首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. In streams, mayflies (Order Ephemeroptera) are at risk from fish feeding visually in the water column. The effect of fish odour on the behaviour of Baetis bicaudatus from a fishless stream and a trout stream was investigated in four large oval tanks supplied with water from the fishless stream.
2. For each mayfly population, mayfly positioning on the substratum and movement in the water column (drift) were measured during the day and night, over 3 days. Brook trout ( Salvelinus fontinalis ) odour was added to two tanks to test the effect of a threat from fish.
3. Throughout the experiment more mayflies from the trout stream were observed on the substratum surface and in the water column during the night than the day, but the magnitude of night drift was less in tanks with fish odour.
4. Baetis from the fishless stream also displayed a nocturnal periodicity in drift and positioning, but their night-time drift was not affected by the presence of fish odour. On the first day of the experiment, however, more mayflies were observed on the substratum surface and drifting in tanks without fish odour during the day.
5. Sensitivity to fish odour may enable mayflies to alter their behaviour according to the risk of predation from fish.  相似文献   

2.
1. In streams, mayflies (Order Ephemeroptera) are at risk from fish feeding visually in the water column. The effect of fish odour on the behaviour of Baetis bicaudatus from a fishless stream and a trout stream was investigated in four large oval tanks supplied with water from the fishless stream.
2. For each mayfly population, mayfly positioning on the substratum and movement in the water column (drift) were measured during the day and night, over 3 days. Brook trout ( Salvelinus fontinalis ) odour was added to two tanks to test the effect of a threat from fish.
3. Throughout the experiment more mayflies from the trout stream were observed on the substratum surface and in the water column during the night than the day, but the magnitude of night drift was less in tanks with fish odour.
4. Baetis from the fishless stream also displayed a nocturnal periodicity in drift and positioning, but their night-time drift was not affected by the presence of fish odour. On the first day of the experiment, however, more mayflies were observed on the substratum surface and drifting in tanks without fish odour during the day.
5. Sensitivity to fish odour may enable mayflies to alter their behaviour according to the risk of predation from fish.  相似文献   

3.
Theory concerning the timing of lotic invertebrate drift suggests that daytime-feeding fish cause invertebrates to restrict their drift behavior to the nighttime. However, there is growing evidence that the nighttime foraging of invertebrate predators also contributes to the nocturnal timing of drift, though it is unclear whether the nocturnal behavior of invertebrate predators is innate or proximately caused by fish. In two experiments, one conducted in a fish-bearing stream and a second in a fishless stream, we compared the drift patterns of Baetidae (Ephemeroptera) from channels with and without benthic invertebrate predators. We tested whether invertebrate predators affect the timing of drift, either as a proximate cause of nocturnal drift in the fishless stream (diel periodicity) or as a proximate cause of a pre-dawn peak in drift in the fish-bearing stream (nocturnal periodicity). In the fish-bearing stream experiment, a pre-dawn increase of baetid drift occurred independently of invertebrate predators, indicating that invertebrate predators were not the proximate cause of nocturnal periodicity in the stream. In the fishless stream experiment, invertebrate predators caused more baetid drift at night than during the day, indicating that invertebrate predators caused the nocturnal drift pattern we observed in the stream, and that invertebrate predators can influence drift timing independently of fish. Therefore, we suggest that both visually feeding fish and nocturnally foraging benthic predators, when present, affect the timing of invertebrate drift; visually feeding fish by reducing daytime drift, and benthic predators by increasing nighttime drift.  相似文献   

4.
1. A knowledge of how individual behaviour affects populations in nature is needed to understand many ecologically important processes, such as the dispersal of larval insects in streams. The influence of chemical cues from drift‐feeding fish on the drift dispersal of mayflies has been documented in small experimental channels (i.e. < 3 m), but their influence on dispersal in natural systems (e.g. 30 m stream reaches) is unclear. 2. Using surveys in 10 Rocky Mountain streams in Western Colorado we examined whether the effects of predatory brook trout (Salvelinus fontinalis) on mayfly drift, that were apparent in stream‐side channels, could also be detected in natural streams. 3. In channel experiments, the drift of Baetis bicaudatus (Baetidae) was more responsive to variation in the concentration of chemical cues from brook trout than that of another mayfly, Epeorus deceptivus (Heptageniidae). The rate of brook trout predation on drifting mayflies of both species in a 2‐m long observation tank was higher during the day (60–75%) but still measurable at night (5–10%). Epeorus individuals released into the water column were more vulnerable to trout predation by both day and night than were Baetis larvae treated similarly. 4. Drift of all mayfly taxa in five fishless streams was aperiodic, whereas their drift was nocturnal in five trout streams. The propensity of mayflies to drift was decreased during the day and increased during the night in trout streams compared with fishless streams. In contrast to the channel experiments, fish biomass and density did not alter the nocturnal nature nor magnitude of mayfly drift in natural streams. 5. In combination, these results indicate that mayflies respond to subtle differences in concentration of fish cues in experimental channels. However, temporal and spatial variation in fish cues available to mayflies in natural streams may have obscured our ability to detect responses at larger scales.  相似文献   

