首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Ruan  Jianyun  Zhang  Fusuo  Wong  Ming H. 《Plant and Soil》2000,223(1-2):65-73
The effects of nitrogen form and phosphorus source on the growth, nutrient uptake and rhizosphere soil property of tea (Camellia sinensis L.) were investigated in a pot experiment. The experiment was performed with a compartmental cropping device, which enables the collection of rhizosphere soil at defined distances from the root of tea plant. Nitrogen was supplied as nitrate or ammonium in combination with soluble phosphorus as Ca(H2PO4)2 or insoluble P as rock phosphate. The leaf dry matter production of tea was significantly greater in the treatments with NH4 + than NO3 -, whereas dry matter production of root and stem was not significantly affected. Addition of phosphorus as either source did not influence the dry matter production. The concentrations of K in root, Mg and Ca in both the shoot and root supplied with NO3 - were significantly higher than in NH4 + and influence of P sources was minor. On the contrary, Al and Mn concentrations were significantly larger in NH4 --fed plants which could be attributed to remarkably increased availability of Al and Mn caused by acidification of the rhizosphere soil (the first 1-mm soil section from the root surface) with NH4–N nutrition. The concentration of N in shoot was also significantly higher in NH4- than in NO3-fed plants, indicating higher use efficiency of NH4–N. Whatever the phosphate source, rhizosphere pH declined in ammonium compared to in nitrate treatment. The pH decrease was much larger when no P or soluble P were applied and reached 0.85–1.30 units which extended to 3–5 mm away from the root surface. Exchangeable acidity, content of exchangeable Al and Mn were also considerably higher in the rhizosphere soils of NH4 + fed tea plants. Significant amounts of P dissolved from rock phosphate accumulated in rhizosphere of NH4 +, not NO3 -, suggesting that the dissolution of rock phosphate was induced by the proton excreted by tea root fed with ammonium. With soluble P addition, shoot and root P concentrations were greater in NH4 + than in NO3 - treatment and it appeared that this difference could not be sufficiently explained by the available P content in soil which was only slightly higher in NH4 + treatment. With rock phosphate addition, the shoot and root P concentrations were hardly affected by nitrogen form, although the available P content was much higher and accumulated in the rhizosphere soil supplied with ammonium. The reason for this was discussed with regard to the inter-relationship of Al with P uptake. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

2.

Aims

We investigated the role of arbuscular mycorrhizal fungi (AMF) and heterotrophic soil microbes in the uptake of phosphorus (P) by Trifolium subterraneum from a pulse.

Methods

Plants were grown in sterilised pasture field soil with a realistic level of available P. There were five treatments, two of which involved AMF: 1) unsterilised field soil containing a community of AMF and heterotrophic organisms; 2) Scutellospora calospora inoculum (AMF); 3) microbes added as filtrate from the field soil; 4) microbes added as filtrate from the S. calospora inoculum; 5) no additions, i.e. sterilised field soil. After 11 weeks, plants were harvested: 1 day before (day 0), 1 day after (day 2) and 7 days after (day 8) the pulse of P (10 mg kg?1).

Results

There was no difference among treatments in shoot and root dry weight, which increased from day 0 to day 8. At day 0, shoots and roots of plants in the colonised treatments had higher P and lower Mn concentrations. After the pulse, the rate of increase in P concentration in the shoots was slower for the colonised plants, and the root Mn concentration declined by up to 50 % by day 2.

Conclusions

Plants colonised by AMF had a lower rate of increase in shoot P concentration after a pulse, perhaps because intraradical hyphae accumulated P and thus reduced its transport to the shoots.  相似文献   

