首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 203 毫秒
1.
实地测定了黄土高原半干旱区固原不同生长年限苜蓿草地和连作8a苜蓿草地翻耕轮作不同年限粮食作物后深层土壤水分特征,分析了苜蓿草地土壤干燥化特征和粮草轮作对土壤水分的恢复效应.结果表明:(1)苜蓿连作1a、5a、8a和12a等4类苜蓿草地0~1000cm土层平均土壤湿度值为6.6%,平均土壤水分过耗量702.8mm,平均土壤干燥化速率147.1mm/a,达到强烈干燥化程度,苜蓿连作5a土壤干层深度超过1000cm,苜蓿连作8a土壤干层深度超过1360cm,苜蓿草地合理利用年限为7a.(2)连作8a苜蓿草地翻耕并轮作4~7a和25a粮食作物等5类粮田0~1000cm土层土壤湿度介于6.74%~11.95%,土壤贮水量恢复值介于210.6~887.3mm,平均土壤水分恢复速率为80.8mm/a.轮作6a后粮田土壤干层轻度恢复程度以上深度达到1000cm.通过粮草轮作使苜蓿草地土壤湿度恢复到当地土壤稳定湿度需要13a以上.黄土高原半干旱区适宜的粮草轮作模式为:7a苜蓿→13a粮食作物.  相似文献   

2.
以各类作物农田水分为对照,连续两年对宁南山区不同生长年限苜蓿深层土壤水分以及10年生苜蓿地耕翻后轮作不同年份作物农田的水分进行了测定.结果表明,随着苜蓿生长年限的增加,干层深度与厚度先增加后减小.3年生苜蓿干层深度为720cm,6年生干层最深可达1000cm以下,10年生干层深度为920cm,3~12年生苜蓿地0~700cm土层基本上均属于土壤干层范围.苜蓿地0~800cm土壤湿度随生长年限增加而降低,2004年测定的4、7年生和12年生苜蓿地0~700cm土层平均含水率分别为5.30%、5.22%和5.01%;2005年测定的3、6年生和10年生苜蓿地0~800cm土层湿度分别为6.26%、5.60%和5.27%;而800~1000cm土层湿度在一定年限后有恢复趋势.300cm为苜蓿地降水下渗的最大临界深度,300cm以下土壤干层一旦形成,将长期存在,7~12年生苜蓿300~700cm土层湿度仅维持在4.0%左右.苜蓿地和农田的土壤干层厚度与湿度有较大差异,草粮轮作可使苜蓿土壤干层水分基本恢复到农田湿度,而且轮作年份越长,土壤各层次水分恢复效果越好,10年生苜蓿轮作18年后土壤水分基本恢复到农田状态.  相似文献   

3.
研究了陇中黄土高原半干旱区不同种植年限紫花苜蓿地土壤水分特征及适宜种植年限.结果表明: 3、8、12和14年生苜蓿地0~300 cm土层土壤平均含水量均明显低于当地土壤稳定湿度值.12和14年生苜蓿地0~300 cm土层土壤含水量仅为9.2%和7.1%,甚至低于作物有效水分下限.1、3、8、12和14年生紫花苜蓿地0~300 cm土层干燥化指数分别为125.4%、30.5%、18.4%、-34.2%和-83.3%,除1年生苜蓿地土壤无干燥化现象之外,其余种植年限苜蓿地土壤均呈不同程度的干燥化.随苜蓿种植年限的延长,土壤干燥化程度加剧,但干燥化速率呈减缓趋势.综合苜蓿生产力动态和土壤水分状况,该区紫花苜蓿适宜的种植年限为8~10 年.  相似文献   

