and increased piscivory by top predators. Based on stable carbon and nitrogen isotope analyses, the mean reliance of Arctic charr on littoral energy sources showed a significant negative relationship with lake surface area, whereas the mean trophic position of Arctic charr, reflecting the lake food‐chain length, increased with fish species richness. These results were supported by stomach contents data demonstrating a shift of Arctic charr from an invertebrate‐dominated diet to piscivory on pelagic fish. Our study highlights that, because they determine the main energy source (littoral vs. pelagic) and the trophic position of generalist top predators, ecosystem size and fish diversity are particularly important factors influencing function and structure of food webs in high‐latitude lakes.  相似文献   

6.
7.
Mosses and lichens are the dominant macrophytes of the Antarctic terrestrial ecosystem. Using occurrence data from existing databases and additional published records, we analyzed patterns of moss and lichen species diversity on the Antarctic Peninsula at both a regional scale (1°latitudinal bands) and a local scale (52 and 56 individual snow‐ and ice‐free coastal areas for mosses and lichens, respectively) to test hypothesized relationships between species diversity and environmental factors, and to identify locations whose diversity may be particularly poorly represented by existing collections and online databases. We found significant heterogeneity in sampling frequency, number of records collected, and number of species found among analysis units at the two spatial scales, and estimated species richness using projected species accumulation curves to account for potential biases stemming from sample heterogeneity. Our estimates of moss and lichen richness for the entire Antarctic Peninsula region were within 20% of the total number of known species. Area, latitude, spatial isolation, mean summer temperature, and penguin colony size were considered as potential covariates of estimated species richness. Moss richness was correlated with isolation and latitude at the local scale, while lichen richness was correlated with summer mean temperature and, for 17 sites where penguins where present with <20 000 breeding pairs, penguin colony size. At the regional scale, moss richness was correlated with temperature and latitude. Lichen richness, by contrast, was not significantly correlated with any of the variables considered at the regional scale. With the exception of temperature, which explained 91% of the variation in regional moss diversity, explained variance was very low. Our results show that patterns of moss and lichen biodiversity are highly scale‐dependent and largely unexplained by the biogeographic variables found important in other systems.  相似文献   

8.
The aim of this work was to predict local fish species richness in the Garonne river basin using three environmental variables (distance from the source, elevation and catchment area J. Commonly, patterns of fish species richness have been investigated using simple or multi-linear statistical models. Here, we used backpropagation of artificial neural networks (ANNs) to develop stochastic models of local fish diversity. Two independent data collections were used, the first one to build and test the model; the second one to validate the model. Correlation coefficients between observed values and predicted values both in the testing and the validation procedures were highly significant (r = 0.904, P< 0.001 and r = 0.822, P< 0.001, respectively J. The ANN model obtained using only three environmental variables succeeded in explaining ca 70 % of the total variation in local fish species richness. Through these findings, ANNs can be seen as a powerful predictive tool compared to traditional modelling approaches.  相似文献   

9.
1. Fish assemblages and habitats were sampled annually at fixed sites in three tributaries of the Gila River catchment over a 21‐year span that included prolonged low‐ and high‐flow periods. Model selection was used to evaluate responses of seven native fishes with variable ecological traits (four small‐bodied cyprinids, one large‐bodied cyprinid, and two large‐bodied catostomids) to mean annual discharge and predacious non‐native fishes across the three sites. We also compared habitat use and overlap of native and non‐native fishes to identify potential for negative interactions among species. 2. Assemblage structure (species abundance and richness) and recruitment of native species was strongly and primarily affected by mean annual discharge and secondarily by location and densities of non‐native predators (mainly the centrarchid Micropterus dolomieui). 3. Densities of age‐0 catostomids and small‐bodied cyprinids were positively associated with discharge, and this pattern was strongest in the tributary with the lowest densities of non‐native predators. Absence or extreme low abundance of natives during low‐flow years was most pronounced at the sites where non‐native predators were comparatively common. Densities of adults of large‐bodied native species also varied by site, but often were positively associated with densities of non‐native predators. 4. Spatially variable responses of native fish assemblages indicated that the persistence of native fishes could be jeopardized if key habitats were lost or flow regimes unnaturally altered, particularly during low‐flow conditions when recruitment of native fishes is low and predation by non‐natives is high. Large‐bodied species may be less vulnerable to multiple years of poor conditions because adults are able to avoid predation by non‐natives and thus can rely on occasional high discharge years for successful recruitment. 5. As in other arid‐land streams, native fish assemblages of the Gila River Basin continue to decline. Our results indicate that conservation requires specific knowledge and consideration of physical influences as well as life‐history attributes of native and non‐native fishes.  相似文献   