3.
Mohammad MJ  Pan WL  Kennedy AC 《Mycorrhiza》2005,15(4):259-266
Plexiglass pot growth chamber experiments were conducted to evaluate the chemical alterations in the rhizosphere of mycorrhizal wheat roots after inoculation with Glomus intraradices [arbuscular mycorrhizal fungus (AMF)]. Exchange resins were used as sinks for nutrients to determine whether the inoculated plant can increase the solubility and the uptake of P and micronutrients. Treatments included: (1) soil (bulk soil); (2) AMF inoculation no P addition (I–P); (3) no inoculation with no P addition (NI–P); (4) AMF inoculation with addition of 50 mg P (kg soil)–1 (I+P), and (5) no inoculation with addition of 50 mg P (kg soil)–1 (NI+P). The AMF inoculum was added at a rate of four spores of G. intraradices (g soil)–1. The exchange resin membranes were inserted vertically 5 cm apart in the middle of Plexiglass pots. Spring wheat (Triticum aestivum cv. Len) was planted in each Plexiglass pot and grown for 2 weeks in a growth chamber where water was maintained at field capacity. Rhizosphere pH and redox potential (Eh), nutrient bioavailability indices and mycorrhizal colonization were determined. Mycorrhizal inoculation increased the colonization more when P was not added, but did not increase the shoot dry weight at either P level. The rhizosphere pH was lower in the inoculated plants compared to the noninoculated plants in the absence of added P, while the Eh did not change. The decrease in pH in the rhizosphere of inoculated plants could be responsible for the increased P and Zn uptake observed with inoculation. In contrast, Mn uptake was decreased by inoculation. The resin-adsorbed P was increased by inoculation, which, along with the bioavailability index data, may indicate that mycorrhizal roots were able to increase the solubility of soil P.  相似文献   

4.

Background and aims

Australian herbaceous native species have evolved in phosphorus (P) impoverished soils. Our objective was to explore shoot and root adaptations of two of these species with potential to be developed as pasture plants, at low, moderate and high P supply after 4 and 7?weeks of growth.

Methods

A glasshouse experiment examined the effect of 5, 20 and 80?mg?P?kg?1 air-dry soil on growth, rhizosphere carboxylate content, and mineral nutrition of two Australian native perennials, Kennedia nigricans (Fabaceae) and Ptilotus polystachyus (Amaranthaceae), and the exotic Medicago sativa (Fabaceae).

Key results

Leaf P concentrations at P80 were 6, 14 and 52?mg?P?g?1 leaf dry weight for M. sativa, K. nigricans and P. polystachyus, respectively. As soil P concentration increased, rhizosphere carboxylate content decreased for M. sativa, increased and then decreased for K. nigricans and was unchanged for P. polystachyus. For all species, the contribution of malic acid declined at the second harvest. For all species and P treatments, the amount of rhizosphere carboxylates per unit root length decreased as root length of a plant increased. Plant P content was determined more by P uptake rate per unit root length and time than by root length. Uptake of Mo for all species, and uptake of K, Mg and Mn for P. polystachyus, increased with soil P concentration. Uptake of Fe and S was higher when the content of carboxylates in the rhizosphere was higher.

Conclusion

Root physiological adaptations (i.e. rhizosphere carboxylate content and P-uptake rate) are more important than morphological adaptations (i.e. root length and diameter) to enhance the uptake of P and cations.  相似文献   

5.
The effects of liming and inoculation with the arbuscular mycorrhizal fungus, Glomus intraradices Schenck and Smith on the uptake of phosphate (P) by maize (Zea mays L.) and soybean (Glycine max [L.] Merr.) and on depletion of inorganic phosphate fractions in rhizosphere soil (Al-P, Fe-P, and Ca-P) were studied in flat plastic containers using two acid soils, an Oxisol and an Ultisol, from Indonesia. The bulk soil pH was adjusted in both soils to 4.7, 5.6, and 6.4 by liming with different amounts of CaCO3.In both soils, liming increased shoot dry weight, total root length, and mycorrhizal colonization of roots in the two plant species. Mycorrhizal inoculation significantly increased root dry weight in some cases, but much more markedly increased shoot dry weight and P concentration in shoot and roots, and also the calculated P uptake per unit root length. In the rhizosphere soil of mycorrhizal and non-mycorrhizal plants, the depletion of Al-P, Fe-P, and Ca-P depended in some cases on the soil pH. At all pH levels, the extent of P depletion in the rhizosphere soil was greater in mycorrhizal than in non-mycorrhizal plants. Despite these quantitative differences in exploitation of soil P, mycorrhizal roots used the same inorganic P sources as non-mycorrhizal roots. These results do not suggest that mycorrhizal roots have specific properties for P solubilization. Rather, the efficient P uptake from soil solution by the roots determines the effectiveness of the use of the different soil P sources. The results indicate also that both liming and mycorrhizal colonization are important for enhancing P uptake and plant growth in tropical acid soils.  相似文献   

