首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
血小板收缩蛋白功能调节是通过Ca~(2+)依赖的钙调素(calmodulin,CM)激活肌球蛋白轻链激酶而使肌球蛋白20000道尔顿轻链磷酸化实现的。细胞内Ca~(2+)浓度的高低决定了Ca~(2+)-CM复合物是否形成,因此,Ca~(2+)在调节中起着关键作用。cAMP阻抑CM与肌球蛋白激酶结合,从而抑制肌球蛋白轻链磷酸化,对收缩蛋白活动起抑制作用。  相似文献   

2.
平滑肌细胞迁移的肌球蛋白轻链非磷酸化途径   总被引:2,自引:0,他引:2  
为了阐明平滑肌细胞迁移存在肌球蛋白轻链非磷酸化调节途径,研究花生四烯酸(arachidonicacid,AA)对肌球蛋白轻链非磷酸化状态下平滑肌细胞迁移的影响及其相关的信号传导途径.经Boyden小室跨膜迁移实验发现,AA对培养的兔血管平滑肌SM3细胞具有明显的诱导迁移作用.然而,当预先用10μmolL肌球蛋白轻链激酶(myosinlightchainkinase,MLCK)特异性抑制剂ML7作用SM3细胞后,发现AA对SM3细胞仍然具有明显的诱导迁移作用,并呈剂量依赖性,这种诱导作用可被细胞外信号调节激酶12(ERK12)的特异性抑制剂PD98059或磷脂酶C(PLC)的特异性抑制剂U73122所拮抗.此外,Ⅱ型肌球蛋白抑制剂blebbistatin(BLB)可部分抑制“非磷酸化”状态下AA的诱导迁移作用.经Western印迹检测显示,10μmolLML7可完全抑制SM3细胞中20kD肌球蛋白轻链(MLC20)磷酸化,并且加入AA后MLC20仍为非磷酸化状态.应用免疫荧光染色法观察肌动蛋白在SM3细胞中分布的变化,发现在AA作用下肌动蛋白呈细胞边缘聚集现象,有伪足形成,细胞形态表现为迁移状态.预先用ML7作用后再加入AA,肌动蛋白的分布与上述结果相同.研究结果初步表明,在平滑肌细胞迁移的作用途径中,在MLC磷酸化调节途径受到抑制时,AA可诱导MLC非磷酸化的平滑肌细胞发生迁移,其分子机理可能与ERK12和PLC信号传导途径有关,非磷酸化的肌球蛋白直接参与了该迁移过程.  相似文献   

3.
在有Ca2+和钙调蛋白存在时,肌球蛋白轻链激酶催化肌球蛋白磷酸化,促使肌动蛋白激活的肌球蛋白(肌动球蛋白)Mg2+-ATP酶活性显著增加.然而,肌球蛋白磷酸化水平与Mg2+-ATP酶之间的关系是非线性的,原肌球蛋白可以进一步增加Mg2+-ATP酶的活性,但仍不改变它们之间的非线性关系.肌球蛋白轻链激酶的合成肽抑制剂抑制了肌球蛋白磷酸化和Mg2+-ATP酶活性,并导致平滑肌去膜肌纤维的等长收缩张力与速度的降低.结果提示肌球蛋白轻链激酶参与脊椎动物平滑肌收缩的调节过程,肌球蛋白轻链磷酸化作用会引起平滑肌收缩  相似文献   

4.
 应用凝胶电泳覆盖技术和放射自显影法研究了32~P-标记的平滑肌肌球蛋白调节轻链在肌球蛋白分子上的定位。实验结果表明调节轻链(LC_(20))可重新结合于平滑肌肌球蛋白重链(200kD),重酶解肌球蛋白(130kD)及其62kD和26kD肽段上。这提示调节轻链的结合点位于平滑肌肌球蛋白亚段-1羧基端的26kD肽段上。  相似文献   