4.
在模型验证和数据库组建基础上,用WinEPIC模型定量模拟研究了黄土高原半湿润区长武、半干旱区固原和半干旱偏旱区海原20~30年内苜蓿草地水分生产潜力、10m土层土壤有效含水量和土壤湿度剖面分布特征的动态变化.结果表明:长武、固原和海原苜蓿草地水分生产潜力模拟值随降水量变化而呈现波动性降低趋势,其平均值分别为8.81、3.83和2.48t.hm-2;长武、固原和海原苜蓿草地10m土层逐月土壤有效含水量模拟值均呈现明显的波动性降低趋势,模拟初期,4~8年生苜蓿草地土壤干燥化趋势十分强烈,此后,随降水量变化长期在较低水平上波动;随着苜蓿生长年限的延长,苜蓿草地土壤干层逐年加深、加厚,长武、固原和海原土壤干层分布深度达到10m所需时间依次为6、6和4年,此后苜蓿草地降水渗深以下土层长期维持较为稳定的干燥化状态;苜蓿草地水分持续利用的合理年限为半湿润区8~10年,半干旱区6~8年,半干旱偏旱区4~6年.  相似文献   

5.
宁南半干旱与半干旱偏旱区苜蓿草地土壤水分与养分特征   总被引:1,自引:0,他引:1  
任晶晶  李军  王学春  方新宇 《生态学报》2011,31(13):3638-3649
通过对宁夏南部半干旱区(固原)和半干旱偏旱区(海原)不同生长年限紫花苜蓿(Medicago sativa L.)草地深层土壤水分与养分含量的测定,分析和比较了2种干旱类型区苜蓿草地土壤水分与养分差异及其土层剖面的分布特征。结果表明:(1) 2个类型旱区苜蓿草地0~1000 cm土层平均土壤湿度随生长年限的延长逐渐降低,但草地衰败后对水分的消耗减少。(2) 随土层深度的增加,2个类型旱区苜蓿草地土壤湿度表现出先减少后增加的变化趋势;有机质、全氮、碱解氮和速效磷含量不断减少。(3) 随生长年限的延长,2个类型旱区苜蓿根系对土壤水分和养分的消耗不断加深,6 a苜蓿草地土壤含水量、碱解氮和速效磷发生了不同程度的亏缺;10 a苜蓿草地均已进入衰败期,土壤有机质、全氮和碱解氮自上而下逐渐恢复,且半干旱偏旱区恢复的较快;速效磷含量随生长年限的延长不断减少,苜蓿草地衰败后消耗速率减小。(4) 半干旱偏旱区相同生长年限苜蓿草地0~400 cm土层土壤养分含量均高于半干旱区。(5)土壤水分亏缺与养分不均衡导致苜蓿草地衰败。因此,在实际生产中对旱地苜蓿草地应进行合理灌溉与施肥,平衡土壤养分并延缓草地衰败。  相似文献   

6.
黄土高原半干旱区土壤干层水分恢复研究   总被引:47,自引:9,他引:38  
王志强  刘宝元  路炳军 《生态学报》2003,23(9):1944-1950
黄土高原土壤干层是一个重要的生态环境问题,研究干层土壤水分的恢复对正确指导黄土高原退耕还林还草,实现该区土地的可持续利用具有重要意义。研究在黄土高原半干旱区的固原县,选择了将紫花苜蓿翻耕后3a、12a的坡耕地,对其土壤干层的水分恢复状况进行了分析。发现二者土壤干层水分最大恢复深度分别为3m、4.8m,但土壤水分含量在中效水及其之上的主要恢复层深度分别为2m、2.2m。苜蓿翻耕3a和12a后2m以上土层土壤平均湿度都能恢复到易效水或极易效水的水平,可以满足1年生农作物的生长需求而不会进一步恶化土壤水分生态环境。但即使苜蓿翻耕12a后土壤水分,也不能满足林木和多年牛豆科牧草正常生长的水分需求。  相似文献   