6.
Sadana  U.S.  Claassen  N. 《Plant and Soil》2000,218(1-2):233-238
Understanding of the mechanisms of Mn supply from the soil and uptake by the plants can be improved by using simulation models that are based on basic principles. For this, a pot culture experiment was conducted with a sandy clay loam soil to measure Mn uptake by summer wheat (Triticum aestivum L. cv. Planet), maize (Zea mays L. cv. Pirat) and sugar beet (Beta vulgaris L. cv. Orbis) and to simulate Mn dynamics in the rhizosphere by means of a mechanistic model. Seeds of three crops were sown in pots containing 2.9 kg soil in a controlled growth chamber. Root and shoot weight, Mn content of plants, root length and root radius were determined 8 (13 days in case of sugar beet) and 20 days after germination. Soil and plant parameters were determined to run nutrient uptake model calculations. Manganese content of the shoot varied from 25 mg kg-1 for sugar beet to 34 mg kg-1 for maize. Sugar beet had the lowest root length/shoot weight ratio but the highest relative shoot growth rate, resulting in the highest shoot demand on the root. This is reflected by the Mn influx which was 0.9 × 10-7, 1.7 × 10-7 and 2.5 × 10-7 nmol cm-1 s-1 for wheat, maize and sugar beet, respectively. Nutrient uptake model calculations predicted similar influx values. Initial Mn concentration of 0.2 μM in the soil solution decreased to only 0.16 μM for wheat, 0.13 μM for maize and 0.11 μM for sugar beet at the root surface. This shows that manganese transport to the root was not a limiting step. This was confirmed by the fact that an assumed 20 times increase in maximum influx (Imax) increased the calculated Mn influx by 3.7 times. Sensitivity analysis demonstrated that for controlling Mn uptake the initial soil solution concentration (C Li), the root radius (r0), Imax and the Michaelis constant (K m) were the most sensitive factors in the listed order. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
Chickpea and white lupin roots are able to exude large amounts of carboxylates, but the resulting concentrations in the rhizosphere vary widely. We grew chickpea in pots in eleven different Western Australian soils, all with low phosphorus concentrations. While final plant mass varied more than two-fold and phosphorus content almost five-fold, there were only minor changes in root morphological traits that potentially enhance phosphorus uptake (e.g., the proportion of plant mass allocated to roots, or the length of roots per unit root mass). In contrast, the concentration of carboxylates (mainly malonate, citrate and malate, extracted using a 0.2 mM CaCl2 solution) varied ten-fold (averaging 2.3 mol g–1 dry rhizosphere soil, approximately equivalent to a soil solution concentration of 23 mM). Plant phosphorus uptake was positively correlated with the concentration of carboxylates in the rhizosphere, and it was consistently higher in soils with a smaller capacity to sorb phosphorus. Phosphorus content was not correlated with bicarbonate-extractable phosphorus or any other single soil trait. These results suggest that exuded carboxylates increased the availability of phosphorus to the plant, however, the factors that affected root exudation rates are not known. When grown in the same six soils, three commonly used Western Australian chickpea cultivars had very similar rhizosphere carboxylate concentrations (extracted using a 0.2 mM CaCl2 solution), suggesting that there is little genetic variation for this trait in chickpea. Variation in the concentration of carboxylates in the rhizosphere of white lupin did not parallel that of chickpea across the six soils. However, in both species the proportion of citrate decreased and that of malate increased at lower soil pH. We conclude that patterns of variation in root exudates need to be understood to optimise the use of this trait in enhancing crop phosphorus uptake.  相似文献   