5.
肌球蛋白轻链激酶 (MLCK)的活性片段 (MLCKF)能比完整的MLCK更有效地、以非钙依赖性的方式磷酸化肌球蛋白轻链 (MLC2 0 )。该片段是用胰蛋白酶水解MLCK ,再经DEAE 5 2柱层析分离而获得的 ,分子量约为 6 1kD。Western印迹已证实该MLCKF与完整的MLCK同源。MLCKF对肌球蛋白轻链的磷酸化作用及其作用特征通过甘油电泳及ScoinImage扫描软件检测 ,肌球蛋白ATP酶活性通过分光光度法检测。实验结果证实 ,MLCKF催化的MLC2 0 非钙依赖性磷酸化 (CIPM)比MLCK催化的CIPM效力高、耗能多 ,但比MLCK催化的MLC2 0 钙依赖性磷酸化 (CDPM)效力低、耗能少 ;MLCKF催化的CIPM与MLCK催化的CIPM均较MLCK催化的CDPM稳定 ,不易受温育温度、温育时间及离子浓度等变化的影响 ,且对MLCK抑制剂ML 9敏感性低。  相似文献   

6.
目的:探寻MLCK的非激酶活性区域对MLCK活性的影响,进一步阐明MLCK的非激酶活性在调节平滑肌收缩过程中的分子机制。方法:利用编码MLCK全长的pColdI表达载体对其ATP结合位点进行定点突变,获得无激酶活性的MLCK突变体;应用Glycerol—PAGE鉴定肌球蛋白磷酸化水平;应用孔雀绿方法检测重组MLCK对肌球蛋白ATP酶活性的影响。结果:MLCK/△ATP(突变型)失去磷酸化肌球蛋白轻链的激酶活性;重组MLCK(野生型)和MLCK/AATP(突变型)均可以在非钙条件下激活非磷酸化肌球蛋白Mg2+-ATP酶活性,抑制磷酸化肌球蛋白的Mg2+.ATP酶活性,而且激活与抑制作用均随着MLCK浓度的增加而增大,但二者对肌球蛋白的ATP酶活性的作用没有显著差异(P〉0.05)。结论:平滑肌肌球蛋白轻链激酶及ATP结合位点突变体具有激活非磷酸化肌球蛋白ATP酶活性的作用。  相似文献   

7.
肌球蛋白是肌原纤维粗丝的组成单位,由多条重链与多条轻链组成,被视为一种分子马达。在肌肉收缩、趋化性胞质分裂、胞引作用、膜泡运输以及信号传导等生理过程中起重要作用。目前肌球蛋白磷酸化是研究的一个热点,它对细胞的迁移、收缩、胞质分裂以及其他未知功能都有着至关重要的作用。肌球蛋白磷酸化分为重链的磷酸化与轻链的磷酸化。根据国内外的最新相关研究报道,分别从肌球蛋白的结构与功能、磷酸化的作用机制、磷酸化的生物学功能以及最新研究成果等方面,对肌球蛋白的磷酸化研究进展进行阐述。  相似文献   

8.
目的:探讨小檗碱对平滑肌肌球蛋白功能及胃肠平滑肌收缩性的影响.方法:以平滑肌肌球蛋白Mg2+-ATPase活性、肌球蛋白磷酸化以及胃与肠道平滑肌的收缩振幅为指标,考察小檗碱对平滑肌肌球蛋白Mg2+-ATPase活性和肌球蛋白磷酸化程度的影响,及其对离体小肠与胃平滑肌条收缩性的影响.结果:(1)在肌球蛋白轻链的Ca2+依赖性磷酸化反应中.小檗碱能抑制磷酸化肌球蛋白Mg2+-ATPase活性;(2)在肌球蛋白轻链的Ca2+依赖性磷酸化反应中,小檗碱可显著抑制磷酸化肌球蛋白轻链磷酸化程度;(3)小檗碱对大鼠离体小肠及胃平滑肌条收缩性均具有抑制作用.且均呈剂量依赖性.结论:小檗碱可通过抑制平滑肌肌球蛋白的功能,抑制胃肠道平滑肌的收缩性.  相似文献   