10.
1. Changes in cladoceran subfossils in the surface sediments of 54 shallow lakes were studied along a European latitude gradient (36–68°N). Multivariate methods, such as regression trees and ordination, were applied to explore the relationships between cladoceran taxa distribution and contemporary environmental variables, with special focus on the impact of climate. 2. Multivariate regression tree analysis showed distinct differences in cladoceran community structure and lake characteristics along the latitude gradient, identifying three groups: (i) northern lakes characterised by low annual mean temperature, conductivity, nutrient concentrations and fish abundance, (ii) southern, macrophyte rich, warm water lakes with high conductivity and high fish abundance and (iii) Mid‐European lakes at intermediate latitudes with intermediate conductivities, trophic state and temperatures. 3. Large‐sized, pelagic species dominated a group of seven northern lakes with low conductivity, where acid‐tolerant species were also occasionally abundant. Small‐sized, benthic‐associated species dominated a group of five warm water lakes with high conductivity. Cladoceran communities generally showed low species‐specific preferences for habitat and environmental conditions in the Mid‐European group of lakes. Taxon richness was low in the southern‐most, high‐conductivity lakes as well as in the two northern‐most sub‐arctic lakes. 4. The proportion of cladoceran resting eggs relative to body shields was high in the northern lakes, and linearly (negatively) related to both temperature and Chl a, indicating that both cold climate (short growing season) and low food availability induce high ephippia production. 5. Latitude and, implicitly, temperature were strongly correlated with conductivity and nutrient concentrations, highlighting the difficulties of disentangling a direct climate signal from indirect effects of climate, such as changes in fish community structure and human‐related impacts, when a latitude gradient is used as a climate proxy. Future studies should focus on the interrelationships between latitude and gradients in nutrient concentration and conductivity.  相似文献   

11.
We analysed the pattern of covariation of European spider species richness with various environmental variables at different scales. Four layers of perception ranging from single investigation sites to the whole European continent were selected. Species richness was determined using published data from all four scales. Correlation analyses and stepwise multiple linear regression were used to relate richness to topographic, climatic and biotic variables. Up to nine environmental variables were included in the analyses (area, latitude, elevation range, mean annual temperature, local variation in mean annual temperature, mean annual precipitation, mean July temperature, local variation in mean July temperature, plant species richness). At the local and at the continental scale, no significant correlations with surface area were found, whereas at the landscape and regional scale, surface area had a significant positive effect on species richness. Factors that were positively correlated with species richness at both broader scales were plant species richness, elevation range, and specific temperature variables (regional scale: local variation in mean annual, and mean July temperature; continental scale: mean July temperature). Latitude was significantly negatively correlated with the species richness at the continental scale. Multiple models for spider species richness data accounted for up to 77% of the total variance in spider species richness data. Furthermore, multiple models explained variation in plant species richness up to 79% through the variables mean July temperature and elevation range. We conclude that these first continental wide analyses grasp the overall pattern in spider species richness of Europe quite well, although some of the observed patterns are not directly causal. Climatic variables are expected to be among the most important direct factors, although other variables (e.g. elevation range, plant species richness) are important (surrogate) correlates of spider species richness.  相似文献   