8.
To investigate whether arbuscular mycorrhizal fungi (AMF) – abundant in a phosphate-polluted but nitrogen-poor field site – improve plant N nutrition, we carried out a two-factorial experiment, including N fertilization and fungicide treatment. Percentage of root length colonized (% RLC) by AMF and tissue element concentrations were determined for four resident plant species. Furthermore, soil nutrient levels and N effects on aboveground biomass of individual species were measured. Nitrogen fertilization lowered % RLC by AMF of Artemisia vulgaris L., Picris hieracioides L. and Poa compressa L., but not of Bromus japonicus Thunb. This – together with positive N addition effects on N status, N:P-ratio and aboveground biomass of most species – suggested that plants are mycorrhizal because of N deficiency. Fungicide treatment, which reduced % RLC in all species, resulted in lower N concentrations in A. vulgaris and P. hieracioides, a higher N concentration in P. compressa, and did not consistently affect N status of B. japonicus. Evidently, AMF had an influence on the N nutrition of plants in this P-rich soil; however – potentially due to differences in their mycorrhizal responsiveness – not all species seemed to benefit from a mycorrhiza-mediated N uptake and accordingly, N distribution.  相似文献   

9.
Excess manganese (Mn) in soil is toxic to crops, but in some situations arbuscular mycorrhizal fungi (AMF) alleviate the toxic effects of Mn. Besides the increased phosphorus (P) uptake, mycorrhiza may affect the balance between Mn-reducing and Mn-oxidizing microorganisms in the mycorrhizosphere and affect the level of extractable Mn in soil. The aim of this work was to compare mycorrhizal and non-mycorrhizal plants that received extra P in relation to alleviation of Mn toxicity and the balance between Mn-oxidizing and Mn-reducing bacteria in the mycorrhizosphere. A clayey soil containing 508 mg kg−1 of extractable Mn was fertilized with 30 mg kg−1 (P1) or 45 mg kg−1 (P2) of soluble P. Soybean (Glycine max L. Merrill, cv. IAC 8-2) plants at P1 level were non-inoculated (CP1) or inoculated with either Glomus etunicatum (GeP1) or G. macrocarpum (GmP1), while plants at P2 level were left non-inoculated (CP2). Plants were grown in a greenhouse and harvested after 80 days. In the mycorrhizosphere of the GmP1 and GeP1 plants a shift from Mn-oxidizing to Mn-reducing bacteria coincided with higher soil extractability of Mn and Fe. However, the occurrence of Mn-oxidizing/reducing bacteria in the (mycor)rhizosphere was unrelated to Mn toxicity in plants. Using 16S rDNA sequence homologies, the Mn-reducing isolates were consistent with the genus Streptomyces. The Mn-oxidizers were homologous with the genera Arthrobacter, Variovorax and Ralstonia. While CP1 plants showed Mn toxicity throughout the whole growth period, CP2 plants never did, in spite of having Fe and Mn shoot concentrations as high as in CP1 plants. Mycorrhizal plants showed Mn toxicity symptoms early in the growth period that were no longer visible in later growth stages. The shoot P concentration was almost twice as high in mycorrhizal plants compared with CP1 and CP2 plants. The shoot Mn and Fe concentrations and contents were lower in GmP1 and GeP1 plants compared with the CP2 treatment, even though levels of extractable metals increased in the soil when plants were mycorrhizal. This suggests that mycorrhiza protected its host plant from excessive uptake of Mn and Fe. In addition, higher tissue P concentrations may have facilitated internal detoxification of Mn in mycorrhizal plants. The exact mechanisms acting on alleviation of Mn toxicity in mycorrhizal plants should be further investigated.  相似文献   