5.
1. The drift of Baetis thermicus nymphs in the presence of chemical, visual and hydrodynamic cues, considered individually and in combination, produced by different predatory fishes was examined experimentally in laboratory streams. Masu salmon ( Oncorhynchus masou ) and freshwater sculpin ( Cottus nozawae ) are typical drift- and benthic-foraging fishes, respectively.
2. Observations of fish swimming in the streams revealed differing diel periodicity between the species; sculpin were nocturnal foragers and salmon diurnal.
3. The drift rate of Baetis by night increased in the presence of chemical cues from sculpin, with other cues having no interactive effects. In contrast, the drift rate increased primarily in the presence of both chemical and, particularly, visual cues from salmon, although no additional effects were found for any non-visual cues. Visual cues could enable Baetis to assess precisely the predation risk from foraging salmon by day, whereas Baetis could not use visual cues to detect sculpin either at night, because of the low light intensity, or during the day, because of the low activity of sculpin at that time.
4. In natural streams, which are often inhabited by several predatory fish employing different modes of foraging, invertebrates may be able to precisely assess the risk and effectively to avoid predators by using cues unique to each.  相似文献   

6.
Some benthic invertebrates in streams make frequent, short journeys downstream in the water column (=drifting). In most streams there are larger numbers of invertebrates in the drift at night than during the day. We tested the hypothesis that nocturnal drifting is a response to avoid predation from fish that feed in the water column during the day. We surveyed diel patterns of drifting by nymphs of the mayfly Baetis coelestis in several streams containing (n=5) and lacking (n=7) populations of rainbow trout, Oncorhynchus mykiss. Drifting was more nocturnal in the presence of trout (85% of daily drift occurred at night) than in their absence (50% of daily drift occurred at night). This shift in periodicity is due to reduced daytime drifting in streams with trout, because at a given nighttime drift density, the daytime drift density of B. coelestis was lower in streams occupied by trout than in troutless streams. Large size classes of B. coelestis were underrepresented in the daytime drift in trout streams compared to nighttime drift in trout streams, and to both day and night drift in troutless streams. Differences in daytime drift density between streams with and without trout were the result of differences in mayfly drift behaviour among streams because predation rates by trout were too low to significantly reduce densities of drifting B. coelestis. We tested for rapid (over 3 days) phenotypic responses to trout presence by adding trout in cages to three of the troutless streams. Nighttime drifting was unaffected by the addition of trout, but daytime drift densities were reduced by 28% below cages containing trout relative to control cages (lacking trout) placed upstream. Drift responses were measured 15 m downstream of the cages suggesting that mayflies detected trout using chemical cues. Overall, these data support the hypothesis that infrequent daytime drifting is an avoidance response to fish that feed in the water column during the day. Avoidance is more pronounced in large individuals and is, at least partially, a phenotypic response mediated by chemical cues.  相似文献   