9.
肌球蛋白轻链激酶(myosin light chain kinase,MLCK)具有激酶和非激酶活性,在平滑肌收缩过程中起着关键酶调控的作用.为进一步阐明MLCK非激酶活性在平滑肌收缩过程中的调节作用,利用已删除部分激酶区域的MLCK重组体(pGEXF6.5)在大肠杆菌中进行表达,采用亲和层析技术纯化表达的MLCK片段,应用EnzChek磷分析试剂盒检测MLCK片段对磷酸化肌球蛋白、水解重酶解肌球蛋白(heavymeromyosin,HMM)及肌球蛋白亚片段1(subfragmentl,S1)ATP酶活性的影响,体外检测MLCK片段对肌动蛋白肌丝运动的调节.研究结果显示,pGEX-F6.5重组表达载体在大肠杆菌中以可溶性GST融合蛋白的形式表达.该融合蛋白经Glutathione-Sepharose4B纯化、SDS-PAGE鉴定得到较纯的单一表达条带.纯化的MLCK片段对磷酸化肌球蛋白、HMM和S1的ATP酶活性均有明显激活作用.MLCK片段激活磷酸化肌球蛋白ATP酶活性为:Vmax=(19.426±1.669)倍;Km=(0.486±0.106)μmol/L,MLCK片段对磷酸化HMM和S1的ATP酶活性也有相似的刺激作用.体外肌丝运动研究表明,随着MLCK片段浓度的增加,磷酸化肌球蛋白与肌动蛋白结合的数量不断增加,肌丝运动的速度也随之增加.上述结果表明,MLCK的C端非激酶活性具有调节磷酸化的肌球蛋白ATP酶活性及肌丝运动的作用.  相似文献   

10.
动物肌球蛋白碱性轻链研究进展   总被引:1,自引:0,他引:1  
肌球蛋白碱性轻链是肌球蛋白的组成成分之一,作为结构和调节蛋白在肌纤维的发生分化、肌肉运动和代谢等过程中发挥重要生理功能。简要综述肌球蛋白碱性轻链亚型的分析、碱性轻链基因的数量和分布、碱性轻链发育性表达等,为肌肉发育生物学研究提供参考。  相似文献   

11.
Skeletal muscle myosin light chain kinase (skMLCK) is a dedicated Ca2+/calmodulin-dependent serine–threonine protein kinase that phosphorylates the regulatory light chain (RLC) of sarcomeric myosin. It is expressed from the MYLK2 gene specifically in skeletal muscle fibers with most abundance in fast contracting muscles. Biochemically, activation occurs with Ca2+ binding to calmodulin forming a (Ca2+)4•calmodulin complex sufficient for activation with a diffusion limited, stoichiometric binding and displacement of a regulatory segment from skMLCK catalytic core. The N-terminal sequence of RLC then extends through the exposed catalytic cleft for Ser15 phosphorylation. Removal of Ca2+ results in the slow dissociation of calmodulin and inactivation of skMLCK. Combined biochemical properties provide unique features for the physiological responsiveness of RLC phosphorylation, including (1) rapid activation of MLCK by Ca2+/calmodulin, (2) limiting kinase activity so phosphorylation is slower than contraction, (3) slow MLCK inactivation after relaxation and (4) much greater kinase activity relative to myosin light chain phosphatase (MLCP). SkMLCK phosphorylation of myosin RLC modulates mechanical aspects of vertebrate skeletal muscle function. In permeabilized skeletal muscle fibers, phosphorylation-mediated alterations in myosin structure increase the rate of force-generation by myosin cross bridges to increase Ca2+-sensitivity of the contractile apparatus. Stimulation-induced increases in RLC phosphorylation in intact muscle produces isometric and concentric force potentiation to enhance dynamic aspects of muscle work and power in unfatigued or fatigued muscle. Moreover, RLC phosphorylation-mediated enhancements may interact with neural strategies for human skeletal muscle activation to ameliorate either central or peripheral aspects of fatigue.  相似文献   