10.
 Plant ability to withstand acidic soil mineral deficiencies and toxicities can be enhanced by root-arbuscular mycorrhizal fungus (AMF) symbioses. The AMF benefits to plants may be attributed to enhanced plant acquisition of mineral nutrients essential to plant growth and restricted acquisition of toxic elements. Switchgrass (Panicum virgatum L.) was grown in pHCa (soil:10 mM CaCl2, 1 : 1) 4 and 5 soil (Typic Hapludult) inoculated with Glomus clarum, G. diaphanum, G. etunicatum, G. intraradices, Gigaspora albida, Gi. margarita, Gi. rosea, and Acaulospora morrowiae to determine differences among AMF isolates for mineral acquisition. Shoots of mycorrhizal (AM) plants had 6.2-fold P concentration differences when grown in pHCa 4 soil and 2.9-fold in pHCa 5 soil. Acquisition trends for the other mineral nutrients essential for plant growth were similar for AM plants grown in pHCa 4 and 5 soil, and differences among AMF isolates were generally higher for plants grown in pHCa 4 than in pHCa 5 soil. Both declines and increases in shoot concentrations of N, S, K, Ca, Mg, Zn, Cu, and Mn relative to nonmycorrhizal (nonAM) plants were noted for many AM plants. Differences among AM plants for N and Mg concentrations were relatively small (<2-fold) and were large (2- to 9-fold) for the other minerals. Shoot concentrations of mineral nutrients did not relate well to dry matter produced or to percentage root colonization. Except for Mn and one AMF isolate, shoot concentrations of Mn, Fe, B, and Al in AM plants were lower than in nonAM plants, and differences among AM plants for these minerals ranged from a low of 1.8-fold for Fe to as high as 6.9-fold for Mn. Some AMF isolates were effective in overcoming acidic soil mineral deficiency and toxicity problems that commonly occur with plants grown in acidic soil. Accepted: 14 June 1999  相似文献   

11.
Sustainability of soil-plant systems requires, among other things, good development and function of mycorrhizal symbioses. The effects of P and micronutrient levels on development of an arbuscular mycorrhizal fungus (AMF) and uptake of Zn, Cu, Mn and Fe by maize (Zea mays L.) were studied. A pot experiment with maize either inoculated or not with Glomus intraradices was conducted in a sand:soil (3 :1) mix (pH 6.5) in a greenhouse. Our goal was to evaluate the contribution of mycorrhizae to uptake of Cu, Zn, Mn and Fe by maize as influenced by soil P and micronutrient levels. Two levels of P (10 and 40 mg kg−1 soil) and three levels of a micronutrient mixture: 0, 1X and 2X (1X contained, in mg kg−1 soil, 4.2 Fe, 1.2 Mn, 0.24 Zn, 0.06 Cu, 0.78 B and 0.036 Mo), were applied to pots. There were more extraradical hyphae at the low P level than at the high P level when no micronutrients were added to the soil. Root inoculation with mycorrhiza and application of micronutrients increased shoot biomass. Total Zn content in shoots was higher in mycorrhizal than non-mycorrhizal plants grown in soils with low P and low or no micronutrient addition. Total Cu content in shoots was increased by mycorrhizal colonization when no micronutrients were added. Mycorrhizal plants had lower Mn contents than non-mycorrhizal plants only at the highest soil micronutrient level. AMF increased total shoot Fe content when no micronutrients were added, but decreased shoot Fe when plants were grown at the high level of micronutrient addition. The effects of G. intraradices on Zn, Cu, Mn, and Fe uptake varied with micronutrient and P levels added to soil. Accepted: 27 December 1999  相似文献   

12.
Binet  Ph.  Portal  J.M.  Leyval  C. 《Plant and Soil》2000,227(1-2):207-213
Polycyclic aromatic hydrocarbons (PAH) can be degraded in the rhizosphere but may also interact with vegetation by accumulation in plant tissues or adsorption on root surface. Previous studies have shown that arbuscular mycorrhizal (AM) fungi contribute to the establishment and maintenance of plants in a PAH contaminated soil. We investigated the fate of PAH in the rhizosphere and mycorrhizosphere including biodegradation, uptake and adsorption. Experiments were conducted with ryegrass inoculated or not with Glomus mosseae P2 (BEG 69) and cultivated in pots filled with soil spiked with 5 g kg−1 of anthracene or with 1 g kg−1 of a mixture of 8 PAH in a growth chamber. PAH were extracted from root surfaces, root and shoot tissue and rhizosphere soil and were analysed by GC-MS. In both experiments, 0.006 – 0.11‰ of the initial extractable PAH concentration were adsorbed to roots, 0.003 – 0.16‰ were found in root tissue, 0.001‰ in shoot tissue and 36 – 66% were dissipated, suggesting that the major part of PAH dissipation in rhizosphere soil was due to biodegradation or biotransformation. With mycorrhizal plants, anthracene and PAH were less adsorbed to roots and shoot tissue concentrations were lower than with non mycorrhizal plants, which could contribute to explain the beneficial effect of AM fungi on plant survival in PAH contaminated soils. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
Two key plant adaptations for phosphorus (P) acquisition are carboxylate exudation into the rhizosphere and mycorrhizal symbioses. These target different soil P resources, presumably with different plant carbon costs. We examined the effect of inoculation with arbuscular mycorrhizal fungi (AMF) on amount of rhizosphere carboxylates and plant P uptake for 10 species of low‐P adapted Kennedia grown for 23 weeks in low‐P sand. Inoculation decreased carboxylates in some species (up to 50%), decreased plant dry weight (21%) and increased plant P content (23%). There was a positive logarithmic relationship between plant P content and the amount of rhizosphere citric acid for inoculated and uninoculated plants. Causality was indicated by experiments using sand where little citric acid was lost from the soil solution over 2 h and citric acid at low concentrations desorbed P into the soil solution. Senesced leaf P concentration was often low and P‐resorption efficiencies reached >90%. In conclusion, we propose that mycorrhizally mediated resource partitioning occurred because inoculation reduced rhizosphere carboxylates, but increased plant P uptake. Hence, presumably, the proportion of plant P acquired from strongly sorbed sources decreased with inoculation, while the proportion from labile inorganic P increased. Implications for plant fitness under field conditions now require investigation.  相似文献   