7.
Drift as a low-energy cost means of migration may enable stream invertebrates to leave risky habitats or to escape after encountering a predator. While the control of the diurnal patterns of invertebrate drift activity by fish predators has received considerable interest, it remains unclear whether benthivorous fish reduce or increase drift activity. We performed a large-scale field experiment in a second-order stream to test if invertebrate drift was controlled by two benthivorous fish species (gudgeon Gobio gobio and stone loach Barbatula barbatula). An almost fishless reference reach was compared with a reach stocked with gudgeon and loach, and density and structure of the invertebrate communities in the benthos and in the drift were quantified in both reaches. The presence of gudgeon and stone loach reduced the nocturnal drift of larvae of the mayfly Baetis rhodani significantly, in contrast to the findings of most previous studies that fish predators induced higher night-time drift. Both drift density and relative drift activity of B. rhodani were lower at the fish reach during the study period that spanned 3 years. Total invertebrate drift was not reduced, by contrast, possibly due to differences in vulnerability to predation or mobility between the common invertebrate taxa. For instance, Chironomidae only showed a slight reduction in drift activity at the fish reach, and Oligochaeta showed no reduction at all. Although benthic community composition was similar at both reaches, drift composition differed significantly between reaches, implying that these differences were caused by behavioural changes of the invertebrates rather than by preferential fish consumption. The direction and intensity of changes in the drift activity of stream invertebrates in response to the presence of benthivorous fish may depend on the extent to which invertebrate taxa can control their drifting behaviour (i.e. active versus passive drift). We conclude that invertebrate drift is not always a mechanism of active escape from fish predators in natural streams, especially when benthos-feeding fish are present.  相似文献   

8.
Nested species subsets, gaps, and discrepancy   总被引:10,自引:0,他引:10  
Chemical cues from fish can alter the behaviour of stream invertebrates in experimental tanks but their effect in natural streams has received little attention. By adding brook trout (Salvelinus fontinalis) odour to a trout stream in the Rocky Mountains of Colorado, USA, we tested whether changes in the concentration of chemical cues from visually feeding predatory fish would alter the drift of mayfly nymphs (Ephemeroptera). Stream water was piped from stream-side tanks with (odour) and without (control) three brook trout to two locations in the stream 3.5 m upstream of drift nets at six replicate sites. Five-minute drift samples were collected downstream from odour and control pipes before, during and after the release of water from the tanks into the stream during both the day and night. Almost all drift occurred at night and consisted predominantly of Baetis bicaudatus nymphs. The odour manipulation had no measurable effect on Baetis drift during the day but statistical power was low. During the night, however, the drift of large (>0.65 mm head capsule width, HCW) Baetis nymphs decreased significantly during the odour addition compared to control drift. In contrast, the drift of small nymphs (≤0.65 mm HCW) increased both during and after the odour addition in comparison to control drift. Since the stream contains brook trout (0.04–0.18 m−2), and water from the stream (presumably containing fish odour) altered the behaviour of fishless-stream Baetis nymphs in another experiment, we conclude that the changes in Baetis drift density were a response to an increase in the concentration of fish odour in the stream. Furthermore, we were able to detect the effect within 5 min. of odour addition, indicating that mayfly behavioural response to trout odour was rapid. These results suggest that mayflies can distinguish different concentrations of trout odour in natural streams and that the response is size-specific, according to the relative risk of predation of large and small Baetis. Received: 12 May 1998 / Accepted: 23 October 1998  相似文献   

9.
1. We conducted an experimental study of predation by benthivorous fish on a natural community of stream invertebrates using a reach‐scale approach. Over a 2‐year period (experimental phase), the benthic invertebrate community of a stretch containing two species of benthivorous fish was compared with a fishless stretch. Thereafter, all fish were removed and benthic community structure was analysed again to account for natural differences between the two stretches (reference phase). 2. Benthivorous fish at the moderate densities investigated did not affect total benthic biomass or density, but did alter species composition. In addition, the fish effect differed between pool and riffle habitats, with larger effects in the pools indicating a habitat‐specific predation effect. In the reference phase, when all fish were removed from the stream, the difference between the two stretches was reduced. 3. The benthivorous fish reduced the densities of four taxa (Pisidium sp., Dugesia gonocephala, Gammarus pulex, Limoniidae), representing 29% of total biomass. It is possible that density reductions of other species were masked by prey migration despite the relatively large spatial scale. Indeed, higher drift activity in the upstream fishless stretch could have increased the density of Baetis rhodani in the fish stretch, as indicated by the results of a drift model. 4. Our results provide insights into stream food web ecology because fish predation showed effects even in a natural system where habitat complexity was high, environmental factors were highly variable and many predator and prey species interacted and because benthivorous fish were the focus, whereas the majority of previous predation experiments in streams have used drift‐feeding trout.  相似文献   