12.
1. A 7‐year study was conducted in three hydrologically distinct sections within the highly regulated, lowland Campaspe River to investigate the influence of hydrology on temporal and spatial patterns in fish composition, abundance and recruitment. One section had 6 months, one section 2 months and one section no months of increased flow due to storage releases. The fish fauna of the less regulated, nearby Broken River served as a reference to which that of the Campaspe River was compared for the last 3 years of the study to allow insight into the relative effects of hydrology, barriers to movement and other environmental characteristics. The study included one high‐flow year, a moderate‐flow year and five low‐flow years. 2. A total of 16 fish species – 10 native and six alien – were caught in the Campaspe River, although of the native species, only three are considered to have self‐sustaining populations. The remaining species are either itinerants or a result of stocking. Alien species comprised approximately 64% of the total biomass of all fish caught. 3. Overall composition of the fish fauna did not differ significantly by year, but did by section of river. Species richness and the abundance of most of the dominant species also differed significantly by river section, but there was little inter‐annual variation in the abundance of any species, except for European perch and for common carp; the latter showing an increase in abundance following a high‐flow event during the spring of 2000 as a result of recruitment. 4. Overall faunal composition was not influenced by hydrology. However, multiple regression indicated that species richness, abundance of the dominant species and abundance of young‐of‐year (YOY) of golden perch, European perch and common carp all were influenced significantly by hydrological variables. The nature of the relationships was dependent on river section and hydrological season (‘winter’ or ‘spring/summer’). Of note was the result that the total abundance of fish and that of YOY common carp were significantly positively related to the number of spells above the threshold for movement upstream through the lower two weirs in the Campaspe River. Only one significant relationship between hydrological and fish‐related variables was found for the upper river section, whereas seven and five were found for the lower and middle sections respectively. 5. Comparisons with fish collected in the Broken River over 3 years suggest that the fauna of the Broken River is in a more natural state than that of the Campaspe River. Since the two rivers do not differ substantially in water quality, and since both contain significant weirs, which act as barriers to movement of fish, flow regulation is most likely to be the major reason for the poor state of the fauna in the Campaspe River.  相似文献   

13.
An Analysis of Fish Species Richness in Natural Lakes   总被引:1,自引:0,他引:1  
There is a growing recognition of the need to conserve biodiversity that has been conceptualised in the Convention of Biological Diversity. Maintenance of fish species richness is particularly important, because habitat degradation in inland waters continues to accelerate on a global scale. Here we develop empirical models for predicting fish species richness in natural lakes in various geographical regions of the world. In tropical lakes where fish biodiversity is richer than in temperate lakes, fish species richness can be predicted by a few variables such as lake area and altitude. Low fish species richness in most temperate lakes might be due to the effect of glaciation on colonisation and speciation of fishes. In US, Canadian and northern European lakes, lake acidification is one of the important factors influencing fish species richness. Although limnological characteristics influence fish species richness in temperate lakes, lake area and altitude have greater predictive power. This is in contrast to fish species richness in rivers, which can be reliably predicted by basin area. In the power curves, which describe the relationship between fish species richness and habitat size in lakes and rivers, the exponent is always greater in tropical regions than in temperate regions. Because fish biodiversity is greater in the tropics threats to fish biodiversity through habitat degradation are greater than those in temperate inland waters.  相似文献   

14.
Aim To determine the effect and relative importance of geographic and local environmental factors on species richness and turnover of ant assemblages in floodplain forests across the Amazon basin. Location Twenty‐six mature forest sites scattered along the entire extension of the Amazon River in Brazil. The study area encompassed nearly 18° of longitude and 3.5° of latitude. Methods Systematic collections of ants were performed at each site during the low‐water season (i.e. when forests are not inundated) using three complementary sampling methods. We used variance partitioning techniques to assess the relative effects of the spatial (latitude and longitude) and environmental (rainfall, length of the dry season and flood height) variables on ant species richness and composition. Results There was a twofold variation in the number of species per site, which was largely explained by inter‐site variations in rainfall seasonality and flooding intensity. In general, there were more species at sites located in the western part of the basin, where the dry season is less severe, or near the river estuary, where precipitation is also high and flooding is less intense. Ant community composition was also affected by environmental heterogeneity. For instance, some species only occurred at those sites less affected by the river’s seasonal flooding, whereas others were mostly associated with the drier or wetter regions of the basin. In addition, the turnover of species increased significantly as geographic distances increased. Nevertheless, the rate of change was small given that many species had a broad distribution across the study area. Main conclusions Ant distribution patterns along the floodplain forests of the Amazon appear to be controlled to a relatively large extent by the current gradient in flooding intensity and – most importantly – in precipitation. Altered rainfall regimes resulting from global warming and land‐use change thus have the potential to influence these patterns.  相似文献   