12.
分离了扇贝闭壳肌肌钙蛋白,其分子量为46(InI),40(TnT),和22(TnC)kD.肌球蛋白B含有主要的收缩蛋白质与调节蛋白质,在有Ca2+和ATP存在时,它会发生超沉淀作用.经低离子强度溶液反复沉淀处理,即失去Ca2+-敏感性,成为去敏肌球蛋白B.在Ca2+和ATP作用下,它仍可发生超沉淀作用,但仅及最大活性的50%.若加入肌钙蛋白,则反应活性可完全恢复.兔骨骼肌肌钙蛋白可替代扇贝闭壳肌肌钙蛋白.这表明扇贝闭壳肌兼有肌动蛋白相关调节和肌球蛋白相关调节.  相似文献   

13.
In an attempt to elucidate the Ca2+-regulated mechanism of motility in Physarum plasmodia, we improved the preparation method for myosin B and pure myosin. The obtained results are as follows: 1. We obtained two types of myosin B which are distinguishable from each other with respect to their sensitivity to Ca2+. The inactive type of myosin B had low superprecipitation activities both in the presence and in the absence of Ca2+. The active type showed very high superprecipitation activity in EGTA, and the activity was conspicuously inhibited by Ca2+. The active type was converted into the inactive type by treatment with potato acid phosphatase. Also the inactive type or the phosphatase-treated active type was converted into the active type upon reacting with ATP-gamma-S. 2. In the reaction with ATP-gamma-S, only the myosin HC of myosin B was phosphorylated. The phosphorylation was independent of Ca2+ and calmodulin, and the extent was about 1 mol/mol HC. 3. The Ca2+ sensitivity in the superprecipitation of the active type was not decreased by adding an excess amount of F-actin. Besides, the actin-activated Mg2+-ATPase activity of purified phosphorylated myosin was not Ca2+-sensitive. Therefore, presence of a Ca2+-dependent inhibitory factor(s) that could bind to myosin was suggested. 4. The Mg2+-ATPase activity of purified phosphorylated myosin was 7-8 times enhanced by F-actin, but that of dephosphorylated myosin was hardly activated at all. 5. In a gel filtration in 0.5 M KCl, phosphorylated myosin was eluted behind dephosphorylated myosin. Electron microscopy applying the rotary-shadow method showed significant difference in flexibility in the tail between phosphorylated and dephosphorylated myosin molecules. 6. In 40 mM KCl and 5-10 mM MgCl2, phosphorylated myosin formed thick filaments, but dephosphorylated myosin did not, whether there was ATP or not. The above results clearly show that the phosphorylation of myosin HC is indispensable to ATP-induced superprecipitation, the actin-activated Mg2+-ATPase activity, and the formation of thick filaments of myosin. A myosin-linked factor(s) that inhibits an actin-myosin interaction in a Ca2+-dependent manner may exist.  相似文献   

14.
Incubation of bovine aortic native actomyosin with cyclic AMP and bovine aortic cyclic AMP-dependent protein kinase produced a rightward shift in the relation between free Ca2+ and both superprecipitation and actomyosin ATPase activity. The relation between free Ca2+ and phosphorylation of myosin light chains was also shifted to the right. The concentration of free Ca2+ required for half-maximal activation of both ATPase activity and myosin light chain phosphorylation was approximately 1.0 microM for control actomyosin and 2.5 microM for actomyosin incubated with cyclic AMP-protein kinase. Neither basal nor maximal activities were significantly affected by incubation with cyclic AMP-protein kinase. Addition of e microM calmodulin to cyclic AMP-protein kinase-treated actomyosin relieved inhibition of both superprecipitation and myosin light chain phosphorylation. These findings suggest that cyclic AMP-protein kinase-mediated inhibition of actin-myosin interactions in vascular smooth muscle involve a shift in the Ca2+ sensitivity of the system. This shift probably involves Ca2+-calmodulin interactions and the control of phosphorylation of the myosin light chains.  相似文献   