10.
Mechanisms that determine the strength of trophic cascades from fish to benthic algae via algivorous invertebrates in stream communities have not been clarified. Using seven fish species, we tested the hypothesis that the interspecific variation of predatory behavior of fishes affects the strength of trophic cascades in experimental streams. One or two species of fish were introduced into flow-through pools of 2.5 m2 and the abundances of benthic invertebrates and algae were monitored. Pike gudgeon, a diurnal benthic feeder, triggered a strong trophic cascade but masu salmon, a diurnal drift feeder, did not have a cascading effect. Japanese dace, which is both a diurnal benthic and drift feeder, increased the algal biomass, but the nocturnal benthic feeder cut-tailed bullhead had little cascading effect. The diurnal benthic feeder silver crucian carp also had a cascading effect, but no trophic cascade was triggered either by Asian pond loach or by Japanese common catfish, both of which are nocturnal benthic feeders. Thus, diurnal benthic fish exerted a stronger cascading effect than diurnal drift feeders or nocturnal fish. The combination of two fish species enhanced the per-capita strength of trophic cascades, probably because one of the two species, the benthic feeder, preyed on more invertebrates than in the single-species pools.  相似文献   

11.
Animal population dynamics in open systems are affected not only by agents of mortality and the influence of species interactions on behavior and life histories, but also by dispersal and recruitment. We used an extensive data set to compare natural loss rates of two mayfly species that co-occur in high-elevation streams varying in predation risk, and experience different abiotic conditions during larval development. Our goals were to generate hypotheses relating predation to variation in prey population dynamics and to evaluate alternative mechanisms to explain such variation. While neither loss rates nor abundance of the species that develops during snowmelt (Baetis bicaudatus) varied systematically with fish, loss rates of the species that develops during baseflow (Baetis B) were higher in streams containing brook trout than streams without fish; and surprisingly, larvae of this species were most abundant in trout streams. This counter-intuitive pattern could not be explained by a trophic cascade, because densities of intermediate predators (stoneflies) did not differ between fish and fishless streams and predation by trout on stoneflies was negligible. A statistical model estimated that higher recruitment and accelerated development enables Baetis B to maintain larger populations in trout streams despite higher mortality from predation. Experimental estimates suggested that predation by trout potentially accounts for natural losses of Baetis B, but not Baetis bicaudatus. Predation by stoneflies on Baetis is negligible in fish streams, but could make an important contribution to observed losses of both species in fishless streams. Non-predatory sources of loss were higher for B. bicaudatus in trout streams, and for Baetis B in fishless streams. We conclude that predation alone cannot explain variation in population dynamics of either species; and the relative importance of predation is species- and environment-specific compared to non-predatory losses, such as other agents of mortality and non-consumptive effects of predators. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
1. Knowledge of the influence of predatory fish in detritus‐based stream food webs is poor. We tested whether larval abundance of the New Zealand leaf‐shredding caddisfly, Zelandopsyche ingens (family Oeconesidae), was affected by the presence of predatory brown trout, Salmo trutta and the abundance of their primary detrital resource (Nothofagus leaves). 2. The density of Z. ingens and the biomass of leaves were determined in seven fishless streams and four trout streams in the Cass region, central South Island, on four occasions spanning 5 years. 3. Physicochemical conditions were similar in trout and fishless streams, but ancova indicated that Z. ingens numbers were positively related to leaf biomass and that caddisfly numbers were significantly greater in fishless streams than trout streams for any given biomass of leaf. The cases of trout stream larvae were also heavier per unit length than those in fishless streams. 4. Our results provide evidence for both top‐down and bottom‐up influences on a detritus‐based stream food web. Although stream detritivores may benefit from a habitat that provides both food and a degree of protection from predators, top‐down effects of predators on detritivore population abundance were still important. Thus, detrital resource availability may determine maximum attainable population size, whereas predation is likely to reduce the population to a level below that.  相似文献   