14.
间作对植株生长及养分吸收和根际环境的影响   总被引:5,自引:1,他引:4  
通过盆栽实验研究了线辣椒和玉米间作对其植株生长、矿质养分吸收、根际环境以及铁载体分泌的影响,以探索间作促进铁、磷等养分吸收利用的可能生理机制.结果表明:(1)与单作相比,间作线辣椒地上部干重降低23.0%,根系干重增加44.2%,玉米地上部和根系的干重分别增加8.7%和22.9%;间作线辣椒根冠比和根系活力分别显著提高86.4%和29.8%;间作线辣椒、玉米叶绿素含量分别显著提高12.6%和7.8%.(2)与单作相比,间作线辣椒的铁、锌、锰含量分别增加1.50倍、1.39倍和1.34%,而间作玉米则无显著变化;间作线辣椒和玉米的钙含量都显著低于相应单作,氮含量没有显著变化,但磷、钾含量显著增加.(3)间作线辣椒和玉米的根际土、非根际土的酸性磷酸酶活性及根系酸性磷酸酶活性都显著高于相应单作,而其根际土和非根际土的pH值无显著变化;间作玉米根系的铁载体分泌比单作减少32.8%,间作线辣椒根系的铁还原酶活性是单作的1.10倍.研究发现,线辣椒/玉米间作能通过影响根际生物学特征和化学过程提高植株的铁、锌、磷和钾养分水平,缓解养分胁迫,是一种很有推广价值的种植模式.  相似文献   

15.
The effects of interactions between Bacillus thuringiensis, a drought-adapted bacterium, and two isolates of Glomus intraradices, an arbuscular mycorrhizal (AM) fungus, on Retama sphaerocarpa, a drought-adapted legume, were investigated. The fungal isolates were an indigenous drought-tolerant and a nonindigenous drought-sensitive isolate. Shoot length and root growth, symbiotic parameters, water transport (in terms of percent relative plant water uptake), and volumetric soil moisture and soil enzymatic activities in response to microbial inoculations were evaluated. Retama plants colonized by G. intraradices plus Bacillus possessed similar shoot length after 30 days from sowing compared with noninoculated Retama plants after 150 days. Inoculation with drought-adapted bacterium increased root growth by 201%, but maximum root development was obtained by co-inoculation of B. thuringiensis and the indigenous G. intraradices. Nodules were formed only in plants colonized by autochthonous AM fungi. Relative water uptake was higher in inoculated than in noninoculated Retama plants, and these inoculants depleted soil water content concomitantly. G. intraradices-colonized Retama reached similar shoot length irrespective of the fungal origin, but there were strong differences in relative water uptake by plants colonized by each one of the fungi. Indigenous G. intraradices-colonized roots (evaluated as functional alkaline phosphatase staining) showed the highest intensity and arbuscule richness when associated with B. thuringiensis. The interactive microbial effects on Retama plants were more relevant when indigenous microorganisms were involved. Co-inoculation of autochthonous microorganisms reduced by 42% the water required to produce 1 mg of shoot biomass. This is the first evidence of the effectiveness of rhizosphere bacterium, singly or associated with AM fungus, in increasing plant water uptake, which represents a positive microbial effect on plants grown under drought environments.  相似文献   