7.
黄土高原不同干旱类型区苜蓿草地深层土壤干燥化效应   总被引:27,自引:3,他引:24  
田间实地测了黄土高原不同干旱类型区不同生长年限苜蓿草地0~1000cm土层土壤湿度,分析和比较了各类苜蓿草地深层土壤干燥化效应特征。结果表明,在半湿润区、半干旱区和半干旱偏旱区,各类苜蓿草地土壤湿度平均值分别为10.84%、7.07%和5.45%,明显低于当地土壤稳定湿度值和荒草地土壤湿度值,土壤水分过耗量分别为540.2、641.1mm和455.0mm,平均土壤干燥化速度分别为61.2、101.9mm/a和99.0mm/a;3种类型区各类苜蓿草地年降水入渗深度分别为187.8、144cm和173cm,降水入渗深度以下深层土壤湿度保持稳定的干燥化状态;土壤干燥化强度随苜蓿草地生长年限延长而加剧,3年生苜蓿草地为中度干燥化强度,土壤干层厚度达到500~760cm,4年生以上苜蓿草地已达到严重干燥化和强烈干燥化强度,土壤干层厚度超过940~1000cm;通过粮草轮作使苜蓿草地土壤湿度恢复到当地土壤稳定湿度分别需要6、11a和18a以上。  相似文献   

8.
黄土高原地区紫花苜蓿生长过程中土壤养分的变化规律   总被引:18,自引:0,他引:18  
以不同生长年限的苜蓿地为材料,研究了苜蓿在生长过程中土壤养分的变化趋势。结果表明:在苜蓿生长年限10~23a内,随着种植时间延长苜蓿生物量和体内养分累积量呈下降趋势。23a生苜蓿已进入衰败期,土壤肥力逐渐得到恢复,苜蓿根系养分含量随种植年限延长呈明显的增加趋势。不同生长年限苜蓿地土壤NO3ˉN的含量变化趋势相同,2m以内土层生长年限越短。NO3ˉ-N含量越少,2m以下变化趋势相反。NH4^ -N含量变化规律不明显,表层高于下层,生长年限长的含量较低。  相似文献   

9.
黄土高原半湿润区苜蓿草地土壤干层形成及水分恢复   总被引:6,自引:0,他引:6  
研究了黄土高原地区不同生长年限苜蓿草地0~1000 cm土层土壤水分消耗规律.结果表明,荒地与苜蓿草地土壤干层出现的区域及发生的程度不同:荒地在80~100 cm土层深度,出现轻度干层;生长年限低于8a(含8a)的苜蓿草地,在250~350 cm土层出现轻度干层,生长年限超过8a,出现中度干层,干层范围延至500 cm土层以下.苜蓿生长超过18a,0~200 cm上层土壤水分开始恢复,年均恢复1.49%;但在200~1000 cm土壤深层,18、26年生苜蓿草地土壤含水量仅为10.20%,深层土壤通体干化,水分难以恢复.  相似文献   

10.
应用WinEPIC模型模拟研究了1957~2001年期间黄土高原半湿润区长武和半干旱区延安不同密度刺槐(Robinia pseudoacia)林地水分生产力演变规律和深层土壤干燥化效应.结果:(1)长武和延安高密度(6000株/hm2)、中高密度(4500株/hm2)、中低密度(3000株/hm2)和低密度(1500株/hm2)等4种处理刺槐林地逐年生物量模拟值均呈现快速增加、达到最大值后又逐年波动性降低的变化趋势,林地密度越高早期逐年生物量越高,后期逐年生物量差异缩小,两地均以低密度处理逐年生物量平均值和累积生物量模拟值最高;(2)4种密度处理45年生刺槐林地年均耗水量值基本相等,长武和延安分别为603mm和566mm,但生长前期年耗水量明显高于后期,并高于同期年降水量,林地密度越高前期耗水量越高,中期以后各密度处理耗水量基本接近且波动趋势基本一致,林地密度越高干旱胁迫程度越重;(3)模拟生长初期,4种密度处理刺槐林地0~10m土层逐月土壤有效含水量均呈现强烈的波动性降低趋势,长武各密度处理刺槐林地分别在7~23年生、延安分别在7~17年生之后逐月土壤有效含水量均在0~200mm较低水平上随降水量变化而波动;(4)4种密度处理林地0~10m土层土壤湿度剖面分布年度变化剧烈,土壤湿度逐年降低且土壤干层逐年加厚,密度越高土壤干层加厚速度越快,长武在26年生、延安在17年生时低密度处理刺槐林地土壤干层厚度均已超过10m,此后2~10m土层土壤湿度保持相对稳定的干燥化状态;(5)长武和延安刺槐林地适宜种植密度分别以1500~3000株/hm2和1500株/hm2为宜,刺槐林地土壤水分可持续利用最大年限分别为26a和18a.  相似文献   