13.
Cascading effects of predators can affect ecosystem properties by changing plant biomass, distribution and assemblage composition. Using data from field surveys and whole‐stream experiments we tested the hypothesis that predatory trout change assemblage composition of benthic algae in high‐elevation streams mediated by grazer behavior. Field surveys revealed that the taxonomic composition of algal assemblages differed significantly between streams that contained trout and those that were fishless; but comparisons of palatable versus unpalatable algal taxa between fish and fishless streams were equivocal because of high natural variability. Therefore, we tested for a behavioral (non‐consumptive) trophic cascade experimentally by adding brook trout chemical cues to six naturally fishless streams for 25 days and compared responses of grazers and algae to six reference streams without fish cues added. Algal response variables included rates of change in the abundance of three physiognomic categories, from most palatable (attached erect and prostrate diatoms) to least palatable (non‐diatoms), as determined from food selectivity analyses of the most common grazers (mayflies and caddisflies). Fish cues did not affect the mean densities or changes in densities of total grazers or any individual grazer species. However, in streams where fish cues were added, rates of accrual of attached erect diatoms, which was the preferred algal type for the grazer most vulnerable to trout predation (Baetis), were higher and their densities increased significantly faster with increasing densities of this grazer species than in reference streams. Results of his experiment support the hypothesis that predator induced suppression of grazer foraging behavior, rather than cascading effects of top predators on grazer density, may contribute to variation in the composition of algal assemblages among streams by allowing proliferation of most palatable algal species.  相似文献   

14.
Fitness and community consequences of avoiding multiple predators   总被引:6,自引:0,他引:6  
We investigated the fitness and community consequences of behavioural interactions with multiple predators in a four-trophic-level system. We conducted an experiment in oval flow-through artificial-stream tanks to examine the single and interactive sublethal effects of brook trout and stoneflies on the size at emergence of Baetis bicaudatus (Ephemeroptera: Baetidae), and the cascading trophic effects on algal biomass, the food resource of the mayflies. No predation was allowed in the experiment, so that all effects were mediated through predator modifications of prey behaviour. We reared trout stream Baetis larvae from just before egg development until emergence in tanks with four treatments: (1) water from a holding tank with two brook trout (trout odour), (2) no trout odour + eight stoneflies with glued mouthparts, (3) trout odour + stoneflies and (4) no trout odour or stoneflies. We ended the experiment after 3 weeks when ten male and ten female subimagos had emerged from each tank, measured the size of ten male and ten female mature nymphs (with black wing pads), and collected algal samples from rocks at six locations in each tank. To determine the mechanism responsible for sublethal and cascading effects on lower trophic levels we made day and night observations of mayfly behaviour for the first 6 days by counting mayflies drifting in the water column and visible on natural substrata in the artificial streams. Trout odour and stoneflies similarly reduced the size of male and female Baetis emerging from artificial streams, with non-additive effects of both predators. While smaller females are less fecund, a fitness cost of small male size has not been determined. The mechanism causing sublethal effects on Baetis differed between predators. While trout stream Baetis retained their nocturnal periodicity in all treatments, stoneflies increased drift dispersal of mayflies at night, and trout suppressed night-time feeding and drift of mayflies. Stoneflies had less effect on Baetis behaviour when fish odour was present. Thus, we attribute the non-additivity of effects of fish and stoneflies on mayfly growth to an interaction modification whereby trout odour reduced the impact of stoneflies on Baetis behaviour. Since stonefly activity was also reduced in the presence of fish odour, this modification may be attributed to the effect of fish odour on stonefly behaviour. Only stoneflies delayed Baetis emergence, suggesting that stoneflies had a greater sublethal effect on Baetis fitness than did trout. Delayed emergence may reduce Baetis fitness by increasing risks of predation and parasitism on larvae, and increasing competition for mates or oviposition sites among adults. Finally, algal biomass was higher in tanks with both predators than in the other three treatments. These data implicate a behavioural trophic cascade because predators were not allowed to consume prey. Therefore, differences in algal biomass were attributed to predator-induced changes in mayfly behaviour. Our study demonstrates the importance of considering multiple predators when measuring direct sublethal effects of predators on prey fitness and indirect effects on lower trophic levels. Identification of an interaction modification illustrates the value of obtaining detailed information on behavioural mechanisms as an aid to understanding the complex interactions occurring among components of ecological communities. Received: 20 March 1997 / Accepted: 29 September 1997  相似文献   