16.
The lengths of roots and root hairs and the extent of root-induced processes affect phosphorus (P) uptake efficiency by plants. To assess the influence of variation in the lengths of roots and root hairs and rhizosphere processes on the efficiency of soil phosphorus (P) uptake, a pot experiment with a low-P soil and eight selected genotypes of cowpea (Vigna unguiculata (L) WALP) was conducted. Root length, root diameter and root hair length were measured to estimate the soil volume exploited by roots and root hairs. The total soil P was considered as a pool of Olsen-P, extractable with 0.5 M NaHCO3 at pH 8.5, and a pool of non-Olsen-P. Model calculations were made to estimate P uptake originated from Olsen-P in the root hair zone and the Olsen-P moving by diffusion into the root hair cylinder and non-Olsen-P uptake. The mean uptake rate of P and the mean rate of non-Olsen-P depletion were also estimated. The genotypes differed significantly in lengths of roots and root hairs, and in P uptake, P uptake rates and growth. From 6 to 85% of total P uptake in the soil volume exploited by roots and root hairs was absorbed from the pool of non-Olsen-P. This indicates a considerable activity of root-induced rhizosphere processes. Hence the large differences show that traits for more P uptake-efficient plants exist in the tested cowpea genotypes. This opens the possibility to breed for more P uptake-efficient varieties as a way to bring more sparingly soluble soil P into cycling in crop production and obtain capitalisation of soil P reserves.  相似文献   

17.
The recently isolated root‐hairless mutant of barley (Hordeum vulgare L), bald root barley, brb offers a unique possibility to quantify the importance of root hairs in phosphorus (P) uptake from soil. In the present study the ability of brb and the wild‐type, barley genotype Pallas producing normal root hairs to deplete P in the rhizosphere soil was investigated and the theory of diffusion and mass flow applied to compare the predicted and measured depletion profiles of diffusible P. Pallas depleted twice as much P from the rhizosphere soil as brb. The P depletion profile of Pallas uniformly extended to 0.8 mm from the root surface, which was equal to the root hair length (RHL). The model based on the theory of diffusion and mass flow explained the observed P‐depletion profile of brb, and the P depletion outside the root‐hair zone of Pallas, suggesting that the model is valid only for P movement in rhizosphere soil outside the root‐hair zone. In low‐P soil (P in soil solution 3 µm ) brb did not survive after 30 d, whereas Pallas continued to grow, confirming the importance of root hairs in plant growth in a P‐limiting environment. In high‐P soil (P in soil solution 10 µm ) both brb and Pallas maintained their growth, and they were able to produce seeds. At the high‐P concentration, RHL of the Pallas was reduced from 0.80 ± 0.2 to 0.68 ± 0.14 mm. In low‐P soil, P‐uptake rate into the roots of Pallas was 4.0 × 10?7 g mm?1 d?1 and that of brb was 1.9 × 10?7 g mm?1 d?1, which agreed well with the double amount of P depleted from the rhizosphere soil of Pallas in comparison with that of brb. In high‐P soil, the P uptake rates into the roots of brb and Pallas were 3.3 and 5.5 × 10?7 g mm?1 d?1, respectively. The results unequivocally confirmed that in a low‐P environment, root hairs are of immense importance in P acquisition and plants survival, but under high‐P conditions they may be dispensable. The characterization of phenotypes brb and Pallas and the ability to reproduce seeds offers a unique possibility of molecular mapping of QTLs and candidate genes conferring root‐hair formation and growth of barley.  相似文献   