11.
Secondary salinization of soil is a major limiting factor of agricultural sustainability and recovery of functional environments in irrigated agriculture in arid and semi-arid regions. The ameliorating effect of planting alfalfa (Medicago sativa) on salt-affected soils was assessed in field experiments in the irrigated region of Qingwangchuan basin for 5 years. The results showed that salt content in the soil profile gradually decreased with duration of alfalfa cultivation. Soil EC in the layer of 0-20 cm decreased significantly. The concentrations of soluble anions were found to be in the order of Cl- > SO42- > HCO3- in the soil profile of the study area. After alfalfa planting, Cl- concentration in the soil profile notably decreased. In contrast, HCO3- concentration was significantly higher in the topsoil planted to alfalfa than in unplanted soil, especially after the first and the second year of cultivation, but markedly decreased after 3 years of alfalfa growth. With the extension of cultivation ages, total N content in different soil layers gradually increased through N2 fixation. Organic matter content in the soil profile was not enhanced significantly until the later stages of alfalfa cultivation. Available P accumulated in the topsoil in dependence on the length of cultivation. Soil pH was significantly higher in the planted than unplanted treatment, but was gradually decreased with increased duration of cultivation, especially in topsoil. Significant differences in ash content of alfalfa shoot were found between the different cultivation ages. Alfalfa shoot Na concentration showed slightly decrease, whereas shoot Cl- concentration decreased with the duration of cultivation. The ameliorating effect of alfalfa cultivation on salt-affected soil showed a spatial and temporal variability due to the interactions between soil and plants. This positive effect resulted in either the salt leaching from the root zone to below 80-cm depth by irrigation water or the removal of less salts through harvest of alfalfa shoots.  相似文献   

12.
咸阳地区近年苹果林地土壤含水量动态变化   总被引:2,自引:0,他引:2  
赵景波  周旗  陈宝群  杜娟  王长燕 《生态学报》2011,31(18):5291-5298
利用人力钻采样法和烘干称重法, 研究了咸阳地区2002-2008年间苹果林地6 m深度范围土壤含水量的动态变化、土壤干层的等级、土壤干层水分恢复、动力机制与消耗过程。资料表明, 咸阳地区干旱年苹果林地土壤含水量较低, 发育了长期性土壤干层。2003和2007丰水年苹果林地土壤干层中的水分得到了显著恢复, 经过当年的水分补给, 土壤干层已经消失。丰水年土层中重力水含量较高, 并能到达2 m深度以下。持续时间较长的重力水的存在是土壤干层水分恢复的驱动力, 但干层水分恢复的直接动力是薄膜水的水膜压力。在年降水量800 mm或更多的条件下, 不论黄土厚度有多大, 土层水分完全能够满足人工林生长的需要。咸阳地区干旱年苹果林地土壤水分不足, 土壤水分收入量小于支出量, 土壤水分为负平衡, 没有剩余的水分通过入渗补给地下水;丰水年苹果林地土壤水分充足, 土壤水分收入量大于支出量, 土壤水分为正平衡, 有剩余的水分通过入渗补给地下水。在年降水量为800 mm左右的丰水年, 该区补给的土壤水分可维持苹果林地在3 a内不会出现长期性干层, 3 a之后一般还会出现长期性土壤干层。  相似文献   