15.
Climate change is likely to increase the metabolisms of ectothermic animals living below their thermal optimum. While ectothermic top predators may compensate by increasing foraging, ectothermic prey may be unable to increase foraging because of increased predation risk from ectothermic predators. We examined how the diurnal drift behavior (i.e., the downstream movement associated with foraging) of the mayfly Baetis, an ectothermic herbivore, responds to changing temperature in the implied presence and absence of trout, an ectothermic predator. In an experiment replicated at the catchment scale, water temperature and trout presence strongly interacted to affect the diurnal drift of Baetis from artificial channels lacking periphyton over a water temperature range of 4.2–14.8 °C. In fishless streams, daytime drift increased with increasing water temperature, likely because of increased metabolic demand for food. However, in trout-bearing streams, daytime drift decreased with increasing water temperature. Our interpretation is that the perceived threat of trout rose with increasing water temperature, causing mayflies to reduce foraging despite heightened metabolic demand. These results suggest that anticipated increases in stream temperature due to climate change may further escalate divergence in structure and process between fishless and trout-bearing streams. Similar dynamics may occur in other ecosystems with ectothermic predators and prey living below their thermal optima.  相似文献   

16.
1. We evaluated the effects of brown trout on boreal stream food webs using field surveys and enclosure/exclosure experiments. Experimental results were related to prey preference of uncaged trout in the same stream, as well as to a survey of macroinvertebrate densities in streams with vs. without trout. Finally, we assessed the generality of our findings by examining salmonid predation on three groups of macroinvertebrate prey (chironomid midges, epibenthic grazers, invertebrate predators) in a meta-analysis. 2. In a preliminary experiment, invertebrate predators showed a strong negative response to trout, whereas chironomids benefited from trout presence. In the main experiment, trout impact increased with prey size. Trout had the strongest effect on invertebrate predators and cased caddis larvae, whereas Baetis mayfly and chironomid larvae were unaffected. Trout impact on the largest prey seemed mainly consumptive, because prey emigration rates were low and independent of fish presence. Despite strong effects on macroinvertebrates, trout did not induce a trophic cascade on periphyton. Uncaged trout showed a strong preference for the largest prey items (predatory invertebrates and aerial prey), whereas Baetis mayflies and chironomids were avoided by trout. 3. Densities of invertebrate predators were significantly higher in troutless streams. Baetis mayflies also were less abundant in trout streams, whereas densities of chironomids were positively, although non-significantly, related to trout presence. Meta-analysis showed a strong negative impact of trout on invertebrate predators, a negative but variable impact on mobile grazers (mainly mayfly larvae) and a slightly positive impact on chironomid larvae. 4. Being size-selective predators, salmonid fishes have a strong impact on the largest prey types available, and this effect spans several domains of scale. Discrepancies between our experimental findings and those from the field survey and meta-analysis show, however, that for most lotic prey, small-scale experiments do not reflect fish impact reliably at stream-wide scales. 5. Our findings suggest that small-scale experiments will be useful only if the experimental results are evaluated carefully against natural history information about the experimental system and interacting species across a wide array of spatial scales.  相似文献   

17.
1. Non‐native trout have been stocked in streams and lakes worldwide largely without knowledge of the consequences for native ecosystems. Although trout have been introduced widely throughout the Sierra Nevada of California, U.S.A., fishless streams and their communities of native invertebrates persist in some high elevation areas, providing an opportunity to study the effects of trout introductions on natural fishless stream communities. 2. We compared algal biomass and cover, organic matter levels and invertebrate assemblages in 21 natural fishless headwater streams with 21 paired nearby streams containing stocked trout in Yosemite National Park. 3. Although environmental conditions and particulate organic matter levels did not differ between the fishless and trout streams, algal biomass (as chlorophyll a concentration) and macroalgal cover were, on average, approximately two times and five times higher, respectively, in streams containing trout. 4. There were no differences in the overall densities of invertebrates in fishless versus paired trout streams; however, invertebrate richness (after rarefaction), evenness, and Simpson and Shannon diversities were 10–20% higher in fishless than in trout streams. 5. The densities of invertebrates belonging to the scraper‐algivore and predator functional feeding guilds were higher, and those for the collector‐gatherer guild lower, in fishless than trout streams, but there was considerable variation in the effects of trout on specific taxa within functional feeding groups. 6. We found that the densities of 10 of 50 common native invertebrate taxa (found in more than half of the stream pairs) were reduced in trout compared to fishless streams. A similar number of rarer taxa also were absent or less abundant in the presence of trout. Many of the taxa that declined with trout were conspicuous forms (by size and behaviour) whose native habitats are primarily high elevation montane streams above the original range of trout. 7. Only a few taxa increased in the presence of trout, possibly benefiting from reductions in their competitors and predators by trout predation. 8. These field studies provide catchment‐scale evidence showing the selective influence of introduced trout on stream invertebrate and algal communities. Removal of trout from targeted headwater streams may promote the recovery of native taxa, community structure and trophic organisation.  相似文献   