18.
This paper reports a new barley mutant missing root hairs. The mutant was spontaneously discovered among the population of wild type (Pallas, a spring barley cultivar), producing normal, 0.8 mm long root hairs. We have called the mutant bald root barley (brb). Root anatomical studies confirmed the lack of root hairs on mutant roots. Amplified Fragment Length Polymorphism (AFLP) analyses of the genomes of the mutant and Pallas supported that the brb mutant has its genetic background in Pallas. The segregation ratio of selfed F2 plants, resulting from mutant and Pallas outcross, was 1:3 (–root hairs:+root hairs), suggesting a monogenic recessive mode of inheritance.In rhizosphere studies, Pallas absorbed nearly two times more phosphorus (P) than the mutant. Most of available inorganic P in the root hair zone (0.8 mm) of Pallas was depleted, as indicated by the uniform P depletion profile near its roots. The acid phosphatase (Apase) activity near the roots of Pallas was higher and Pallas mobilised more organic P in the rhizosphere than the mutant. The higher Apase activity near Pallas roots also suggests a link between root hair formation and rhizosphere Apase activity. Hence, root hairs are important for increasing plant P uptake of inorganic as well as mobilisation of organic P in soils.Laboratory, pot and field studies showed that barley cultivars with longer root hairs (1.10 mm), extracted more P from rhizosphere soil, absorbed more P in low-P field (Olsen P=14 mg P kg–1 soil), and produced more shoot biomass than shorter root hair cultivars (0.63 mm). Especially in low-P soil, the differences in root hair length and P uptake among the cultivars were significantly larger. Based on the results, the perspectives of genetic analysis of root hairs and their importance in P uptake and field performance of cereals are discussed.  相似文献   

19.
Lupinus albus L. were grown in rhizoboxes containing a soil amended with sparingly available Fe–P or Al–P (100 μg P g−1 soil/resin mixture). Root halves of individual plants were supplied with nutrient solution (minus P) buffered at either pH 5.5 or 7.5, to assess whether the source of mineral-bound P and/or pH influence cluster-root growth and carboxylate exudation. The P-amended soil was mixed 3:1 (w/w) with anion-exchange resins to allow rapid fixation of carboxylates. Treatments lasted 10 weeks. Forty percent and 30% of the root mass developed as cluster roots in plants grown on Fe–P and Al–P respectively, but cluster-root growth was the same on root-halves grown at pH 5.5 or 7.5. Mineral-bound P source (Al– or Fe–P) had no influence on the types of carboxylates measured in soil associated with cluster roots—citrate (and trace amounts of malate and fumarate) was the only major carboxylate detected. The [citrate] in the rhizosphere of cluster roots decreased with increased shoot P status (suggesting a systemic effect) and also, only for plants grown on Al–P, with decreased pH in the root environment (suggesting a local effect). In a separate experiment using anion exchange resins pre-loaded with malate or citrate, we measured malate (50%) and citrate (79%) recovery after 30 days in soil. We therefore, also conclude that measurements of [citrate] and [malate] at the root surface may be underestimated and would be greater than the 40- and 1.6-μmol g−1 root DM, respectively estimated by us and others because of decomposition of carboxylates around roots prior to sampling.  相似文献   

20.
French bean seedlings grown on choline, ammoniacal and nitrate forms of nitrogen together with equivalent basal application of P as KH2PO4 were tested for nutrient uptake from the rhizosphere. Statistical tests on soil (rhizosphere and non-rhizosphere) and plant (root and shoot) revealed that with the exception of P, levels of all other estimated macro-(Na+, K+, Ca2+, Mg2+) and micro-nutrients (Fe2+, Mn2+, Zn2+) were significantly changed after 42 days growth as compared to 21 days growth period. The higher uptake into shoots of Na+, K+, Fe2+, Mn2+, Zn2+ and H2PO4 and higher biomass accumulation in the rhizosphere were associated with lower rhizosphere pH. The uptake of Ca2+ and Mg2+ increased with higher rhizosphere pH. While ammoniacal and choline forms decreased rhizosphere pH and increased the P uptake, nitrate form reversed the trend showing significant inverse relationship between shoot phosphate and rhizosphere pH. Calcium and iron were associated with an inhibition of the translocation of P from root to shoot. However, no causal relationships could be established. Both shoot weight and shoot P content were closely associated with a number of rhizosphere soil parameters. The paper forms a part of the Ph. D thesis submitted by the first author to the University of Wales, 1977.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号