13.
黄土丘陵区植被恢复的土壤碳水效应   总被引:3,自引:0,他引:3  
冯棋  杨磊  王晶  石学圆  汪亚峰 《生态学报》2019,39(18):6598-6609
黄土高原大规模植被恢复显著影响了这一区域土壤水分和有机碳(SOC),从而影响其承载的土壤水源涵养和固碳服务。明确深层土壤水分和有机碳对植被恢复的响应特征是当前黄土高原地区生态水文与生态系统服务研究的一个重要科学问题,其中植被类型以及生长年限是这一过程的重要影响因素。然而,目前关于深层土壤有机碳和土壤水分对植被恢复的响应及二者关系的研究较少。通过对陕北典型黄土丘陵区不同植被类型和生长年限下0—5 m土壤水分与有机碳的监测,分析了深层土壤水分和有机碳对植被恢复的响应及其特征。研究发现:(1)植被恢复后0—5 m土层均出现水分亏缺,土壤水分亏缺在表层1 m最低,2—3 m最高;对于不同恢复方式,林地土壤水分亏缺在恢复至21—30a时显著高于前一阶段(11—20a),而在恢复31a后水分开始恢复,而灌木、草地土壤水分亏缺程度则随恢复年限延长不断增加。(2)林地、灌木、草地0—5 m平均土壤有机碳含量为1.97、1.77、1.72 g/kg;林地土壤固碳量随恢复年限的增加而增加,并且在恢复20a时固碳量与对照农田相比出现净增;灌木土壤固碳量随恢复年限先增加后降低;草地土壤固碳量则随退耕年限增加呈下降趋势并且低于对照农田。(3)表层0—1 m土壤水分随恢复年限增加变化不显著,深层土壤水分则随恢复年限增加显著降低;相比而言,随恢复年限增加,土壤有机碳随年限的变化在各层土壤中均不显著。深层土壤水分与土壤有机碳呈现显著的正相关,且土壤有机碳的增加速率低于土壤水分,研究认为,深层土壤固碳与土壤水分关系密切,且深层土壤固碳需要充足水分参与。深层土壤水分亏缺可能限制植被细根的发展,使深层土壤有机碳输入减少。  相似文献   

14.
Wang Y P  Shao M A  Zhang X C 《农业工程》2008,28(8):3769-3778
By means of fixed-point monitoring and comparative analysis, soil water deficient situation, soil moisture dynamic variation laws, soil aridization and soil water compensation features under condition of different artificial vegetations were studied on 35–45° steep slope of loess region in North Shaanxi Province, China. The results showed that soil water was extremely deficient under condition of perennial artificial vegetation on steep slope, soil water storage (0–10 m) was only equal to 26.2%–42.0% of the field capacity in dry years, and in rainy years it was also only equal to 27.0%–43.3% of the field capacity. The order of soil water deficit was Caragana microphylla > locust > alfalfa > Chinese arborvitae > poplar > Chinese pine > wild land > apricot > Chinese date > farm land. Annual variations of soil moisture with the same vegetation were weakened with soil depth increasing, and occurred mainly in 0–200 cm soil layers. In the same growth season, all CVs (coefficients of variation) of soil moisture under condition of different vegetations were bigger and concentrated comparatively in 0–120 cm soil layers, but difference of CVs in different vegetations was small. Below 120 cm soil layers, CVs were smaller, but difference of CVs in different vegetations was bigger. Permanent dry soil layers always occurred under condition of perennial vegetation on steep slope, but the difference of soil aridization intensity was obvious among different vegetations and growth years. Soil water compensation and recovery depths in rainy seasons were 1.0–1.4 m, but the soil water storage increment and compensation degree in different vegetations were dramatically different. Soil water compensation depth in the same vegetation in rainy years was over 60 cm more than that in dry years, while the soil water storage increment in 5 m soil layers increased over 3 times. Under natural precipitation, the soil water deficit in artificial vegetation on steep slope cannot be ameliorated, and the soil aridization also can't be relieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号