15.
Patterns of fish species richness in China's lakes   总被引:1,自引:0,他引:1  
Aim To document the patterns of fish species richness and their possible causes in China's lakes at regional and national scales. Location Lakes across China. Methods We compiled data of fish species richness, limnological characteristics and climatic variables for 109 lakes across five regions of China: East region, Northeast region, Southwest region, North‐Northwest region, and the Tibetan Plateau. Correlation analyses, regression models and a general linear model were used to explore the patterns of fish species richness. Results At the national scale, lake altitude, energy availability (potential evapotranspiration, PET) and lake area explained 79.6% of the total variation of the lake fish species richness. The determinants of the fish richness pattern varied among physiographic regions. Lake area was the strongest predictor of fish species richness in the East and Southwest lakes, accounting for 22.2% and 82.9% of the variation, respectively. Annual PET explained 68.7% of the variation of fish richness in the Northeast lakes. Maximum depth, mineralization degree, and lake area explained 45.5% of the fish variation in the lakes of the North‐Northwest region. On the Tibetan Plateau, lake altitude was the first predictor variable, interpreting 32.2% of the variation. Main conclusions Lake altitude was the most important factor explaining the variation of fish species richness across China's lakes, and accounted for 74.5% of the variation. This may stem in part from the fact that the lakes investigated in our study span the largest altitudinal range anywhere in the world. The effects of the lake altitude on fish species richness can be separated into direct and indirect aspects due to its collinearity with PET. We also found that the fish diversity and its determinants were scale‐dependent. Fish species richness was probably energy‐determined in the cold region, while it was best predicted by the lake area in the relatively geologically old region. The independent variables we used only explained a small fraction of the variations in the lake fish species richness in East China and the Tibetan Plateau, which may be due to the effects of human activity and historical events, respectively.  相似文献   

16.
17.
Aim To predict French Scarabaeidae dung beetle species richness distribution, and to determine the possible underlying causal factors. Location The entire French territory has been studied by dividing it into 301 grid cells of 0.72 × 0.36 degrees. Method Species richness distribution was predicted using generalized linear models to relate the number of species with spatial, topographic and climate variables in grid squares previously identified as well sampled (n = 66). The predictive function includes the curvilinear relationship between variables, interaction terms and the significant third‐degree polynomial terms of latitude and longitude. The final model was validated by a jack‐knife procedure. The underlying causal factors were investigated by partial regression analysis, decomposing the variation in species richness among spatial, topographic and climate type variables. Results The final model accounts for 86.2% of total deviance, with a mean jack‐knife predictive error of 17.7%. The species richness map obtained highlights the Mediterranean as the region richest in species, and the less well‐explored south‐western region as also being species‐rich. The largest fraction of variability (38%) in the number of species is accounted for by the combined effect of the three groups of explanatory variables. The spatially structured climate component explains 21% of variation, while the pure climate and pure spatial components explain 14% and 11%, respectively. The effect of topography was negligible. Conclusions Delimiting the adequately inventoried areas and elaborating forecasting models using simple environmental variables can rapidly produce an estimate of the species richness distribution. Scarabaeidae species richness distribution seems to be mainly influenced by temperature. Minimum mean temperature is the most influential variable on a local scale, while maximum and mean temperature are the most important spatially structured variables. We suggest that species richness variation is mainly conditioned by the failure of many species to go beyond determined temperature range limits.  相似文献   