15.
Developmental changes in the regulation of smooth muscle contraction were examined in urinary bladder smooth muscle from mice. Maximal active stress was lower in newborn tissue compared with adult, and it was correlated with a lower content of actin and myosin. Sensitivity to extracellular Ca2+ during high-K+ contraction, was higher in newborn compared with 3-wk-old and adult bladder strips. Concentrations at half maximal tension (EC50) were 0.57 +/- 0.01, 1.14 +/- 0.12, and 1.31 +/- 0.08 mM. Force of the newborn tissue was inhibited by approximately 45% by the nonmuscle myosin inhibitor Blebbistatin, whereas adult tissue was not affected. The calcium sensitivity in newborn tissue was not affected by Blebbistatin, suggesting that nonmuscle myosin is not a primary cause for increased calcium sensitivity. The relation between intracellular [Ca2+] and force was shifted toward lower [Ca2+] in the newborn bladders. This increased Ca2+ sensitivity was also found in permeabilized muscles (EC50: 6.10 +/- 0.07, 5.77 +/- 0.08, and 5.55 +/- 0.02 pCa units, in newborn, 3-wk-old, and adult tissues). It was associated with an increased myosin light chain phosphorylation and a decreased rate of dephosphorylation. No difference was observed in the myosin light chain phosphorylation rate, whereas the rate of myosin light chain phosphatase-induced relaxation was about twofold slower in the newborn tissue. The decreased rate was associated with a lower expression of the phosphatase regulatory subunit MYPT-1 in newborn tissue. The results show that myosin light chain phosphatase activity can be developmentally regulated in mammalian urinary bladders. The resultant alterations in Ca2+ sensitivity may be of importance for the nervous and myogenic control of the newborn bladders.  相似文献   

16.
Actin, myosin, and "native" tropomyosin (NTM) were separately isolated from chicken gizzard muscle and rabbit skeletal muscle. With various combinations of the isolated contractile proteins, Mg-ATPase activity and superprecipitation activity were measured. It was thus found that gizzard myosin and gizzard NTM behaved differently from skeletal myosin and skeletal NTM, whereas gizzard actin functioned in the same wasy as skeletal actin. It was also found that gizzard myosin preparations were often Ca-sensitive, that is, that the two activities of gizzard myosin plus actin without NTM were activated by low concentrations of Ca2+. The Mg-ATPase activity of a Ca-insensitive preparation of gizzard myosin was not activated by actin even in the presence of Ca2+. When Ca-sensitive gizzard myosin was incubated with ATP (and Mg2+) in the presence of Ca2+, a light-chain component of gizzard myosin was phosphorylated. The light-chain phosphorylation also occurred when Ca-insensitive myosin was incubated with gizzard NTM and ATP (plus Mg2+) in the presence of Ca2+. In either case, the light-chain phosphorylation required Ca2+. Phosphorylated gizzard myosin in combination with actin was able to exhibit superprecipitation, and Mg-ATPase of the phosphorylated gizzard myosin was activated by actin; the actin activation and superprecipitation were found to occur even in the absence of Ca2+ and NTM or tropomyosin. The phosphorylated light-chain component was found to be dephosphorylated by a partially purified preparation of gizzard myosin light-chain phosphatase. Gizzard myosin thus dephosphorylated behaved exactly like untreated Ca-insensitive gizzard myosin; in combination with actin, it did not superprecipitate either in the presence of Ca2+ or in its absence, but did superprecipitated in the presence of NTM and Ca2+. Ca-activated hydrolysis of ATP catalyzed by gizzard myosin B proceeded at a reduced rate after removal of Ca2+ (by adding EGTA), whereas that catalyzed by a combination of actin, gizzard myosin, and gizzard NTM proceeded at the same rate even after removal of Ca2+. However, addition of a partially purified preparation of gizzard myosin light-chain phosphatase was found to make the recombined system behave like myosin B. Based on these findings, it appears that myosin light-chain kinase and myosin light-chain phosphatase can function as regulatory proteins for contraction and relaxation, respectively, of gizzard muscle.  相似文献   