18.
1. We studied the effect of mesh size (6 and 3 mm) on interactions between brown trout ( Salmo trutta ) and benthic invertebrates in enclosures placed in a stream in southern Sweden. We also compared how different prey exchange rates affected interactions between trout and invertebrates.
2. Trout had strong impacts on some benthic taxa, and different mesh sizes produced different patterns. Trout affected the abundance of 10 of the 21 taxa examined, six in enclosures with 3 mm mesh and six in enclosures with 6 mm mesh. The abundance of nine of the prey taxa was lower in the presence of trout, only leptocerids were more numerous in the presence of trout.
3. Our measurements of prey immigration/emigration, together with trout diet data, suggest that direct consumption by trout, rather than avoidance behaviour by prey, explains most decreases in prey abundance. There was avoidance behaviour by only two of the twenty-one prey taxa, with trout inducing emigration of the mayflies Baetis rhodani and Paraleptophlebia sp.
4. Trout indirectly increased periphyton biomass in both 3 and 6 mm enclosures. The effect of trout on periphyton was probably due to strong effects of trout on the grazer, Baetis rhodani , Heptagenia sp. and Paralepthoplebia sp.
5. Our results suggest that mesh size, through its effects on exchange rates of prey, may affect interactions between predators and prey in running waters, but that the effects of dispersal and predation on invertebrates are taxon specific.  相似文献   

19.
1. We experimentally tested if a multiplicative risk model accurately predicted the consumption of a common mayfly at risk of predation from three predator species in New Zealand streams. Deviations between model predictions and experimental observations were interpreted as indicators of ecologically important interactions between predators. 2. The predators included a drift‐feeding fish [brown trout (T), Salmo trutta], a benthivorous fish [galaxiid (G), koaro, Galaxias brevipennis] and a benthic predatory stonefly (S; Stenoperla sp.) with Deleatidium sp. mayflies as prey. Eight treatments with all predator species combinations and a predator‐free control were used. Experiments were performed in aquaria with cobbles as predator refuges for mayflies and we measured the proportion of prey consumed after 6 h for both day and night trials. 3. Trout consumed a higher proportion of prey than other predators. For the two predator treatments we found less than expected prey consumption in the galaxiid + trout treatment (G + T) for both day and night trials, whereas a higher than expected proportion of prey was consumed during night time in the stonefly + trout (S + T) treatment. 4. The results indicate interference (G + T) and facilitation (S + T) between predators depending on predator identity and time of day. Thus, to make accurate predictions of interspecific interactions, it is necessary to consider the ecology of individual species and how differences influence the direction and magnitude of interactions.  相似文献   

20.
The important contribution of terrestrial invertebrates to the energy budget of drift-foraging fishes has been well documented in many forested headwater streams. However, relatively little attention has been focused on the behavioral mechanisms behind such intensive exploitation. We tested for the hypothesis that active prey selection by fishes would be an important determinant of terrestrial invertebrates contribution to fish diets in a forested headwater stream in northern Japan. Rainbow trout, Oncorhynchus mykiss, were estimated to consume 57.12 mg m–2 day–1 (dry mass) terrestrial invertebrates, 77% of their total input (73.89 mg m–2 day–1), there being high selectivity for the former from stream drift. Both the falling input and drift of terrestrial invertebrates peaked at around dusk, decreasing dramatically toward midnight. In contrast, both aquatic insect adults and benthic invertebrates showed pronounced nocturnal drift. Because the prey consumption rates of rainbow trout were high at dawn and dusk, decreasing around midnight, the greater contribution of terrestrial invertebrates to trout diet was regarded as being partly influenced by the difference in diel periodicity of availability among prey categories. In addition, selectivity also depended upon differences in individual prey size among aquatic insect adults, and benthic and terrestrial invertebrates, the last category being largest in both the stream drift and the trout diets. We concluded that differences in both the timing of supplies and prey size among the three prey categories were the primary factors behind the selective foraging on terrestrial invertebrates by rainbow trout.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号