18.
The influence of environmental variables on native and exotic fish species richness and diversity was analysed 8 years after one of the most environmentally harmful toxic spills worldwide. Environment‐diversity relationships were addressed on different scales, and values were also compared with those of six similar basins not affected by the spill, with the aim of determining whether this disturbance was still exerting an influence on the fish assemblage. Results showed higher native species richness in environments with low human influence, no reservoirs upstream, a large drainage area and coarse substrate reaches. For native fish, variables at both the catchment and site were equally relevant. Exotic fish were mainly favoured by site‐scale factors such as valley width downstream from the reservoir, where the alteration of the river channel and accumulated disturbances give them an advantage vs native species. Overall, 8 years after the accident, richness and diversity of the Guadiamar fish assemblage seemed more affected by anthropogenic impacts than by the long‐term influence of the toxic spill. This work highlights that the potentially synergic effects of anthropogenic factors must be taken into account when monitoring the long‐term effects of pollution events.  相似文献   

19.
Water is crucial for plant productivity and survival as a fundamental resource, but water conditions can also cause physiological stress and mechanical disturbance to vegetation. However, these different influences of water on vegetation patterns have not been evaluated simultaneously. Here, we demonstrate the importance of three water aspects (spatial and temporal variation of soil moisture and fluvial disturbance) for three ecologically and evolutionary distinct taxonomical groups (vascular plants, mosses and lichens) in Fennoscandian mountain tundra. Fine‐scale plant occurrence data for 271 species were collected from 378 × 1 m2 plots sampled over broad environmental gradients (water, temperature, radiation, soil pH, cryogenic processes and the dominant allelopathic plant species). While controlling all other key environmental variables, water in its different aspects proved to be a crucial environmental driver, acting on individual species and on community characteristics. The inclusion of the water variables significantly improved our models. In this high‐latitude system, the importance of spatial variability of water exceeds the importance of temperature for the fine‐scale distribution of species from the three taxonomical groups. We found differing responses to the three water variables between and within the taxonomical groups. Water as a resource was the most important water‐related variable in species distribution models across all taxonomical groups. Both water resource and disturbance were strongly related to vascular plant species richness, whereas for moss species richness, water resources had the highest influence. For lichen species richness, water disturbance was the most influential water‐related variable. These findings demonstrate that water variables are not only independent properties of tundra hydrology, but also that water is truly a multifaceted driver of vegetation patterns at high‐latitudes.  相似文献   

20.
Aim The goal of our study was to test fundamental predictions of biogeographical theories in tropical reef fish assemblages, in particular relationships between fish species richness and island area, isolation and oceanographic variables (temperature and productivity) in the insular Caribbean. These analyses complement an analogous and more voluminous body of work from the tropical Indo‐Pacific. The Caribbean is more limited in area with smaller inter‐island distances than the Indo‐Pacific, providing a unique context to consider fundamental processes likely to affect richness patterns of reef fish. Location Caribbean Sea. Methods We compiled a set of data describing reef‐associated fish assemblages from 24 island nations across the Caribbean Sea, representing a wide range of isolation and varying in land area from 53 to 110,860 km2. Regression‐based analyses compared the univariate and combined effects of island‐specific physical predictors on fish species richness. Results We found that diversity of reef‐associated fishes increases strongly with increasing island area and with decreasing isolation. Richness also increases with increasing nearshore productivity. Analyses of various subsets of the entire data set reveal the robustness of the richness data and biogeographical patterns. Main conclusions Within the relatively small and densely packed Caribbean basin, fish species richness fits the classical species–area relationship. Richness also was related negatively to isolation, suggesting direct effects of dispersal limitation in community assembly. Because oceanic productivity was correlated with isolation, however, the related effects of system‐wide productivity on richness cannot be disentangled. These results highlight fundamental mechanisms that underlie spatial patterns of biodiversity among Caribbean coral reefs, and which are probably also are functioning in the more widespread and heterogeneous reefs of the Indo‐Pacific.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号