17.
Myosin was purified from ovine uterine smooth muscle. The 20,000 dalton myosin light chain was phosphorylated to varying degrees by an endogenous Ca2+ dependent kinase. The kinase and endogenous phosphatases were then removed via column chromatography. In the absence of actin neither the size of the initial phosphate burst nor the steady state Mg2+-dependent ATPase activity were affected by phosphorylation. However, phosphorylation was required for actin to increase the Mg2+-dependent ATPase activity and for the myosin to superprecipitate with actin. Ca2+ did not affect the Mg2+-dependent ATPase activity in the presence or absence of action or the rate or extent of superprecipitation with actin once phosphorylation was obtained. These data indicate that: 1) phosphorylation of the 20,000 dalton myosin light chain controls the uterine smooth muscle actomyosin interaction, 2) in the absence of actin, phosphorylation does not affect either the ATPase of myosin or the size of the initial burst of phosphate and, 3) Ca2+ is important in controlling the light chain kinase but not the actomyosin interaction.  相似文献   

18.
Skinned cells of chicken gizzard were used to study the effect of a smooth muscle phosphatase (SMP-IV) on activation and relaxation of tension. SMP-IV has previously been shown to dephosphorylate light chains on myosin. When this phosphatase was added to submaximally Ca2+-activated skinned cells, tension increased while phosphorylation of myosin light chains decreased. In contrast, when the myosin phosphatase was added to cell bundles activated in the absence of Ca2+ by a Ca2+-insensitive myosin light chain kinase, tension and phosphorylation of the myosin light chains both decreased. These data suggest that Ca2+ inhibits the deactivation of tension even when myosin light chains are dephosphorylated to a low level. Furthermore, comparison of Ca2+-activated cells caused to relax in CTP, in the presence or absence of Ca2+, shows that cells in the presence of Ca2+ do not relax completely, whereas in the absence of Ca2+ cells completely relax. Solutions containing Ca2+ and CTP, however, are incapable of generating tension from the resting state. Endogenous myosin light chain kinase is not active in solutions containing CTP and dephosphorylation of myosin light chains occurs in CTP solutions both in the presence and absence of Ca2+. These data imply that Ca2+ inhibits relaxation even though myosin light chains are dephosphorylated. These data are consistent with a model wherein an obligatory Ca2+-activated myosin light chain phosphorylation is followed by a second Ca2+ activation process for further tension development or maintenance.  相似文献   

19.
In beating hearts, phosphorylation of myosin regulatory light chain (RLC) at a single site to 0.45 mol of phosphate/mol by cardiac myosin light chain kinase (cMLCK) increases Ca2+ sensitivity of myofilament contraction necessary for normal cardiac performance. Reduction of RLC phosphorylation in conditional cMLCK knock-out mice caused cardiac dilation and loss of cardiac performance by 1 week, as shown by increased left ventricular internal diameter at end-diastole and decreased fractional shortening. Decreased RLC phosphorylation by conventional or conditional cMLCK gene ablation did not affect troponin-I or myosin-binding protein-C phosphorylation in vivo. The extent of RLC phosphorylation was not changed by prolonged infusion of dobutamine or treatment with a β-adrenergic antagonist, suggesting that RLC is constitutively phosphorylated to maintain cardiac performance. Biochemical studies with myofilaments showed that RLC phosphorylation up to 90% was a random process. RLC is slowly dephosphorylated in both noncontracting hearts and isolated cardiac myocytes from adult mice. Electrically paced ventricular trabeculae restored RLC phosphorylation, which was increased to 0.91 mol of phosphate/mol of RLC with inhibition of myosin light chain phosphatase (MLCP). The two RLCs in each myosin appear to be readily available for phosphorylation by a soluble cMLCK, but MLCP activity limits the amount of constitutive RLC phosphorylation. MLCP with its regulatory subunit MYPT2 bound tightly to myofilaments was constitutively phosphorylated in beating hearts at a site that inhibits MLCP activity. Thus, the constitutive RLC phosphorylation is limited physiologically by low cMLCK activity in balance with low MLCP activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号